Algorithm Quicksort: Analysis of Complexity

Lecturer: Georgy Gimel'farb

COMPSCI 220 Algorithms and Data Structures
(1) Algorithm quicksort
(2) Correctness of quicksort
(3) Quadratic worst-case time complexity
(4) Linearithmic average-case time complexity

5 Choosing a better pivot
(6) Partitioning algorithm

Algorithm QuickSort

Proposed in 1959/60 by
Sir Charles Antony Richard (Tony) Hoare
Born: 11.01.1934 (Colombo, Sri Lanka)
Fellow of the Royal Society (1982)
Fellow of the Royal Academy of Engineering (2005)

- Like mergesort, the divide-and-conquer paradigm.
- Unlike mergesort, subarrays for sorting and merging are formed dynamically, depending on the input, rather than are predetermined.
- Almost all the work: in the division into subproblems.
- Very fast on "random" data, but unsuitable for mission-critical applications due to the very bad worst-case behaviour.

Basic Recursive Quicksort

If the size, n, of the list, is 0 or 1 , return the list. Otherwise:
(1) Choose one of the items in the list as a pivot.
(2) Next, partition the remaining items into two disjoint sublists, such that all items greater than the pivot follow it, and all elements less than the pivot precede it.
3 Finally, return the result of quicksort of the "head" sublist, followed by the pivot, followed by the result of quicksort of the "tail" sublist.

Lemma 2.13 (Textbook): Quicksort is correct.

Proof: by math induction on the size n of the list.

- Basis. If $n=1$, the algorithm is correct.
- Hypothesis. It is correct on lists of size smaller than n.
- Inductive step. After positioning, the pivot p at position i; $i=1, \ldots, n-1$, splits a list of size n into the head sublist of size i and the tail sublist of size $n-1-i$.
- Elements of the head sublist are not greater than p.
- Elements of the tail sublist are not smaller than p.
- By the induction hypothesis, both the head and tail sublists are sorted correctly.
- Therefore, the whole list of size n is sorted correctly.

Any implementation specifies what to do with items equal to the pivot.

Analysing Quicksort: The Worst Case $T(n) \in \Omega\left(n^{2}\right)$

The choice of a pivot is most critical:

- The wrong choice may lead to the worst-case quadratic time complexity.
- A good choice equalises both sublists in size and leads to linearithmic (" $n \log n$ ") time complexity.
The worst-case choice: the pivot happens to be the largest (or smallest) item.
- Then one subarray is always empty.
- The second subarray contains $n-1$ elements, i.e. all the elements other than the pivot.
- Quicksort is recursively called only on this second group. However, quicksort is fast on the "randomly scattered" pivots.

Analysing Quicksort: The Worst Case $T(n) \in \Omega\left(n^{2}\right)$

Lemma 2.14 (Textbook): The worst-case time complexity of quicksort is $\Omega\left(n^{2}\right)$.
Proof. The partitioning step: at least, $n-1$ comparisons.

- At each next step for $n \geq 1$, the number of comparisons is one less, so that $T(n)=T(n-1)+(n-1) ; T(1)=0$.
- "Telescoping" $T(n)-T(n-1)=n-1$:

$$
\begin{aligned}
T(n) & +T(n-1)+T(n-2)+\ldots+T(3)+T(2) \\
& -T(n-1)-T(n-2)-\ldots-T(3)-T(2)-T(1) \\
& =(n-1)+(n-2)+\ldots+2+1-0 \\
T(n) & =(n-1)+(n-2)+\ldots+2+1=\frac{(n-1) n}{2}
\end{aligned}
$$

This yields that $T(n) \in \Omega\left(n^{2}\right)$.

