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Divide-and-Conquer Principle

• Divide a large problem into smaller subproblems;

• Recursively solve each subproblem, then

• Combine solutions of them to solve the original problem.

Running time: by a recurrence relation accounting for:

1 The size and the number of the subproblems and

2 The cost of splitting the problem into these subproblems.

The recursive relation F (n) = ψ (F (n′1) , . . . , F (n′k)); k ≥ 1, defines a
function, F (n), “in terms of itself”, i.e., by involving the same function.

• The non-circular definition: n > n′1 > n′2 > . . . > n′k.

• The recursion terminates at some base case F (n0), below which the
function is undefined.
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Recurrence Relation: A Simple Example F (n) = 2n

The implicit formula: F (n) = F (n− 1)︸ ︷︷ ︸
2n−1

+F (n− 1)︸ ︷︷ ︸
2n−1

; F (0) = 1,

or

F (n) = 2F (n− 1); F (0) = 1; n = 1, 2, . . .

n 0 1 2 3 4 5 6 7 8 9 . . .

F (n) 1 2 4 8 16 32 64 128 256 512 . . .
20 21 22 23 24 25 26 27 28 29 . . .

The explicit, or closed-form formula with F (0) = 1: F (n) = 2n
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Guess and Prove an Explicit, or Closed-Form F (n)

Look at a sequence of results for the implicit recurrent formula:

n 0 1 2 3 4 5 6 7 8 9 . . .

F (n) 1 2 4 8 16 32 64 128 256 512 . . .

Guess the closed-form formula F (n) = 2n and prove it with

Mathematical Induction

• Basis: F (0) = 20 = 1

• Induction hypothesis: F (n) = 2n holds some n ≥ 1.

• Inductive step from n to n+ 1:
F (n+ 1) = F (n) + F (n) = 2F (n) = 2 · 2n = 2n+1.

This proves the close-form formula having been guessed.
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Mathematical Induction (recall Lecture 1)

The induction examines conditions for a closed-form expression,
T (n), guessed, rather than derives it and proves directly.

1. Basis: T (nbase), e.g. T (0) or T (1), holds.

2. Induction hypothesis:
Let T (n) hold for some n ≥ nbase
or

2′. Strong induction hypothesis:
Let T (k) hold for every k = nbase, nbase + 1, . . . , n;
n ≥ nbase.

3 Induction step: Then T (n+ 1) holds for n+ 1.

Both the simple and strong induction are actively used to solve
recurrences, which are often met in the algorithm analysis.
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Example 1.25: Fibonacci Numbers

https://timwolversonphotos.wordpress.com/category/composition/

End of
month n:

1

2

3

4

5

Number F (n)
of pairs:

1

1

2

3

5

Italian mathematician, Leonardo
Fibonacci [1170–1250]: “Liber Abaci” –
a problem of breeding rabbits:

• A pair of rabbits takes a month to
become mature and start to have
pairs of baby rabbits, which also
take a month to reach maturity.

• How many rabbits, F (n) would
there be after n months?

• The Fibonacci Sequence:
F (n) = F (n− 1) + F (n− 2);
n ≥ 3; F (1) = F (2) = 1.
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Example 1.25: Fibonacci Numbers

1, 1, 2, 3, 5, 8, 13, 21, 34, 55, 89, 144, . . .

1 + 1 = 2
1 + 2 = 3

2 + 3 = 5
3 + 5 = 8

. . . . . . . . .
55 + 89 = 144

. . . . . . . . .

The implicit formula: F (n) = F (n− 1) + F (n− 2)

The recurrence analysis: Derive a closed-form formula for F (n)
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Characteristic Equation for F (n) = F (n− 1) + F (n− 2)

Because F (n) > F (n− 1) > F (n− 2) for all n ≥ 2, it holds that:

2F (n− 1) > F (n) > 2F (n− 2), that is, 2n > F (n) > 2n−1

• One may suggest that F (n) = cϕn; 1 < ϕ < 2.

• The implicit equation cϕn = cϕn−1 + cϕn−2 leads to the
quadratic characteristic equation for ϕ: ϕ2 = ϕ+ 1 – with
two solutions: ϕ1,2 = 1

2

(
1±
√

5
)
.

General solution: the linear combination F (n) = c1ϕ
n
1 + c2ϕ

n
2

• The coefficients c1 and c2 follow from the conditions
F (1) = F (2) = 1, so that finally:

F (n) =
1√
5

(
1 +
√

5

2

)n

− 1√
5

(
1−
√

5

2

)n

9 / 21



Outline Divide-and-conquer Math induction Telescoping Examples Pros and cons

Characteristic Equation for F (n) = F (n− 1) + F (n− 2)

Because F (n) > F (n− 1) > F (n− 2) for all n ≥ 2, it holds that:

2F (n− 1) > F (n) > 2F (n− 2), that is, 2n > F (n) > 2n−1

• One may suggest that F (n) = cϕn; 1 < ϕ < 2.

