Recurrent Algorithms: Divide-and-Conquer Principle

Lecturer: Georgy Gimel'farb

COMPSCI 220 Algorithms and Data Structures
(1) Divide-and-Conquer principle in analysing algorithms
(2) Finding the close-form expression by math induction
(3) Finding a close-form recurrence with a telescoping series
(4) Examples
(5) Algorithm analysis: Capabilities and limitations

Divide-and-Conquer Principle

- Divide a large problem into smaller subproblems;
- Recursively solve each subproblem, then
- Combine solutions of them to solve the original problem.

Running time: by a recurrence relation accounting for
(1) The size and the number of the subproblems and

2 The cost of splitting the problem into these subproblems
The recursive relation $F(n)=\psi\left(F\left(n_{1}^{\prime}\right), \ldots, F\left(n_{k}^{\prime}\right)\right) ; k \geq 1$, defines a function, $F(n)$, "in terms of itself", i.e., by involving the same function

- The non-circular definition
- The recursion terminates at some base case $F\left(n_{0}\right)$, below which the function is undefined

Divide-and-Conquer Principle

- Divide a large problem into smaller subproblems;
- Recursively solve each subproblem, then
- Combine solutions of them to solve the original problem.

Running time: by a recurrence relation accounting for:
(1) The size and the number of the subproblems and
(2) The cost of splitting the problem into these subproblems.

> The recursive relation $F(n)=\psi\left(F\left(n_{1}^{\prime}\right), \ldots, F\left(n_{k}^{\prime}\right)\right) ; k \geq 1$, defines a function, $F(n)$, "in terms of itself", i.e., by involving the same function
> - The non-circular definition:
> - The recursion terminates at some base case $F\left(n_{0}\right)$, below which the function is undefined

Divide-and-Conquer Principle

- Divide a large problem into smaller subproblems;
- Recursively solve each subproblem, then
- Combine solutions of them to solve the original problem.

Running time: by a recurrence relation accounting for:
(1) The size and the number of the subproblems and
(2) The cost of splitting the problem into these subproblems.

The recursive relation $F(n)=\psi\left(F\left(n_{1}^{\prime}\right), \ldots, F\left(n_{k}^{\prime}\right)\right) ; k \geq 1$, defines a function, $F(n)$, "in terms of itself", i.e., by involving the same function.

- The non-circular definition: $n>n_{1}^{\prime}>n_{2}^{\prime}>\ldots>n_{k}^{\prime}$.
- The recursion terminates at some base case $F\left(n_{0}\right)$, below which the function is undefined.

Recurrence Relation: A Simple Example $F(n)=2^{n}$

The implicit formula: $F(n)=\underbrace{F(n-1)}_{2^{n-1}}+\underbrace{F(n-1)}_{2^{n-1}} ; F(0)=1$,
or

$$
F(n)=2 F(n-1) ; \quad F(0)=1 ; \quad n=1,2, \ldots
$$

n	0	1	2	3	4	5	6	7	8	9	\ldots
$F(n)$	1	2	4	8	16	32	64	128	256	512	\ldots
	2^{0}	2^{1}	2^{2}	2^{3}	2^{4}	2^{5}	2^{6}	2^{7}	2^{8}	2^{9}	\ldots

The explicit, or closed-form formula with $F(0)=1: F(n)=2^{n}$

Guess and Prove an Explicit, or Closed-Form $F(n)$

Look at a sequence of results for the implicit recurrent formula:

n	0	1	2	3	4	5	6	7	8	9	\ldots
$F(n)$	1	2	4	8	16	32	64	128	256	512	\ldots

Guess the closed-form formula $F(n)=2^{n}$ and prove it with

Mathematical Induction

- Basis: $F(0)=2^{0}=1$
- Induction hypothesis: $F(n)=2^{n}$ holds some $n \geq 1$.
- Inductive step from n to $n+1$:

$$
F(n+1)=F(n)+F(n)=2 F(n)=2 \cdot 2^{n}=2^{n+1} .
$$

This proves the close-form formula having been guessed.

Mathematical Induction (recall Lecture 1)

The induction examines conditions for a closed-form expression, $T(n)$, guessed, rather than derives it and proves directly.

