Insertion Sort: Analysis of Complexity

Georgy Gimel'farb

COMPSCI 220 Algorithms and Data Structures

@ Worst-case complexity of insertion sort
® Average-case, or expected complexity of insertion sort
© Analysis of inversions

O Selection and bubble sort of complexity ©(n?)

N)

15

Worst-case

Analysing Complexity of Insertion Sort

Iterative growth of a head (“sorted” sublist) of a list A:
Lal0] [a[l] [... [a[i—1] | ali] [ali+1]]... [aln—1]]

Head (sorted sublist) of size i Tail (unsorted sublist) of size n—i
n — 1 iterations (stages) i = 1,2,...,n — 1;
7; 1 < 7 <1, comparisons and j or j — 1 moves per stage:
@ Initialisation: the head sublist of size 1.

@ lteration: until the tail sublist is empty, repeat:

@ Choose the first element, = ali] in the tail sublist.

@ Find the last element, y = a[j]; 1 < j <i—1, in the head
sublist not exceeding x.

© |Insert x after y in the head sublist.

Insertion sort is correct, since the head sublist is always sorted,
and eventually expands to include all elements of A.

Worst-case

Best- and Worst-case Complexity of Insertion Sort

The first element, a[é], of the tail is moved to the correct position
in the head by exhaustive backward search, comparing it to each
element, afi — 1],. .., of the head until finding the right place.

The best case, ©(n): if the inputs A are already in sorted order:
al0] < all] <...<aln—1], i.e. A=1{1,2,3,4}.

e One comparison and no moves per stage i; i = 1,...,n — 1.

e Comparisons in total: 1+1+...+1=n—1¢€ O(n).
The worst case, ©(n?): if the inputs A contain distinct items in
reverse order: a[0] > a[l] > ... >a[n—1], i.e. A ={4,3,2,1}

e ; comparisons and ¢ moves per stage ;i =1,...,n — 1.

e Comparisons in total:

1424 +n—1=020n —nlon o g(p2),

Average-case

Average-case Complexity of Insertion Sort

Lemma 2.3, p.30

The average-case time complexity of insertion sort is ©(n?)

The proof’s outline:

e Assuming all possible inputs are equally likely, evaluate the
average, or expected number C; of comparisons at each stage
1=1,...,n—1.

_ nzl__

e Calculate the average total number C' =) C;.

i=1

e Evaluate the average-case complexity of insertion sort by
taking into account that the total number of data moves is at

least zero and at most the number of comparisons.

Average-case

Average Complexity of Insertion Sort at Stage i

i+ 1 positions in the already ordered head a[0],...,ali — 1] of a
list A to insert the next unordered yet item afi]:

al0] all] al2] <o ali—=1] | ali]

Tj=0 T T2 T Tic1 Tj=i
Cio=1 Cip1=1 Cia=i—1-- Ciim1 =2 Ciyy =1
Mo =i Mjq=i—1Mp=i—2--- Mg 1=1 My; =0

C;.;j =i —j + 1 comparisons and M;.; =i — j moves to place a[i] into
each preceding position j =14,7 —1,...,1.

e (;.; =i comparisons and M;.; = i moves for j = 0.
Average number, C; = H—Ll Z;:O C}.;, of comparisons at stage i:

o le2t.tivi P40

i 1
= = — = — 1—
i1 it1 2 ir1 2+(i+1)

6/15

Average-case

Total Average Complexity for n Input ltems

The total average number of comparisons for n — 1 stages:

C1 Co Crno1
— 1 1 2 1 n—1 1
=(=+(1-2 Zi(1-2 R
(a0 () Gr () o (e (0)
=1(1+2+...+4(n-1)+
(n—1D)n
2
1 . + {1 ! +...+ |1 L
2 3 n
(n_l)_(Hn_l)Zn_Hn
= 7<"1’11)”’ +n— H, € O(n?)
where H. Z 1 ~ Inn when n — oo is the n-th harmonic number.

Average-case

Math Appendix: Evaluating Harmonic Numbers

A Ho=$Sioteiebet!
=1
1A n
H,> [% =Inn>H, 1
1
075 | 1+Inn>H,>lnn = H,=06(ogn)
0.5 4
0.25 A
0 1 2 3 4 5 6 7 8 9 10

Inversions

Analysis of Inversions

The running time of insertion sort is strongly related to inversions
in a list A to be sorted.