• The implicit equation cϕn = cϕn−1 + cϕn−2 leads to the
quadratic characteristic equation for ϕ: ϕ2 = ϕ+ 1 – with
two solutions: ϕ1,2 = 1

2

(
1±
√

5
)
.

General solution: the linear combination F (n) = c1ϕ
n
1 + c2ϕ

n
2

• The coefficients c1 and c2 follow from the conditions
F (1) = F (2) = 1, so that finally:

F (n) =
1√
5

(
1 +
√

5

2

)n

− 1√
5

(
1−
√

5

2

)n

9 / 21



Outline Divide-and-conquer Math induction Telescoping Examples Pros and cons

Characteristic Equation for F (n) = F (n− 1) + F (n− 2)

Because F (n) > F (n− 1) > F (n− 2) for all n ≥ 2, it holds that:

2F (n− 1) > F (n) > 2F (n− 2), that is, 2n > F (n) > 2n−1

• One may suggest that F (n) = cϕn; 1 < ϕ < 2.

• The implicit equation cϕn = cϕn−1 + cϕn−2 leads to the
quadratic characteristic equation for ϕ: ϕ2 = ϕ+ 1 – with
two solutions: ϕ1,2 = 1

2

(
1±
√

5
)
.

General solution: the linear combination F (n) = c1ϕ
n
1 + c2ϕ

n
2

• The coefficients c1 and c2 follow from the conditions
F (1) = F (2) = 1, so that finally:

F (n) =
1√
5

(
1 +
√

5

2

)n

− 1√
5

(
1−
√

5

2

)n

9 / 21



Outline Divide-and-conquer Math induction Telescoping Examples Pros and cons

“Telescoping” a Recurrence

Given: An implicit recurrence relation and its base condition
(i.e., the difference equation and its initial condition), for example:

T (n) = 2T (n− 1) + 1; T (0) = 0

Find: The closed-form (explicit) formula for T (n) by recursive
substitution of the same implicit formula:

T (n) = 2T (n− 1) + 1
T (n− 1) = 2T (n− 2) + 1

. . .

T (2) = 2T (1) + 1
T (1) = 2T (0) + 1 = 1
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“Telescoping” ≡ Substitution

T (n) = 2T (n− 1) + 1 Step 0: Initial recurrence

2T (n− 1) = 22T (n− 2) + 2 Step 1: Substitute T (n−1)

22T (n− 2) = 23T (n− 3) + 22 Step 2: Substitute T (n−2)

. . .

2n−1T (1) = 2nT (0) + 2n−1 Step n−1: Substitute T (1)

T (n) = 2nT (0)︸ ︷︷ ︸
2n·0=0

+ 1 + 2 + 22 + . . .+ 2n−1

1 + 2 + 22 + . . .+ 2n−1 = 2n − 1
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Example 1.29: Textbook, p.23

Show that the recurrence T (n) = T (n− 1) + n; T (0) = 0,

results in the closed-form (explicit) formula T (n) = n(n+1)
2 .

“Telescoping” the recurrence:

T (n) = T (n− 1) + n

T (n− 1) = T (n− 2) + n− 1

. . .

T (2) = T (1) + 2

T (1) = T (0) + 1 = 1
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1.29: T (n) by Telescoping in More Detail

Successive substitution:

T (n) = T (n− 1) + n

= T (n− 2) + (n− 1) + n

= T (n− 3) + (n− 2) + (n− 1) + n

. . .

= T (2) + 3 + . . .+ (n− 2) + (n− 1) + n

= T (1) + 2 + 3 + . . .+ (n− 2) + (n− 1) + n

= 1 + 2 + 3 + . . .+ (n− 2) + (n− 1) + n = n(n+1)
2

13 / 21



Outline Divide-and-conquer Math induction Telescoping Examples Pros and cons

1.29: T (n) by Guessing and Proving by Math Induction

Numerical sequence: T (1) = 0 + 1 = 1; T (2) = 1 + 2 = 3;

T (3) = 3 + 3 = 6; T (4) = 6 + 4 = 10; T (5) = 10 + 5 = 15; . . .

Guessing: T (n) = n(n+1)
2 ?

Base condition holds: T (1) = 1·2
2 = 1.

Induction hypothesis: If the guessed formula T (n) holds for n− 1,
then it holds also for n.

The proof: T (n) = T (n− 1) + n = (n−1)n
2 + n, i.e.