1. Basis: $T\left(n_{\text {base }}\right)$, e.g. $T(0)$ or $T(1)$, holds.
2. Induction hypothesis:

Let $T(n)$ hold for some $n \geq n_{\text {base }}$
or
2^{\prime}. Strong induction hypothesis:
Let $T(k)$ hold for every $k=n_{\text {base }}, n_{\text {base }}+1, \ldots, n$;
$n \geq n_{\text {base }}$.
3 Induction step: Then $T(n+1)$ holds for $n+1$.
Both the simple and strong induction are actively used to solve recurrences, which are often met in the algorithm analysis.

Example 1.25: Fibonacci Numbers

```
https://timwolversonphotos.wordpress.com/category/composition/
```

End of month n :

Number $F(n)$
of pairs:
1

1

2

3

5

Italian mathematician, Leonardo Fibonacci [1170-1250]: "Liber Abaci" a problem of breeding rabbits:

- A pair of rabbits takes a month to become mature and start to have pairs of baby rabbits, which also take a month to reach maturity.
- How many rabbits, $F(n)$ would there be after n months?
- The Fibonacci Sequence:
$F(n)=F(n-1)+F(n-2)$;
$n \geq 3 ; F(1)=F(2)=1$.

Example 1.25: Fibonacci Numbers

$$
1, \quad 1, \quad 2, \quad 3, \quad 5, \quad 8, \quad 13, \quad 21, \quad 34, \quad 55,89,144, \ldots
$$

$$
\begin{aligned}
1+1= & 2 \\
1+2= & 3 \\
2+ & 3=5 \\
& 3+5=8
\end{aligned}
$$

$$
55+89=144
$$

The implicit formula: $F(n)=F(n-1)+F(n-2)$
The recurrence analysis: Derive a closed-form formula for $F(n)$

Characteristic Equation for $F(n)=F(n-1)+F(n-2)$

Because $F(n)>F(n-1)>F(n-2)$ for all $n \geq 2$, it holds that:
$2 F(n-1)>F(n)>2 F(n-2)$, that is, $2^{n}>F(n)>2^{n-1}$

- One may suggest that $F(n)=c \varphi^{n} ; 1<\varphi<2$.
- The implicit equation $c \varphi^{n}=c \varphi^{n-1}+c \varphi^{n-2}$ leads to the
quadratic characteristic equation for $\varphi: \varphi^{2}=\varphi+1$ - with
two solutions: $\varphi_{1,2}=\frac{1}{2}(1 \pm \sqrt{5})$
General solution: the linear combination $F(n)=c_{1} \varphi_{1}^{n}+c_{2} \varphi_{2}^{n}$
- The coefficients c_{1} and c_{2} follow from the conditions $F(1)=F(2)=1$, so that finally:

Characteristic Equation for $F(n)=F(n-1)+F(n-2)$

Because $F(n)>F(n-1)>F(n-2)$ for all $n \geq 2$, it holds that:

$$
2 F(n-1)>F(n)>2 F(n-2), \text { that is, } 2^{n}>F(n)>2^{n-1}
$$

- One may suggest that $F(n)=c \varphi^{n} ; 1<\varphi<2$.
- The implicit equation $c \varphi^{n}=c \varphi^{n-1}+c \varphi^{n-2}$ leads to the quadratic characteristic equation for $\varphi: \varphi^{2}=\varphi+1$ - with two solutions: $\varphi_{1,2}=\frac{1}{2}(1 \pm \sqrt{5})$.

General solution: the linear combination $F(n)=c_{1} \varphi_{1}^{n}+c_{2} \varphi_{2}^{n}$

- The coefficients c_{1} and c_{2} follow from the conditions $F(1)=F(2)=1$, so that finally:

Characteristic Equation for $F(n)=F(n-1)+F(n-2)$

Because $F(n)>F(n-1)>F(n-2)$ for all $n \geq 2$, it holds that:

$$
2 F(n-1)>F(n)>2 F(n-2), \text { that is, } 2^{n}>F(n)>2^{n-1}
$$

- One may suggest that $F(n)=c \varphi^{n} ; 1<\varphi<2$.
- The implicit equation $c \varphi^{n}=c \varphi^{n-1}+c \varphi^{n-2}$ leads to the quadratic characteristic equation for $\varphi: \varphi^{2}=\varphi+1$ - with two solutions: $\varphi_{1,2}=\frac{1}{2}(1 \pm \sqrt{5})$.

