"Big-Oh", "Big-Omega", and "Big-Theta": Properties and Rules

Lecturer: Georgy Gimel'farb

COMPSCI 220 Algorithms and Data Structures
(1) Big-Oh rules

Scaling
Transitivity
Rule of sums
Rule of products
Limit rule
(2) Examples

Scaling

Big-Oh: Scaling

Scaling (Lemma 1.15)

For all constant factors $c>0$, the function $c f(n)$ is $\mathrm{O}(f(n))$, or in shorthand notation $c f$ is $\mathrm{O}(f)$.

The proof: $c f(n)<(c+\varepsilon) f(n)$ holds for all $n>0$ and $\varepsilon>0$.

- Constant factors are ignored
- Only the powers and functions of n should be exploited It is this ignoring of constant factors that motivates for such a notation! In particular, f is $\mathrm{O}(f)$

Big-Oh: Scaling

Scaling (Lemma 1.15)

For all constant factors $c>0$, the function $c f(n)$ is $\mathrm{O}(f(n))$, or in shorthand notation $c f$ is $\mathrm{O}(f)$.

The proof: $c f(n)<(c+\varepsilon) f(n)$ holds for all $n>0$ and $\varepsilon>0$.

- Constant factors are ignored.
- Only the powers and functions of n should be exploited It is this ignoring of constant factors that motivates for such a notation! In particular, f is $\mathrm{O}(f)$
$0.05 n \in \mathrm{O}(n)$
$0.0000005 n \in \mathrm{O}(n)$

Big-Oh: Scaling

Scaling (Lemma 1.15)

For all constant factors $c>0$, the function $c f(n)$ is $\mathrm{O}(f(n))$, or in shorthand notation $c f$ is $\mathrm{O}(f)$.

The proof: $c f(n)<(c+\varepsilon) f(n)$ holds for all $n>0$ and $\varepsilon>0$.

- Constant factors are ignored.
- Only the powers and functions of n should be exploited It is this ignoring of constant factors that motivates for such a notation! In particular, f is $\mathrm{O}(f)$.

Examples:

Big-Oh: Scaling

Scaling (Lemma 1.15)

For all constant factors $c>0$, the function $c f(n)$ is $\mathrm{O}(f(n))$, or in shorthand notation $c f$ is $\mathrm{O}(f)$.

The proof: $c f(n)<(c+\varepsilon) f(n)$ holds for all $n>0$ and $\varepsilon>0$.

- Constant factors are ignored.
- Only the powers and functions of n should be exploited It is this ignoring of constant factors that motivates for such a notation! In particular, f is $\mathrm{O}(f)$.

$$
\text { Examples: } \begin{cases}50 n \in \mathrm{O}(n) & 0.05 n \in \mathrm{O}(n) \\ 50,000,000 n \in \mathrm{O}(n) & 0.0000005 n \in \mathrm{O}(n)\end{cases}
$$

Big-Oh: Transitivity

Transitivity (Lemma 1.16)
If h is $\mathrm{O}(g)$ and g is $\mathrm{O}(f)$, then h is $\mathrm{O}(f)$.
The proof:
$h(n) \leq c_{1} g(n)$ for $n>n_{1} ; c_{1}>0$, because $h \in \mathrm{O}(g)$.
$g(n) \leq c_{2} f(n)$ for $n>n_{2} ; c_{2}>0$, because $g \in \mathrm{O}(f)$.
Substituting the second inequality (\bullet) into the first inequality (o) leads to the inequality

proving the transitivity rule.

Big-Oh: Transitivity

Transitivity (Lemma 1.16)

If h is $\mathrm{O}(g)$ and g is $\mathrm{O}(f)$, then h is $\mathrm{O}(f)$.
The proof:

- $h(n) \leq c_{1} g(n)$ for $n>n_{1} ; c_{1}>0$, because $h \in \mathrm{O}(g)$.
- $g(n) \leq c_{2} f(n)$ for $n>n_{2} ; c_{2}>0$, because $g \in \mathrm{O}(f)$.
\rightarrow Substituting the second inequality (\bullet) into the first inequality (०) leads to the inequality

$$
h(n) \leq \underbrace{c_{1} c_{2}}_{c ; c>0} f(n) \text { for } n>\underbrace{\max \left\{n_{1}, n_{2}\right\}}_{n_{0}}
$$

proving the transitivity rule.