Analysing Quicksort: The Average Case $T(n) \in \Theta(n \log n)$

For any pivot position $i ; i \in\{0, \ldots, n-1\}$:

- Time for partitioning an array : cn
- The head and tail subarrays contain i and $n-1-i$ items, respectively: $T(n)=c n+T(i)+T(n-1-i)$
Average running time for sorting (a more complex recurrence):

$$
\begin{aligned}
& T(n)=\frac{1}{n} \sum_{i=0}^{n-1}(T(i)+T(n-1-i)+c n) \\
&=\frac{2}{n}(T(0)+T(1)+\ldots+T(n-2)+T(n-1))+c n, \text { or } \\
& n T(n)=2(T(0)+T(1)+\ldots+T(n-2)+T(n-1))+c n^{2} \\
&(n-1) T(n-1)=2(T(0)+T(1)+\ldots+T(n-2))+c(n-1)^{2} \\
& \hline n T(n)-(n-1) T(n-1)=2 T(n-1)+2 c n-c \approx 2 T(n-1)+2 c n \\
& \text { Thus, } n T(n) \approx(n+1) T(n-1)+2 c n, \text { or } \frac{T(n)}{n+1}=\frac{T(n-1)}{n}+\frac{2 c}{n+1}
\end{aligned}
$$

Analysing Quicksort: The Average Case $T(n) \in \Theta(n \log n)$

"Telescoping" $\frac{T(n)}{n+1}-\frac{T(n-1)}{n}=\frac{2 c}{n+1}$ to get the explicit form:

$$
\begin{aligned}
\frac{T(n)}{n+1} & +\frac{T(n-1)}{n}+\frac{T(n-2)}{n-1}+\ldots+\frac{T(2)}{3}+\frac{T(1)}{2} \\
& -\frac{T(n-1)}{n}-\frac{T(n-2)}{n-1}-\ldots-\frac{T(2)}{3}-\frac{T(1)}{2}-\frac{T(0)}{1} \\
& =\frac{2 c}{n+1}+\frac{2 c}{n}+\ldots+\frac{2 c}{3}+\frac{2 c}{2}, \text { or }
\end{aligned}
$$

$$
\frac{T(n)}{n+1}=\frac{T(0)}{1}+2 c\left(\frac{1}{2}+\frac{1}{3}+\ldots+\frac{1}{n}+\frac{1}{n+1}\right) \approx 2 c\left(H_{n+1}-1\right) \approx c^{\prime} \log n
$$

$$
\left(H_{n}=1+\frac{1}{2}+\frac{1}{3}+\ldots+\frac{1}{n} \approx \ln n+0.577 \text { is the } n^{\text {th }}\right. \text { harmonic number). }
$$

Therefore, $T(n) \approx c^{\prime}(n+1) \log n \in \Theta(n \log n)$.
Quicksort is our first example of dramatically different worst-case and average-case performances!

Implementations of Quicksort

Choices to be made for implementing the basic quicksort algorithm:

- How to implement the list?
- How to choose the pivot?
- How to partition the list around the pivot?

Passive pivot choice - a fixed position in each sublist

- $\Omega\left(n^{2}\right)$ running time for frequent in practice nearly sorted lists under the naïve selection of the first or last position.
- A more reasonable choice: the middle element of each sublist.
- Random inputs resulting in $\Omega\left(n^{2}\right)$ time are rather unlikely.
- But still: vulnerability to an "algorithm complexity attack" with specially designed "worst-case" inputs.

Active Pivot Strategy

The best active pivot - the exact median of the list, dividing it into (almost) equal sized sublists, - is computationally inefficient.

The median-of-three strategy to approximate the true median
The pivot $p=$ median $\left\{a\left[i_{\text {beg }}\right], a\left[i_{\text {mid }}\right], a\left[i_{\text {end }}\right]\right\}$ where $i_{\text {beg }} ; i_{\text {end }}$, and $i_{\text {mid }}=\left\lfloor\frac{i_{\text {beg }}+i_{\text {end }}}{2}\right\rfloor$ refer to the first, last, and middle ${ }^{a}$ elements, respectively, of a sublist, $a\left[i_{\mathrm{beg}}\right], a\left[i_{\mathrm{beg}}+1, \ldots, a\left[i_{\mathrm{end}}\right]\right.$.
${ }^{a}\lfloor z\rfloor$ is an integer floor of the real value z.
An example: $\quad \mathbf{a}=(45,25,15,31,75,80,60,20,19)$

$$
\begin{aligned}
& \operatorname{median}\{45,75,19\} \rightarrow 19 \leq 45 \leq 75] \rightarrow 45 \\
& \mathbf{a}=((19,25,15,31,20), 45,(80,60,75))
\end{aligned}
$$

Active Pivot Strategy

Bad performance is still possible with the median-of-three strategy, but becomes much less likely, than for a passive strategy.