General solution: the linear combination $F(n)=c_{1} \varphi_{1}^{n}+c_{2} \varphi_{2}^{n}$

- The coefficients c_{1} and c_{2} follow from the conditions $F(1)=F(2)=1$, so that finally:

$$
F(n)=\frac{1}{\sqrt{5}}\left(\frac{1+\sqrt{5}}{2}\right)^{n}-\frac{1}{\sqrt{5}}\left(\frac{1-\sqrt{5}}{2}\right)^{n}
$$

"Telescoping" a Recurrence

Given: An implicit recurrence relation and its base condition (i.e., the difference equation and its initial condition), for example:

$$
T(n)=2 T(n-1)+1 ; \quad T(0)=0
$$

Find: The closed-form (explicit) formula for $T(n)$ by recursive substitution of the same implicit formula:

$$
\begin{aligned}
& \begin{aligned}
& T(n)=2 T(n-1) \\
& T(n-1)=2 T(n-2) \\
& \hline
\end{aligned} \\
& \begin{array}{lll}
T(2) & = & 2 T(1) \\
T(1) & = & 2 T(0) \\
& +\quad 1=1
\end{array}
\end{aligned}
$$

"Telescoping" \equiv Substitution

$$
\begin{array}{rlrl}
T(n)= & 2 T(n-1) & +1 & \text { Step 0: Initial recurrence } \\
2 T(n-1)= & 2^{2} T(n-2) & +2 & \text { Step 1: Substitute } T(n-1) \\
2^{2} T(n-2)= & 2^{3} T(n-3)+2^{2} & \text { Step 2: Substitute } T(n-2) \\
& \cdots & & \\
2^{n-1} T(1)=2^{n} T(0) & +2^{n-1} & \text { Step } n-1: \text { Substitute } T(1)
\end{array}
$$

"Telescoping" \equiv Substitution

$$
\begin{aligned}
& T(n)=2 T(n-1)+1 \quad \text { Step 0: Initial recurrence } \\
& 2 T(n-1)=2^{2} T(n-2)+2 \quad \text { Step 1: Substitute } T(n-1) \\
& 2^{2} T(n-2)=2^{3} T(n-3)+2^{2} \quad \text { Step 2: Substitute } T(n-2) \\
& 2^{n-1} T(1)=2^{n} T(0) \quad+2^{n-1} \\
& \text { Step } n-1 \text { : Substitute } T(1)
\end{aligned}
$$

"Telescoping" \equiv Substitution

$$
\begin{gathered}
T(n)=2 T(n-1)+1 \\
2 T(n-1)=2^{2} T(n-2)+2 \\
2^{2} T(n-2)=2^{3} T(n-3)+2^{2} \\
\begin{array}{lll}
& \text { Step 1: Substitute } T \text { : Substitute } T(n-1) \\
& \\
2^{n-1} T(1)=2^{n} T(0) & 2^{n-1} & \text { Step } n-1: \text { Substitute } T(1)
\end{array}
\end{gathered}
$$

"Telescoping" \equiv Substitution

$$
\begin{array}{lll}
T(n)=2 T(n-1)+1 & \text { Step 0: Initial recurrence } \\
2 T(n-1) & =2^{2} T(n-2)+2 & \text { Step 1: Substitute } T(n-1) \\
\cdots & \text { Step 2: Substitute } T(n-2) \\
2^{2} T(n-2) & =2^{2} T(n-3) \\
& \\
2^{n-1} T(1)=2^{n-1} & \text { Step } n-1: \text { Substitute } T(1)
\end{array}
$$

"Telescoping" \equiv Substitution

"Telescoping" \equiv Substitution

$$
\begin{array}{rll}
T(n) & =2 T(n-1)+1 & \text { Step 0: Initial recurrence } \\
2 T(n-1) & =2^{2} T(n-2)+2 & \text { Step 1: Substitute } T(n-1) \\
2^{2} T(n-2) & =2^{2} T(n-3) & \text { Step 2: Substitute } T(n-2) \\
2^{n-1} T(1)=2^{n} T(0) & 2^{n-1} & \text { Step } n-1: \text { Substitute } T(1)
\end{array}
$$

$$
\begin{aligned}
& T(n)=\underbrace{2^{n} T(0)}_{2^{n} \cdot 0=0}+1+2+2^{2}+\ldots+2^{n-1} \\
& 1+2+2^{2}+\ldots+2^{n-1}=2^{n}-1
\end{aligned}
$$

