Recurrent Algorithms:
Divide-and-Conquer Principle

Lecturer: Georgy Gimel'farb

COMPSCI 220 Algorithms and Data Structures

@ Divide-and-Conquer principle in analysing algorithms

® Finding the close-form expression by math induction

© Finding a close-form recurrence with a telescoping series
O Examples

@ Algorithm analysis: Capabilities and limitations

)

21

Divide-and-conquer

Divide-and-Conquer Principle

e Divide a large problem into smaller subproblems;
e Recursively solve each subproblem, then

e Combine solutions of them to solve the original problem.

Divide-and-conquer

Divide-and-Conquer Principle

e Divide a large problem into smaller subproblems;
e Recursively solve each subproblem, then

e Combine solutions of them to solve the original problem.

Running time: by a recurrence relation accounting for:

@ The size and the number of the subproblems and
® The cost of splitting the problem into these subproblems. J

Divide-and-conquer

Divide-and-Conquer Principle

e Divide a large problem into smaller subproblems;
e Recursively solve each subproblem, then

e Combine solutions of them to solve the original problem.

Running time: by a recurrence relation accounting for:

@ The size and the number of the subproblems and
® The cost of splitting the problem into these subproblems. J

The recursive relation F(n) = (F (n}),...,F (n})); k> 1, defines a
function, F'(n), “in terms of itself”, i.e., by involving the same function.

e The non-circular definition: n > nf >nbH > ... > nj.

e The recursion terminates at some base case F'(ng), below which the
function is undefined.

Divide-and-conquer

Recurrence Relation: A Simple Example F(n) = 2"

The implicit formula: F(n) = F(n—1)+ F(n—1); F(0) =1,

or

n 0 1 2 3 4 5 6 7 8 9
Fin)|1 2 4 8 16 32 64 128 256 512
20 9ol 92 93 94 95 96 o7 98 99

The explicit, or closed-form formula with F'(0) = 1: F(n) = 2"

Math induction

Guess and Prove an Explicit, or Closed-Form F'(n)

Look at a sequence of results for the implicit recurrent formula:

123 4 5 6 7 8 9
2 4 8 16 32 64 128 256 512

n 0
F(n) |1

Guess the closed-form formula F(n) = 2" and prove it with

Mathematical Induction

e Basis: F(0)=2"=1
e Induction hypothesis: F'(n) = 2" holds some n > 1.

e Inductive step from n ton + 1:
F(n+1)=F(n)+ F(n) =2F(n) =2.2" = 2"+,

This proves the close-form formula having been guessed.

Math induction

Mathematical Induction (recall Lecture 1)

The induction examines conditions for a closed-form expression,
T'(n), guessed, rather than derives it and proves directly.

1. Basis: T'(npase), €.g. T(0) or T'(1), holds.

2. Induction hypothesis:
Let T'(n) hold for some n > nyaee
or

2’. Strong induction hypothesis:
Let T'(k) hold for every k = npase, Mbase + 1, ..., 7;
N 2 Npase-

3 Induction step: Then T'(n + 1) holds for n + 1.

Both the simple and strong induction are actively used to solve
recurrences, which are often met in the algorithm analysis.

6/21

Math induction

Example 1.25:

Fibonacci Numbers

‘ https://timwolversonphotos.wordpress.com/category/composition/

Nt
! ﬁ')
2 lfi\() 1
)
3 ” Q? 2
ol

@ A) 3
M&w’/éi :\\\\5
\Lla _J_K_C

Number F(n)

Italian mathematician, Leonardo
Fibonacci [1170-1250]: “Liber Abaci” —
a problem of breeding rabbits:

® A pair of rabbits takes a month to
become mature and start to have
pairs of baby rabbits, which also
take a month to reach maturity.

e How many rabbits, F'(n) would
there be after n months?