Big-Oh: Transitivity

Informal meaning of the transitivity rule:
If function $h(n)$ grows at most as fast as $g(n)$, which grows at most as fast as $f(n)$, then $h(n)$ grows at most as fast as $f(n)$.

Examples:

- If $h \in \mathrm{O}(g)$ and $g \in \mathrm{O}\left(n^{2}\right)$, then $h \in \mathrm{O}\left(n^{2}\right)$.
- If $\log _{10} n \in O\left(n^{0.01}\right)$ and $n^{0.01} \in O(n)$, then $\log _{10} n \in O(n)$.
- If $n^{50} \in \mathrm{O}\left(2^{n}\right)$ and $2^{n} \in \mathrm{O}\left(3^{n}\right)$, then $n^{50} \in \mathrm{O}\left(3^{n}\right)$.

Big-Oh: Transitivity

Informal meaning of the transitivity rule:
If function $h(n)$ grows at most as fast as $g(n)$, which grows at most as fast as $f(n)$, then $h(n)$ grows at most as fast as $f(n)$.

Examples:

- If $h \in \mathrm{O}(g)$ and $g \in \mathrm{O}\left(n^{2}\right)$, then $h \in \mathrm{O}\left(n^{2}\right)$.

- If $\log _{10} n \in \mathrm{O}\left(n^{0.01}\right)$ and $n^{0.01} \in \mathrm{O}(n)$, then $\log _{10} n \in \mathrm{O}(n)$

$$
\text { - If } n^{50} \in \mathrm{O}\left(2^{n}\right) \text { and } 2^{n} \in \mathrm{O}\left(3^{n}\right) \text {, then } n^{50} \in \mathrm{O}\left(3^{n}\right)
$$

Big-Oh: Transitivity

Informal meaning of the transitivity rule:
If function $h(n)$ grows at most as fast as $g(n)$, which grows at most as fast as $f(n)$, then $h(n)$ grows at most as fast as $f(n)$.

Examples:

- If $h \in \mathrm{O}(g)$ and $g \in \mathrm{O}\left(n^{2}\right)$, then $h \in \mathrm{O}\left(n^{2}\right)$.
- If $\log _{10} n \in \mathrm{O}\left(n^{0.01}\right)$ and $n^{0.01} \in \mathrm{O}(n)$, then $\log _{10} n \in \mathrm{O}(n)$.

- If $n^{50} \in \mathrm{O}\left(2^{n}\right)$ and $2^{n} \in \mathrm{O}\left(3^{n}\right)$, then $n^{50} \in \mathrm{O}\left(3^{n}\right)$

Big-Oh: Transitivity

Informal meaning of the transitivity rule:
If function $h(n)$ grows at most as fast as $g(n)$, which grows at most as fast as $f(n)$, then $h(n)$ grows at most as fast as $f(n)$.

Examples:

- If $h \in \mathrm{O}(g)$ and $g \in \mathrm{O}\left(n^{2}\right)$, then $h \in \mathrm{O}\left(n^{2}\right)$.
- If $\log _{10} n \in \mathrm{O}\left(n^{0.01}\right)$ and $n^{0.01} \in \mathrm{O}(n)$, then $\log _{10} n \in \mathrm{O}(n)$.
- If $n^{50} \in \mathrm{O}\left(2^{n}\right)$ and $2^{n} \in \mathrm{O}\left(3^{n}\right)$, then $n^{50} \in \mathrm{O}\left(3^{n}\right)$.