Example 1.29: Textbook, p. 23

Show that the recurrence $T(n)=T(n-1)+n ; T(0)=0$, results in the closed-form (explicit) formula $T(n)=\frac{n(n+1)}{2}$.
"Telescoping" the recurrence:

Example 1.29: Textbook, p. 23

Show that the recurrence $T(n)=T(n-1)+n ; T(0)=0$, results in the closed-form (explicit) formula $T(n)=\frac{n(n+1)}{2}$.
"Telescoping" the recurrence:

$$
\begin{array}{rlrr}
T(n) & =T(n-1) & + & n \\
T(n-1) & =T(n-2) & + & n-1 \\
& & \\
T(2) & = & T(1) & + \\
T(1) & = & T(0) & + \\
\end{array}
$$

1.29: $T(n)$ by Telescoping in More Detail

Successive substitution:

$$
\begin{aligned}
T(n)= & T(n-1)+n \\
= & \overline{T(n-2)+(n-1)}+n \\
= & \overline{T(n-3)+(n-2)}+(n-1)+n \\
& \ldots \\
& =\overline{T(2)+3}+\ldots+(n-2)+(n-1)+n \\
& =\overline{T(1)+2}+3+\ldots+(n-2)+(n-1)+n \\
& =\overline{1}+2+3+\ldots+(n-2)+(n-1)+n=\frac{n(n+1)}{2}
\end{aligned}
$$

1.29: $T(n)$ by Guessing and Proving by Math Induction

Numerical sequence: $T(1)=0+1=1 ; \quad T(2)=1+2=3$;

$$
T(3)=3+3=6 ; \quad T(4)=6+4=10 ; \quad T(5)=10+5=15 ; \ldots
$$

$$
\text { Guessing: } T(n)=\frac{n(n+1)}{2} \text { ? }
$$

Base condition holds: $T(1)=\frac{1 \cdot 2}{2}=1$.
Induction hypothesis: If the guessed formula $T(n)$ holds for $n-1$, then it holds also for n.

The proof: $T(n)=T(n-1)+n=\frac{(n-1) n}{2}+n$, i.e.

$$
T(n)=\frac{1}{2}\left(n^{2}-n+2 n\right)=\frac{1}{2}\left(n^{2}+n\right)=\frac{n(n+1)}{2}
$$

Thus, the guessed formula for $T(n)$ holds for all $n \geq 1$.

Example 1.30, p. 23

Repeated halving principle: halve the input in one step

- Recurrence (implicit formula): $T(n)=T\left(\frac{n}{2}\right)+1 ; T(1)=0$.
- Closed-form (explicit) formula: $T(n) \approx \log _{2} n$

"Telescoping" (for $n=2^{m}$)

Example 1.30, p. 23

Repeated halving principle: halve the input in one step

- Recurrence (implicit formula): $T(n)=T\left(\frac{n}{2}\right)+1 ; T(1)=0$.
- Closed-form (explicit) formula: $T(n) \approx \log _{2} n$
"Telescoping" (for $n=2^{m}$):

$$
\begin{array}{rlrl}
T\left(2^{m}\right) & =T\left(2^{m-1}\right)+ & 1 \\
T\left(2^{m-1}\right) & =T\left(2^{m-2}\right)+ & 1 \\
& \\
T\left(2^{2}\right) & =T\left(2^{1}\right)+ \\
T\left(2^{1}\right) & =T\left(2^{0}\right)+1 \\
1
\end{array}
$$

1.30: $T(n)$ by Telescoping in More Detail

$$
\begin{aligned}
T\left(2^{m}\right)= & T\left(2^{m-1}\right)+1 \\
= & \overline{T\left(2^{m-2}\right)+1}+1 \\
= & \overline{T\left(2^{m-3}\right)+1}+1+1 \\
& \ldots \\
& =\overline{T\left(2^{1}\right)+1}+\ldots+1+1+1 \\
& =\overline{T\left(2^{0}\right)+1}+1+\ldots+1+1+1 \\
& =\overline{1}+1+\ldots+1+1+1=m, \text { or } T\left(2^{m}\right)=m
\end{aligned}
$$

- For $n=2^{m}, T(n)=\lg n$, which is $\Theta(\log n)$.
- For general n, the total number of halving steps cannot be greater than $m=\lceil\lg n\rceil$, so $T(n) \leq\lceil\lg n\rceil$ for all n.