Definition 2.5: An inversion in a list A = [a1,ag,...,ay] is any
ordered pair of positions (4, j) such that i < j but a; > a;.
Examples of inversions: [...,2,...,1] or [100,...,35,...].

List A Number of | Reverse list A;c, | Number of | Total

inversions inversions
3,2,5] 1 5,2,3] 2 3
3,2,5, 1] 4 [1,5,2,3] 2 6
1,2,3,5,7] 0 [7,5,3,2, 1] 10 10

The number of inversions measures how far a list is from being sorted.

Inversions

Analysis of Inversions

Number of inversions I;, comparisons C; and data moves M; for
each element a[i] in A:

Element¢| O | 1 |2 | 3|4 |5]|6
A 4411313518 | 15|10 | 20
I; 1111213 |5]|2|I=14
C; 11234 |5]3|C=18
M; 11112135 |2 | M=14
n—1
Because I; = M is always true, the total number [=) I; of
i=1
n—1 ’
inversions is equal to the total number M = Y M; of backward
i=1

moves of elements a[i] during the sort.

10/15

Inversions

Analysis of Inversions

n—1

The total number of data comparisions C' = > C; is also equal to
i=1

the total number of inversions plus at most n — 1.

Total number of inversions in both an arbitrary list A and its
reverse A..y is equal to the total number of the ordered pairs
(1 < j)of integersi,j € {1,...,n— 1}

(", 1) =

e A sorted list has no inversions.

. . —1 . .
e A reverse sorted list of size n has 5)™ inversions.

. . “n . .
o In the average, all lists of size n have 1)" inversions.

11/15

Inversions

Complexity of Insertion Sort by Analysing Inversions

Exactly one inversion is removed by swapping two neighbours
being out of order: a;—1 > a;.

e If an original list has I inversions, insertion sort has to swap [
pairs of neighbours.

e A list with I inversions results in ©(n + I) running time of
insertionSort because of ©(n) other operations in the
algorithm.

e In the very rare best case of a nearly sorted list for which I is
©(n), insertion sort runs in linear time.

e The worst-case time: ¢ ;, or O(n?).

e The average-case, or expected time: CT, or still ©(n?).

More efficient sorting algorithms must eliminate more than
just one inversion between neighbours per swap.

12 /15

Inversions

Implementation of Insertion Sort

The number of comparisons does not depend on how the list is
implemented, but the number of moves does.
e Backward moves in an array implementation of a list:
e Shifting elements to the right (linear time per stage) in the
worst and average case, or
e Successive swaps to move the element backward.
e Insertion operation in a linked list implementation of a list:
e Constant-time insertion of an element.
e Fewer swaps by simply scanning backward (but it may take
time for a singly linked list).

None of the implementation issues affect the asymptotic ©(n?) running
time of the algorithm, just the hidden constants and lower order terms,
due to too many comparisons in the worst and average cases.

13 /15

More (,—)(\nz) sorts

Quadratic ©(n?) Selection Sort: Java Code

// Selection sort of an input array a of size n:
// building a head by successive minima selection in a tail

//
// Each leftmost unordered al[i] is swapped with the minimum element
// selected among the unordered yet elements ali+1],...,a[n-1]

public static void selectionSort(int [] a) {
for (int i = 1; i < a.length - 1; i++) {
int posMin = i;
// for-loop for selecting position of the minimum element
for (int k = i + 1; k < a.length; k++) {
if (al posMin] > al k¥]) posMin = k;

}

if (posMin !'= i) swap(a, i, posMin);
// swap ali] with the minimum element selected

More ©(n“)

Quadratic ©(n?) Bubble Sort: Java Code

// Bubble sort of an input array a of size n:
// n - 1 iterations to bubble up the maximum element
// among the unordered yet elements al[0],...,a[i]

// Each iteration i performs successive bottom-up swaps of
// the larger element in each adjacent pair of the elements
// for bubbling up the maximal element from al[O],...,a[i]

public static void bubbleSort(int [] a) {
for (int i = a.length - 1; i > 0; i--) {
for (int k = 0; k < i; k++) {
if Calk]l>alk+11)

swap(a, k, k + 1);
bubble up the larger of the two adjacent elements

15/15

	Worst-case complexity of insertion sort
	Average-case, or expected complexity of insertion sort
	Analysis of inversions
	Selection and bubble sort of complexity (n2)