Rule of sums

Big-Oh: Rule of Sums

Rule-of-sums (Lemma 1.17)
If $g_{1} \in \mathrm{O}\left(f_{1}\right)$ and $g_{2} \in \mathrm{O}\left(f_{2}\right)$, then $g_{1}+g_{2} \in \mathrm{O}\left(\max \left\{f_{1}, f_{2}\right\}\right)$.
The proof:

- $g_{1}(n) \leq c_{1} f_{1}(n)$ for $n>n_{1}$, because $g_{1} \in \mathrm{O}\left(f_{1}\right)$.
- $g_{2}(n) \leq c_{2} f_{2}(n)$ for $n>n_{2}$, because $g_{2} \in \mathrm{O}\left(f_{2}\right)$.
\rightarrow Summing the inequalities (\circ) and (\bullet) leads to the inequality

for $n>\underbrace{\max \left\{n_{1}, n_{2}\right\}}$, proving the rule of sums.

Rule of sums

Big-Oh: Rule of Sums

Rule-of-sums (Lemma 1.17)
If $g_{1} \in \mathrm{O}\left(f_{1}\right)$ and $g_{2} \in \mathrm{O}\left(f_{2}\right)$, then $g_{1}+g_{2} \in \mathrm{O}\left(\max \left\{f_{1}, f_{2}\right\}\right)$.
The proof:

- $g_{1}(n) \leq c_{1} f_{1}(n)$ for $n>n_{1}$, because $g_{1} \in \mathrm{O}\left(f_{1}\right)$.
- $g_{2}(n) \leq c_{2} f_{2}(n)$ for $n>n_{2}$, because $g_{2} \in \mathrm{O}\left(f_{2}\right)$.

Summing the inequalities (०) and (॰) leads to the inequality

for $n>\underbrace{\max \left\{n_{1}, n_{2}\right\}}$, proving the rule of sums.

Big-Oh: Rule of Sums

Rule-of-sums (Lemma 1.17)

If $g_{1} \in \mathrm{O}\left(f_{1}\right)$ and $g_{2} \in \mathrm{O}\left(f_{2}\right)$, then $g_{1}+g_{2} \in \mathrm{O}\left(\max \left\{f_{1}, f_{2}\right\}\right)$.

The proof:

- $g_{1}(n) \leq c_{1} f_{1}(n)$ for $n>n_{1}$, because $g_{1} \in \mathrm{O}\left(f_{1}\right)$.
- $g_{2}(n) \leq c_{2} f_{2}(n)$ for $n>n_{2}$, because $g_{2} \in \mathrm{O}\left(f_{2}\right)$.
\rightarrow Summing the inequalities (\circ) and ((\bullet) leads to the inequality

$$
\begin{aligned}
g_{1}(n)+g_{2}(n) & \leq c_{1} f_{1}(n)+c_{2} f_{2}(n) \\
& \leq \max \left\{c_{1}, c_{2}\right\}\left(f_{1}(n)+f_{2}(n)\right) \\
& \leq \underbrace{2 \cdot \max \left\{c_{1}, c_{2}\right\}}_{c ; c>0} \cdot \max \left\{f_{1}(n), f_{2}(n)\right\}
\end{aligned}
$$

for $n>\underbrace{\max \left\{n_{1}, n_{2}\right\}}_{n_{0}}$, proving the rule of sums.

Big-Oh: Rule of Sums

Informal meaning of the rule of sums:

The sum of functions grows as its fastest-growing term.
Therefore,

- If $g \in \mathrm{O}(f)$ and $h \in \mathrm{O}(f)$, then $g+h \in \mathrm{O}(f)$.
- If $g \in \mathrm{O}(f)$, then $g+f \in \mathrm{O}(f)$.
- If $g(n)=a_{0}+a_{1} n+\ldots+a_{k} n^{k}$ (a polynomial of degree k), then $g(n) \in \mathrm{O}\left(n^{k}\right)$.