Random choice of the pivot

- The expected running time is $\Theta(n \log n)$ for any given input.
- No adversary can force the bad behaviour by choosing nasty inputs.
- A small extra overhead for generating a "random" pivot position.
- Bad cases: only by bad luck, independent of the input.
- An alternative: to first randomly shuffle the input in linear, $\Theta(n)$, time and use then the naïve pivot selection.

Partitioning Algorithm

Head								

(1) Initialisation:
(1) Start pointers L and R at the head of the list and at the end plus one, respectively.
(2) Swap the pivot element, p, to the head of the list.
(2) Iteration: while $L<R$, do:
(1) Decrement R
until it meets an element less than or equal to p.
(2) Increment L
until it meets an element greater than or equal to p.
(3) Swap the elements pointed by L and R.
(3) Once $L=R$, swap the pivot element with the element pointed to by L.

Example 2.17 (Textbook): Partitioning a List

Data to sort; pivot $p=a[7]=31$										Description Initial list$L=0 ; R=10$
25	8	2	91	15	50	20	31	70	65	
31	8	2	91	15	50	20	25	70	65	Move pivot to head
31	8	2	91	15	50	20	25	70	65	Stop R
31	8	2	91	15	50	20	25	70	65	Stop L
31	8	2	25	15	50	20	91	70	65	Swap $a[R]$ and $a[L]$
31	8	2	25	15	50	20	91	70	65	Stop R
31	8	2	25	15	50	20	91	70	65	Stop L
31	8	2	25	15	20	50	91	70	65	Swap $a[R]$ and $a[L]$
31	8	2	25	15	20	50	91	70	65	Stop $R=L$
20	8	2	25	15	31	50	91	70	65	Swap $a[L]$ with pivot

Data to sort; pivot $p=a[7]=31$										Description Initial list$L=0 ; R=10$
25	8	2	91	15	50	20	31	70	65	
31	8	2	91	15	50	20	25	70	65	Move pivot to head
31	8	2	91	15	50	20	25	70	65	Stop R
31	8	2	91	15	50	20	25	70	65	Stop L
31	8	2	25	15	50	20	91	70	65	Swap $a[R]$ and $a[L]$
31	8	2	25	15	50	20	91	70	65	Stop R
31	8	2	25	15	50	20	91	70	65	Stop L
31	8	2	25	15	20	50	91	70	65	Swap $a[R]$ and $a[L]$
31	8	2	25	15	20	50	91	70	65	Stop $R=L$
20	8	2	25	15	31	50	91	70	65	Swap $a[L]$ with pivot

Data to sort; pivot $p=a[7]=31$

$$
L=0 ; R=10
$$

Move pivot to head
Stop R
Stop L
Swap $a[R]$ and $a[L]$
Stop R
Stop L
Swap $a[R]$ and $a[L]$
Stop $R=L$
Swap $a[L]$ with pivot
Head (left) sublist $\leq \quad p \quad \leq$ Tail (right) sublist
Description
Initial list

Outine

Correctness of Partitioning

Lemma 2.18 (Textbook): The Partitioning Is Correct

Proof. After each swap of elements $a[L]$ and $a[R]$,

- each element to the left of index L, as well as $a[L]$, is less than or equal to the pivot p;
- each element to the right of index R, as well as $a[R]$, is greater than or equal to the pivot p.

After the final swap of p with $a[L]$, which does not exceed p, all elements smaller than p are to its left, and all larger are to its right.

- Quicksort is easier to program for array, than other types of lists.
- Constant-time pivot selection is only for arrays, but not linked lists.
- What time will the median-of-three take for a linked list?
- Partition needs a doubly-linked list to scan forward and backward.

Pseudocode for Array-Based Quicksort

algorithm quickSort sorts the subarray $a[l . . r]$ Input: array $a[0 . . n-1]$; array indices l, r
begin
if $l<r$ then
$i \leftarrow \operatorname{pivot}(a, l, r)$
$j \leftarrow \operatorname{partition}(a, l, r, i)$
quickSort($a, l, j-1$)
quickSort $(a, j+1, r)$
end if
return a
end