® The Fibonacci Sequence:
Fn)=F(n—1)+ F(n—2);
n>3;, F(1)=F(2) =1

21

Math induction

Example 1.25: Fibonacci Numbers

1, 1, 2, 3, 5 8 13, 21, 34, 55, 89, 144,

1+1=
1+2=3
2+ 3=
3 +5=28

The implicit formula: F(n) = F(n — 1) + F(n — 2)

The recurrence analysis: Derive a closed-form formula for F'(n)

Math induction

Characteristic Equation for F'(n) = F(n — 1) + F(n — 2)

Because F'(n) > F(n—1) > F(n — 2) for all n > 2, it holds that:
2F(n—1) > F(n) > 2F(n — 2), thatis, 2" > F(n) > 2"~}

Math induction

Characteristic Equation for F'(n) = F(n — 1) + F(n — 2)

Because F'(n) > F(n—1) > F(n — 2) for all n > 2, it holds that:
2F(n—1) > F(n) > 2F(n — 2), thatis, 2" > F(n) > 2"~}

e One may suggest that F'(n) = cp™; 1 < ¢ < 2.

e The implicit equation cp™ = cp" ! + c¢™ 2 leads to the
quadratic characteristic equation for : ¢? = ¢ + 1 — with
two solutions: 12 = & (1 £ /5).

21

Math induction

Characteristic Equation for F'(n) = F(n — 1) + F(n — 2)

Because F'(n) > F(n—1) > F(n — 2) for all n > 2, it holds that:
2F(n—1) > F(n) > 2F(n — 2), thatis, 2" > F(n) > 2"~}

e One may suggest that F'(n) = cp™; 1 < ¢ < 2.
e The implicit equation cp™ = cp" ! + c¢™ 2 leads to the
quadratic characteristic equation for : ¢? = ¢ + 1 — with
two solutions: 12 = & (1 £ /5).
General solution: the linear combination F(n) = c1¢! + caph

e The coefficients ¢; and ¢y follow from the conditions
F(1) = F(2) = 1, so that finally:

1 (1+vB\" 1 (1-v5)"
- ())

Telescoping

“Telescoping” a Recurrence

Given: An implicit recurrence relation and its base condition
(i.e., the difference equation and its initial condition), for example:

T(n)=2T(n—1)+1; T(0)=0

Find: The closed-form (explicit) formula for T'(n) by recursive
substitution of the same implicit formula:

? Tn) = 2T'(n—1) + 1
T(n—1) 2I'n—2) + 1
T(2) = 2T(1) + 1

‘ T(1) = 2T(0) + 1=

10/21

Telescoping

“Telescoping” = Substitution

T(n) = QT(TL — 1) + 1 Step 0: Initial recurrence
ZT(TL — 1) = 22T(TL — 2) + 2 Step 1: Substitute T'(n—1)
22T(TL — 2) = 23T(n — 3) + 22 Step 2: Substitute T'(n—2)
2n_1T(1) = QHT(O) + on-l Step n—1: Substitute T°(1)

11/21

Telescoping

“Telescoping” = Substitution

+ 1 Step 0: Initial recurrence

22T(TL - 2) + 2 Step 1: Substitute T'(n—1)
22T(TL — 2) = 23T(n — 3) + 22 Step 2: Substitute T'(n—2)
2n_1T(1) = QHT(O) + on-l Step n—1: Substitute T°(1)

11/21

Telescoping

“Telescoping” = Substitution

277(0)

23T (n—3) + 22

Step 0: Initial recurrence

Step 1: Substitute T'(n—1)

Step 2: Substitute T'(n—2)

Step n—1: Substitute T°(1)

11/21

Telescoping

“Telescoping” = Substitution

Step 0: Initial recurrence

Step 1: Substitute T'(n—1)

Step 2: Substitute T'(n—2)

Step n—1: Substitute T°(1)

11/21

Telescoping

“Telescoping” = Substitution

Step 0: Initial recurrence

Step 1: Substitute T'(n—1)

Step 2: Substitute T'(n—2)

Step n—1: Substitute T°(1)

11/21

Telescoping

“Telescoping” = Substitution

Step 0: Initial recurrence

Step 1: Substitute T'(n—1)

22 Step 2: Substitute T'(n—2)

@) = QHT(O) + onl Step n—1: Substitute T'(1)

T(n) =2"T0) + 1+2+22+... 4271
N’

2m.0=0
1424224, .42 1=90n_1

11/21

Examples

Example 1.29: Textbook, p.23

12 /21

Examples

Example 1.29: Textbook, p.23

12 /21

1.29: T'(n) by Telescoping in More Detail

Successive substitution:

Tn) = Tn—1)+n

= Tn—-2)+(n—1)+n

= Tn—-3)+(n—2)+(n—1)+n

= T2)+3+...+(n—2)+(n—-1)+n

= T +24+3+...+(n—2)+(n—1)+n

- T _ n(n+l)
= 1+243+...+(n—-2)+(n—1)+n="5

13/21

Examples

1.29: T(n) by Guessing and Proving by Math Induction

Base condition holds: T'(1) = %2 = 1.