Example 1.31, p. 23

Scan and halve the input:

- Recurrence (implicit formula): $T(n)=T\left(\frac{n}{2}\right)+n ; T(1)=1$.
- Closed-form (explicit) formula: $T(n) \approx 2 n$

"Telescoping" (for $n=2^{m}$):

Example 1.31, p. 23

Scan and halve the input:

- Recurrence (implicit formula): $T(n)=T\left(\frac{n}{2}\right)+n ; T(1)=1$.
- Closed-form (explicit) formula: $T(n) \approx 2 n$
"Telescoping" (for $n=2^{m}$):

$$
\begin{aligned}
T\left(2^{m}\right) & =T\left(2^{m-1}\right)+2^{m} \\
T\left(2^{m-1}\right) & =T\left(2^{m-2}\right)+2^{m-1} \\
T\left(2^{2}\right) & =T\left(2^{1}\right)+2^{2} \\
T\left(2^{1}\right) & =T\left(2^{0}\right)+2^{1} \\
T\left(2^{0}\right) & =2^{0}=1
\end{aligned}
$$

1.31: $T(n)$ by Telescoping in More Detail

$$
\begin{aligned}
T\left(2^{m}\right) & =T\left(2^{m-1}\right)+2^{m} \\
& =\overline{T\left(2^{m-2}\right)+2^{m-1}}+2^{m} \\
& =\overline{T\left(2^{m-3}\right)+2^{m-2}}+2^{m-1}+2^{m} \\
& \ldots \\
& =\overline{T\left(2^{1}\right)+2^{2}}+\ldots+2^{m-2}+2^{m-1}+2^{m} \\
& =\overline{T\left(2^{0}\right)+2^{1}}+2^{2}+\ldots+2^{m-2}+2^{m-1}+2^{m} \\
& =\overline{1}+2+\ldots+2^{m-2}+2^{m-1}+2^{m}=2^{m+1}-1
\end{aligned}
$$

Therefore, $T\left(2^{m}\right) \approx 2 \cdot 2^{m}$, or $T(n) \approx 2 n$.

Example 1.32, p. 23

"Divide-and-conquer" prototype; $n \geq 2$:

- Recurrence (implicit formula): $T(n)=2 T\left(\frac{n}{2}\right)+n ; T(1)=0$.
- Closed-form (explicit) formula: $T(n) \approx n \log _{2} n$

Equivalent representation for "telescoping":

$$
\begin{aligned}
T(n)=2 T\left(\frac{n}{2}\right)+n & \Rightarrow \frac{1}{n} T(n)=\frac{2}{n} T\left(\frac{n}{2}\right)+1 \\
& \Rightarrow \frac{T(n)}{n}=\frac{T\left(\frac{n}{2}\right)}{\frac{n}{2}}+1
\end{aligned}
$$

For $n=2^{m}, \frac{T\left(2^{m}\right)}{2^{m}}=\frac{T\left(2^{m-1}\right)}{2^{m-1}}+1$

1.32: $T(n)$ by Telescoping in More Detail

$$
\begin{aligned}
\frac{T\left(2^{m}\right)}{2^{m}} & =\frac{T\left(2^{m-1}\right)}{2^{m-1}}+1 \\
& =\frac{\overline{T\left(2^{m-2}\right)} 2^{m-2}}{}+1 \\
= & \frac{T\left(2^{m-3}\right)}{2^{m-3}}+1 \\
& \ldots \\
& =\frac{\overline{T\left(2^{1}\right)}+1}{2^{1}}+\ldots+1+1+1 \\
& =\frac{\frac{T\left(2^{0}\right)}{2^{0}}+1}{}+1+\ldots+1+1+1 \\
& =\overline{0}+1+\ldots+1+1+1=m
\end{aligned}
$$

Therefore, $T\left(2^{m}\right)=m \cdot 2^{m}$, or $T(n) \approx n \lg n$.

Capabilities and Limitations

Rough time complexity analysis cannot result immediately in an efficient program.

- But it helps to predict empirical running time of the program. Limitations of the "Big-Oh / Theta / Omega" analysis:
- It hides the constants (e.g. c and n_{0}) crucial for a practical task.
- It is unsuitable for small input.
- It is unsuitable if costs of access to input data items vary.
- It is unsuitable if there is lack of sufficient memory.

However,time complexity analysis provides ideas how to develop new and efficient algorithms.