Examples:
\{ If $h \in \mathrm{O}(n) \quad$ and $g \in \mathrm{O}\left(n^{2}\right)$, then $g+h \in \mathrm{O}\left(n^{2}\right)$
(If $h \in \mathrm{O}(n \log n)$ and $g \in \mathrm{O}(n)$, then $g+h \in \mathrm{O}(n \log n)$

Rule of sums

Big-Oh: Rule of Sums

Rule of products

Big-Oh: Rule of Products

Rule-of-products (Lemma 1.18)

If $g_{1} \in \mathrm{O}\left(f_{1}\right)$ and $g_{2} \in \mathrm{O}\left(f_{2}\right)$, then $g_{1} g_{2} \in \mathrm{O}\left(f_{1} f_{2}\right)$.
The proof:
$g_{1}(n) \leq c_{1} f_{1}(n)$ for $n>n_{1}$, because $g_{1} \in \mathrm{O}\left(f_{1}\right)$

- $g_{2}(n) \leq c_{2} f_{2}(n)$ for $n>n_{2}$, because $g_{2} \in \mathrm{O}\left(f_{2}\right)$

Multiplying the inequalities (०) and (\bullet) leads to the inequality

proving the rule of products.

Rule of products

Big-Oh: Rule of Products

Rule-of-products (Lemma 1.18)

If $g_{1} \in \mathrm{O}\left(f_{1}\right)$ and $g_{2} \in \mathrm{O}\left(f_{2}\right)$, then $g_{1} g_{2} \in \mathrm{O}\left(f_{1} f_{2}\right)$.

The proof:

- $g_{1}(n) \leq c_{1} f_{1}(n)$ for $n>n_{1}$, because $g_{1} \in \mathrm{O}\left(f_{1}\right)$.
- $g_{2}(n) \leq c_{2} f_{2}(n)$ for $n>n_{2}$, because $g_{2} \in \mathrm{O}\left(f_{2}\right)$.

Multiplying the inequalities (\circ) and (\bullet) leads to the inequality

proving the rule of products.

Big-Oh: Rule of Products

Rule-of-products (Lemma 1.18)

If $g_{1} \in \mathrm{O}\left(f_{1}\right)$ and $g_{2} \in \mathrm{O}\left(f_{2}\right)$, then $g_{1} g_{2} \in \mathrm{O}\left(f_{1} f_{2}\right)$.
The proof:

- $g_{1}(n) \leq c_{1} f_{1}(n)$ for $n>n_{1}$, because $g_{1} \in \mathrm{O}\left(f_{1}\right)$.
- $g_{2}(n) \leq c_{2} f_{2}(n)$ for $n>n_{2}$, because $g_{2} \in \mathrm{O}\left(f_{2}\right)$.
\rightarrow Multiplying the inequalities (॰) and (\bullet) leads to the inequality

$$
g_{1}(n) g_{2}(n) \leq \underbrace{c_{1} c_{2}}_{c ; c>0} f_{1}(n) f_{2}(n) \text { for } n>\underbrace{\max \left\{n_{1}, n_{2}\right\}}_{n_{0}}
$$

proving the rule of products.

Big-Oh: Rule of Products

Informal meaning of the rule of products:

The product of upper bounds of functions gives an upper bound for the product of the functions.
Therefore,

- If $g \in \mathrm{O}(f)$ and $h \in \mathrm{O}(f)$, then $g h \in \mathrm{O}\left(f^{2}\right)$.
- If $g \in \mathrm{O}(f)$ and $h \in \mathrm{O}\left(f^{k}\right)$, then $g h \in \mathrm{O}\left(f^{k+1}\right)$.
- If $g \in \mathrm{O}(f)$ and $h(n)$ is a given function, then $g h \in \mathrm{O}(f h)$.

Examples:

- If $h \in \mathrm{O}(n)$ and $g \in \mathrm{O}\left(n^{2}\right)$, then $g h \in \mathrm{O}\left(n^{3}\right)$.
- If $h \in \mathrm{O}(\log n)$ and $g \in \mathrm{O}(n)$, then $g h \in \mathrm{O}(n \log n)$.