Induction hypothesis: If the guessed formula T'(n) holds for n — 1,
then it holds also for n.

The proof: T(n) = T(n— 1) +n = &= 1)” +n, ie.

n(n+1)

1
(n2—n+2n):§(n2+n): >

T(n) =

l\DM—l

Thus, the guessed formula for T'(n) holds for all n > 1.

14 /21

Examples

Example 1.30, p.23

Repeated halving principle: halve the input in one step
e Recurrence (implicit formula): T'(n) =T (%) +1; T(1) = 0.

e Closed-form (explicit) formula: T'(n) ~ logyn

15/21

Examples

Example 1.30, p.23

Repeated halving principle: halve the input in one step
e Recurrence (implicit formula): T'(n) =T (%) +1; T(1) = 0.

e Closed-form (explicit) formula: T'(n) ~ logyn

“Telescoping” (for n = 2™):

? TE2m™) = T@E2™ 1Y) + 1
TE™ Y = T(2m2) + 1
T(2?) = T2YH + 1
T(2hH) = TR 4+ 1=1

15/21

Examples

1.30: T'(n) by Telescoping in More Detail

T2m) = TE™) +1
= T@m2)+1+1

= T@"3)+1+1+1

= T2YH+1+...+14+1+1
= T29)4+1+14...+1+1+1
= I4+14+...+1+14+1=m, or T(2™)=m

e For n =2", T(n) = lgn, which is ©(logn).

e For general n, the total number of halving steps cannot be greater
than m = [lgn], so T(n) < [lgn] for all n.

16 /21

Examples

Example 1.31, p.23

Scan and halve the input:
e Recurrence (implicit formula): T'(n) =T (%) +n; T(1) = 1.
2

e Closed-form (explicit) formula: T'(n) ~

17/21

Examples

Example 1.31, p.23

Scan and halve the input:
e Recurrence (implicit formula): T'(n) =T (%) +n; T(1) = 1.
2

e Closed-form (explicit) formula: T'(n) ~

“Telescoping” (for n = 2™):

' 2™ = T(@2™YH) + 2m
T(2m71> — T<2m72) + 2m71
T(2?) = T(2Y) + 22
T(2YH) = T(2) + 21

' T(2°) = 20=1

17/21

Examples

1.31: T(n) by Telescoping in More Detail

T2™) = T@m 1) +2m

— T(2m—2) + 9m—1 4 om

= T(2m3) 4 2m—2 4 2m~1 4 om

= T(2)+224...42m 24 2m1 4 om
= T(20) +21 422 .. 2m=2 4 om-1 4 om
= 1+4+2+...+2m2pom-lpom_gmtl_

Therefore, T'(2™) ~ 2-2™, or T'(n) ~ 2n.

18/21

Examples

Example 1.32, p.23

“Divide-and-conquer” prototype; n > 2:
e Recurrence (implicit formula): T'(n) = 27T (%) + n; T(1) = 0.

e Closed-form (explicit) formula: T'(n) ~ nlogy,n

Equivalent representation for “telescoping”:

T(n)=2T(3)+n = iT(n)=2T(%)+1

For n = 2m, 12" _ rE"l) +1

m om—1

19/21

Examples

1.32: T(n) by Telescoping in More Detail

rEem) et
om - om—1 + 1
= P 141
Tr@em—3)

Therefore, T'(2™)

=) 114141

= T 14141

R I S R e

= 0+1+...+14+1+1=m
=m-2", or T'(n) = nlgn.

20/21

Pros and cons

Capabilities and Limitations

Rough time complexity analysis cannot result immediately in an
efficient program.

e But it helps to predict empirical running time of the program.
Limitations of the “Big-Oh / Theta / Omega” analysis:

e It hides the constants (e.g. ¢ and ng) crucial for a practical
task.

e It is unsuitable for small input.
e |t is unsuitable if costs of access to input data items vary.

e |t is unsuitable if there is lack of sufficient memory.

However,time complexity analysis provides ideas how to develop
new and efficient algorithms.

21/21

	Divide-and-Conquer principle in analysing algorithms
	Finding the close-form expression by math induction
	Finding a close-form recurrence with a telescoping series
	Examples
	Algorithm analysis: Capabilities and limitations