T (n) =
1

2

(
n2 − n+ 2n

)
=

1

2

(
n2 + n

)
=
n(n+ 1)

2

Thus, the guessed formula for T (n) holds for all n ≥ 1.
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Example 1.30, p.23

Repeated halving principle: halve the input in one step

• Recurrence (implicit formula): T (n) = T
(
n
2

)
+ 1; T (1) = 0.

• Closed-form (explicit) formula: T (n) ≈ log2 n

“Telescoping” (for n = 2m):

T (2m) = T (2m−1) + 1

T (2m−1) = T (2m−2) + 1

. . .

T (22) = T (21) + 1

T (21) = T (20) + 1 = 1

15 / 21



Outline Divide-and-conquer Math induction Telescoping Examples Pros and cons

Example 1.30, p.23

Repeated halving principle: halve the input in one step

• Recurrence (implicit formula): T (n) = T
(
n
2

)
+ 1; T (1) = 0.

• Closed-form (explicit) formula: T (n) ≈ log2 n

“Telescoping” (for n = 2m):

T (2m) = T (2m−1) + 1

T (2m−1) = T (2m−2) + 1

. . .

T (22) = T (21) + 1

T (21) = T (20) + 1 = 1

15 / 21



Outline Divide-and-conquer Math induction Telescoping Examples Pros and cons

1.30: T (n) by Telescoping in More Detail

T (2m) = T (2m−1) + 1

= T (2m−2) + 1 + 1

= T (2m−3) + 1 + 1 + 1

. . .

= T (21) + 1 + . . .+ 1 + 1 + 1

= T (20) + 1 + 1 + . . .+ 1 + 1 + 1

= 1 + 1 + . . .+ 1 + 1 + 1 = m, or T (2m) = m

• For n = 2m, T (n) = lgn, which is Θ(log n).

• For general n, the total number of halving steps cannot be greater
than m = dlg ne, so T (n) ≤ dlg ne for all n.
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Example 1.31, p.23

Scan and halve the input:

• Recurrence (implicit formula): T (n) = T
(
n
2

)
+ n; T (1) = 1.

• Closed-form (explicit) formula: T (n) ≈ 2n

“Telescoping” (for n = 2m):

T (2m) = T (2m−1) + 2m

T (2m−1) = T (2m−2) + 2m−1

. . .

T (22) = T (21) + 22

T (21) = T (20) + 21

T (20) = 20 = 1
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1.31: T (n) by Telescoping in More Detail

T (2m) = T (2m−1) + 2m

= T (2m−2) + 2m−1 + 2m

= T (2m−3) + 2m−2 + 2m−1 + 2m

. . .

= T (21) + 22 + . . .+ 2m−2 + 2m−1 + 2m

= T (20) + 21 + 22 + . . .+ 2m−2 + 2m−1 + 2m

= 1 + 2 + . . .+ 2m−2 + 2m−1 + 2m = 2m+1 − 1

Therefore, T (2m) ≈ 2 · 2m, or T (n) ≈ 2n.
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Example 1.32, p.23

“Divide-and-conquer” prototype; n ≥ 2:

• Recurrence (implicit formula): T (n) = 2T
(
n
2

)
+ n; T (1) = 0.

• Closed-form (explicit) formula: T (n) ≈ n log2 n

Equivalent representation for “telescoping”:

T (n) = 2T
(
n
2

)
+ n ⇒ 1

nT (n) = 2
nT
(
n
2

)
+ 1

⇒ T (n)
n =

T(n
2 )

n
2

+ 1

For n = 2m, T (2m)
2m = T (2m−1)

2m−1 + 1
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1.32: T (n) by Telescoping in More Detail

T (2m)
2m = T (2m−1)

2m−1 + 1

= T (2m−2)
2m−2 + 1 + 1

= T (2m−3)
2m−3 + 1 + 1 + 1

. . .

= T (21)
21

+ 1 + . . .+ 1 + 1 + 1

= T (20)
20

+ 1 + 1 + . . .+ 1 + 1 + 1

= 0 + 1 + . . .+ 1 + 1 + 1 = m

Therefore, T (2m) = m · 2m, or T (n) ≈ n lg n.
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Capabilities and Limitations

Rough time complexity analysis cannot result immediately in an
efficient program.

• But it helps to predict empirical running time of the program.

Limitations of the “Big-Oh / Theta / Omega” analysis:

• It hides the constants (e.g. c and n0) crucial for a practical
task.

• It is unsuitable for small input.

• It is unsuitable if costs of access to input data items vary.

• It is unsuitable if there is lack of sufficient memory.

However,time complexity analysis provides ideas how to develop
new and efficient algorithms.
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