Big-Oh: The Limit Rule

Suppose the ratio's limit $\lim _{n \rightarrow \infty} \frac{f(n)}{g(n)}=L$ exists (may be infinite, ∞).

$$
\text { Then }\left\{\begin{array}{llll}
\text { if } & L=0 & \text { then } & f \in \mathrm{O}(g) \\
\text { if } & 0<L<\infty & \text { then } & f \in \Theta(g) \\
\text { if } & L=\infty & \text { then } & f \in \Omega(g)
\end{array}\right.
$$

When f and g are positive and differentiable functions for $x>0$, but $\lim _{x \rightarrow \infty} f(x)=\lim _{x \rightarrow \infty} g(x)=\infty$ or $\lim _{x \rightarrow \infty} f(x)=\lim _{x \rightarrow \infty} g(x)=0$, the limit L can be computed using the standard L'Hopital rule of calculus:

$$
\lim _{x \rightarrow \infty} \frac{f(x)}{g(x)}=\lim _{x \rightarrow \infty} \frac{f^{\prime}(x)}{g^{\prime}(x)}
$$

where $z^{\prime}(x) \equiv \frac{d z(x)}{d x}$ denotes the first derivative of the function $z(x)$.

Example 1.22 (Textbook)

Prove that exponential functions grow faster than powers:
n^{k} is $\mathrm{O}\left(b^{n}\right)$ for all $b>1, n>1$, and $k \geq 0$.
The proof - either by induction, or what is simpler,
by the limit rule using successive ($k+1$ times) differentiation of $f(x)=x^{k}$ and $g(x)=b^{x}$ by x :

- Derivatives of $f(x)=x^{k}$ by x for $k \geq 0$:

Example 1.22 (Textbook)

Prove that exponential functions grow faster than powers:
n^{k} is $\mathrm{O}\left(b^{n}\right)$ for all $b>1, n>1$, and $k \geq 0$.
The proof - either by induction, or what is simpler, by the limit rule using successive ($k+1$ times) differentiation of $f(x)=x^{k}$ and $g(x)=b^{x}$ by x :

- Derivatives of $f(x)=x^{k}$ by x for $k \geq 0$:

Example 1.22 (Textbook)

Prove that exponential functions grow faster than powers:

n^{k} is $\mathrm{O}\left(b^{n}\right)$ for all $b>1, n>1$, and $k \geq 0$.
The proof - either by induction, or what is simpler, by the limit rule using successive ($k+1$ times) differentiation of $f(x)=x^{k}$ and $g(x)=b^{x}$ by x :

- Derivatives of $f(x)=x^{k}$ by x for $k \geq 0$:

$$
\begin{array}{ll}
\frac{d x^{k}}{d n}=k x^{k-1} ; & \frac{d^{2} x^{k}}{d x^{2}}=k(k-1) x^{k-2} ; \quad \ldots \\
\frac{d^{k} x^{k}}{d x^{k}}=k(k-1) \cdots 2 \cdot 1=k!; & \frac{d^{k+1} x^{k}}{d x^{k+1}}=0
\end{array}
$$

Example 1.22 (Textbook)

- Derivatives of $g(x)=b^{x}$ by x :

$$
\begin{array}{ll}
\frac{d b^{x}}{d x}=b^{x} \ln b ; & \frac{d^{2} b^{x}}{d x^{2}}=b^{x}(\ln b)^{2} ; \\
\frac{d^{k} b^{x}}{d x^{k}}=b^{x}(\ln b)^{k} ; & \frac{d^{k+1} b^{x}}{d x^{k+1}}=b^{x}(\ln b)^{k+1}
\end{array}
$$

- Therefore, by the L'Hopital rule, the limit of the ratio

for $b>1$, proving that $n^{k} \in \mathrm{O}\left(b^{n}\right)$ for all $b>1, n>1$, and $k \geq 0$.

Example 1.22 (Textbook)

- Derivatives of $g(x)=b^{x}$ by x :

$$
\begin{array}{ll}
\frac{d b^{x}}{d x}=b^{x} \ln b ; & \frac{d^{2} b^{x}}{d x^{2}}=b^{x}(\ln b)^{2} \\
\frac{d^{k} b^{x}}{d x^{k}}=b^{x}(\ln b)^{k} ; & \frac{d^{k+1} b^{x}}{d x^{k+1}}=b^{x}(\ln b)^{k+1}
\end{array}
$$

- Therefore, by the L'Hopital rule, the limit of the ratio

$$
\lim _{n \rightarrow \infty} \frac{n^{k}}{b^{n}}=\lim _{n \rightarrow \infty} \frac{0}{b^{n}(\ln b)^{k+1}}=0
$$

for $b>1$, proving that $n^{k} \in \mathrm{O}\left(b^{n}\right)$ for all $b>1, n>1$, and $k \geq 0$.

Example 1.23 (Textbook)

Prove that logarithmic functions grow slower than powers:
$\log _{b} n$ is $\mathrm{O}\left(n^{k}\right)$ for all $b>1, n>1$, and $k>0$.
The proof:

- The first derivative of $f(x)=x^{k}$ by x is $\frac{d x^{k}}{d x}=k x^{k-1}$
- The first derivative of $g(x)=\log _{b} x$ by x is $\frac{d \log _{b} x}{d x}=\frac{1}{x \ln b}$.
- By the limit rule, $\lim _{n \rightarrow \infty} \frac{f(n)}{g(n)}=\lim _{n \rightarrow \infty}(k \ln b) n^{k}=\infty$ for $n>1$.
$b>1$, and $k \geq 0$, proving $n^{k} \in \Omega\left(\log _{b} n\right)$, i.e. $\log _{b} n \in \mathrm{O}\left(n^{k}\right)$
As a result, $\log n \in O(n) ; n \log n \in O\left(n^{2}\right)$, and $\log n \in O\left(n^{0.0001}\right)$,
$\log _{b} n$ is $\mathrm{O}(\log n)$ for all $b>1$ because $\log _{b} n=\log _{b} a \times \log _{a} n$

Example 1.23 (Textbook)

Prove that logarithmic functions grow slower than powers:
$\log _{b} n$ is $\mathrm{O}\left(n^{k}\right)$ for all $b>1, n>1$, and $k>0$.
The proof:

- The first derivative of $f(x)=x^{k}$ by x is $\frac{d x^{k}}{d x}=k x^{k-1}$.
- The first derivative of $g(x)=\log _{b} x$ by x is $\frac{d \log _{b} x}{d x}=\frac{1}{x \ln b}$
- By the limit rule, $\lim _{n \rightarrow \infty} \frac{f(n)}{g(n)}=\lim _{n \rightarrow \infty}(k \ln b) n^{k}=\infty$ for $n>1$, $b>1$, and $k \geq 0$, proving $n^{k} \in \Omega\left(\log _{b} n\right)$, i.e. $\log _{b} n \in \mathrm{O}\left(n^{k}\right)$

As a result, $\log n \in \mathrm{O}(n) ; n \log n \in \mathrm{O}\left(n^{2}\right)$, and $\log n \in \mathrm{O}\left(n^{0.0001}\right)$.

Example 1.23 (Textbook)

Prove that logarithmic functions grow slower than powers:
$\log _{b} n$ is $\mathrm{O}\left(n^{k}\right)$ for all $b>1, n>1$, and $k>0$.
The proof:

- The first derivative of $f(x)=x^{k}$ by x is $\frac{d x^{k}}{d x}=k x^{k-1}$.
- The first derivative of $g(x)=\log _{b} x$ by x is $\frac{d \log _{b} x}{d x}=\frac{1}{x \ln b}$.
- By the limit rule, $\lim _{n \rightarrow \infty} \frac{f(n)}{g(n)}=\lim _{n \rightarrow \infty}(k \ln b) n^{k}=\infty$ for $n>1$
$b>1$, and $k \geq 0$, proving $n^{k} \in \Omega\left(\log _{b} n\right)$, i.e. $\log _{b} n \in \mathrm{O}\left(n^{k}\right)$
As a result, $\log n \in \mathrm{O}(n) ; n \log n \in \mathrm{O}\left(n^{2}\right)$, and $\log n \in \mathrm{O}\left(n^{0.0001}\right)$.
\qquad

Example 1.23 (Textbook)

Prove that logarithmic functions grow slower than powers:

$\log _{b} n$ is $\mathrm{O}\left(n^{k}\right)$ for all $b>1, n>1$, and $k>0$.
The proof:

- The first derivative of $f(x)=x^{k}$ by x is $\frac{d x^{k}}{d x}=k x^{k-1}$.
- The first derivative of $g(x)=\log _{b} x$ by x is $\frac{d \log _{b} x}{d x}=\frac{1}{x \ln b}$.
- By the limit rule, $\lim _{n \rightarrow \infty} \frac{f(n)}{g(n)}=\lim _{n \rightarrow \infty}(k \ln b) n^{k}=\infty$ for $n>1$, $b>1$, and $k \geq 0$, proving $n^{k} \in \Omega\left(\log _{b} n\right)$, i.e. $\log _{b} n \in \mathrm{O}\left(n^{k}\right)$.

[^0]
Example 1.23 (Textbook)

Prove that logarithmic functions grow slower than powers:

$\log _{b} n$ is $\mathrm{O}\left(n^{k}\right)$ for all $b>1, n>1$, and $k>0$.
The proof:

- The first derivative of $f(x)=x^{k}$ by x is $\frac{d x^{k}}{d x}=k x^{k-1}$.
- The first derivative of $g(x)=\log _{b} x$ by x is $\frac{d \log _{b} x}{d x}=\frac{1}{x \ln b}$.
- By the limit rule, $\lim _{n \rightarrow \infty} \frac{f(n)}{g(n)}=\lim _{n \rightarrow \infty}(k \ln b) n^{k}=\infty$ for $n>1$, $b>1$, and $k \geq 0$, proving $n^{k} \in \Omega\left(\log _{b} n\right)$, i.e. $\log _{b} n \in \mathrm{O}\left(n^{k}\right)$.

As a result, $\log n \in \mathrm{O}(n) ; n \log n \in \mathrm{O}\left(n^{2}\right)$, and $\log n \in \mathrm{O}\left(n^{0.0001}\right)$.
$\log _{b} n$ is $\mathrm{O}(\log n)$ for all $b>1$ because $\log _{b} n=\log _{b} a \times \log _{a} n$

Example 1.23 (Textbook)

Prove that logarithmic functions grow slower than powers:

$\log _{b} n$ is $\mathrm{O}\left(n^{k}\right)$ for all $b>1, n>1$, and $k>0$.
The proof:

- The first derivative of $f(x)=x^{k}$ by x is $\frac{d x^{k}}{d x}=k x^{k-1}$.
- The first derivative of $g(x)=\log _{b} x$ by x is $\frac{d \log _{b} x}{d x}=\frac{1}{x \ln b}$.
- By the limit rule, $\lim _{n \rightarrow \infty} \frac{f(n)}{g(n)}=\lim _{n \rightarrow \infty}(k \ln b) n^{k}=\infty$ for $n>1$, $b>1$, and $k \geq 0$, proving $n^{k} \in \Omega\left(\log _{b} n\right)$, i.e. $\log _{b} n \in \mathrm{O}\left(n^{k}\right)$.

As a result, $\log n \in \mathrm{O}(n) ; n \log n \in \mathrm{O}\left(n^{2}\right)$, and $\log n \in \mathrm{O}\left(n^{0.0001}\right)$.
$\log _{b} n$ is $\mathrm{O}(\log n)$ for all $b>1$ because $\log _{b} n=\log _{b} a \times \log _{a} n$

[^0]: As a result, $\log n \in \mathrm{O}(n) ; n \log n \in \mathrm{O}\left(n^{2}\right)$, and $\log n \in \mathrm{O}\left(n^{0.0001}\right)$

