“Big-Oh", “Big-Omega”, and “Big-Theta":
Properties and Rules
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Scaling

Big-Oh: Scaling

Scaling (Lemma 1.15)

For all constant factors ¢ > 0, the function cf(n) is O(f(n)),
or in shorthand notation cf is O(f).
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The proof: ¢f(n) < (¢c+¢€)f(n) holds for all n > 0 and € > 0.
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Big-Oh: Scaling

Scaling (Lemma 1.15)

For all constant factors ¢ > 0, the function cf(n) is O(f(n)),
or in shorthand notation cf is O(f).

The proof: ¢f(n) < (¢c+¢€)f(n) holds for all n > 0 and € > 0.
e Constant factors are ignored.
e Only the powers and functions of n should be exploited

It is this ignoring of constant factors that motivates for such a
notation! In particular, f is O(f).
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Big-Oh: Scaling

Scaling (Lemma 1.15)

For all constant factors ¢ > 0, the function cf(n) is O(f(n)),
or in shorthand notation cf is O(f).

The proof: ¢f(n) < (¢c+¢€)f(n) holds for all n > 0 and € > 0.
e Constant factors are ignored.
e Only the powers and functions of n should be exploited

It is this ignoring of constant factors that motivates for such a
notation! In particular, f is O(f).

50n € O(n) 0.05n € O(n)

Examples: { 50,000,000n € O(n) 0.0000005n € O(n)
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Big-Oh: Transitivity

Transitivity (Lemma 1.16)
If his O(g) and g is O(f), then his O(f).
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Big-Oh: Transitivity

Transitivity (Lemma 1.16)
If his O(g) and g is O(f), then his O(f).

The proof:
o h(n) < e1g(n) for n > ny; ¢; > 0, because h € O(g).
e g(n) < cof(n) for n > ngy; ca > 0, because g € O(f).

— Substituting the second inequality (e) into the first inequality
(o) leads to the inequality

h(n) < cico f(n) for n > max{ni,na}

c; c>0 no

proving the transitivity rule.
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Big-Oh: Transitivity

Informal meaning of the transitivity rule:

If function h(n) grows at most as fast as g(n),
which grows at most as fast as f(n),
then h(n) grows at most as fast as f(n).
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Big-Oh: Transitivity

Informal meaning of the transitivity rule:

If function h(n) grows at most as fast as g(n),
which grows at most as fast as f(n),
then h(n) grows at most as fast as f(n).

Examples:
e If h € O(g) and g € O(n?), then h € O(n?).
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Big-Oh: Transitivity

Informal meaning of the transitivity rule:

If function h(n) grows at most as fast as g(n),
which grows at most as fast as f(n),
then h(n) grows at most as fast as f(n).

Examples:
e If h € O(g) and g € O(n?), then h € O(n?).

o If logign € O(n%%) and n%°! € O(n), then log;yn € O(n).
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Big-Oh: Transitivity

Informal meaning of the transitivity rule:

If function h(n) grows at most as fast as g(n),
which grows at most as fast as f(n),
then h(n) grows at most as fast as f(n).

Examples:
e If h € O(g) and g € O(n?), then h € O(n?).

o If logign € O(n%%) and n%°! € O(n), then log;yn € O(n).

e If n%Y € O(2") and 2" € O(3"), then n%° € O(3").
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Big-Oh: Rule of Sums

Rule-of-sums (Lemma 1.17)
If g1 € O(f1) and g2 € O(f2), then g1 4 g2 € O(max{f1, f2}).
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The proof:
o gi(n) < ecifi(n) for n > ny, because g1 € O(f1).
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Rule of sums

Big-Oh: Rule of Sums

Rule-of-sums (Lemma 1.17)
If g1 € O(f1) and g2 € O(f2), then g1 4 g2 € O(max{f1, f2}).

The proof:
o gi(n) < ecifi(n) for n > ny, because g1 € O(f1).
e g2(n) < cafa(n) for n > ny, because gz € O(f2).
— Summing the inequalities (o) and (e) leads to the inequality

gi(n) +g2(n) < cifi(n) + cafa(n)
< max{ci, o} (fi(n) + f2(n))
< 2-max{cy, co}-max {fi(n), fa(n)}
N———

c; ¢>0
for n > max{ni,na}, proving the rule of sums.
—_———

no
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Big-Oh: Rule of Sums

Informal meaning of the rule of sums:

The sum of functions grows as its fastest-growing term.
Therefore,

e If g € O(f) and h € O(f), then g+ h € O(f).
o If g € O(f), then g+ f € O(f).

o If g(n) = ag+ain+ ...+ apn® (a polynomial of degree k),
then g(n) € O(n").

Examples:
If heO(n) and g € O(n?), then g+ hc O(n?)
If heO(nlogn) and g€ O(n), then g+ h e O(nlogn)
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Big-Oh: Rule of Sums

max{ f1, f2}
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Big-Oh: Rule of Products

Rule-of-products (Lemma 1.18)
If g1 € O(f1) and g2 € O(f2), then g1g2 € O(f1/2)-
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Big-Oh: Rule of Products

Rule-of-products (Lemma 1.18)
If g1 € O(f1) and g2 € O(f2), then g1g2 € O(f1/2)-

The proof:
o g1(n) < c1fi(n) for n > ny, because g1 € O(f1).
e g2(n) < cafa(n) for n > ny, because gz € O(f2).
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Big-Oh: Rule of Products

Rule-of-products (Lemma 1.18)
If g1 € O(f1) and g2 € O(f2), then g1g2 € O(f1/2)-

The proof:
o g1(n) < c1fi(n) for n > nq, because g1 € O(f).
e ga2(n) < cafa(n) for n > ng, because go € O(fa).
— Multiplying the inequalities (o) and (e) leads to the inequality

91(1)g2(n) < 1z () fo() for n > max{ns, na)

c; ¢>0 no

proving the rule of products.
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Big-Oh: Rule of Products

Informal meaning of the rule of products:

The product of upper bounds of functions gives an upper bound
for the product of the functions.
Therefore,

e If g€ O(f) and h € O(f), then gh € O(f?).
o If g € O(f) and h € O(fF), then gh € O(f¥*1).
e If g € O(f) and h(n) is a given function, then gh € O(fh).

v

Examples:
e If h € O(n) and g € O(n?), then gh € O(n?).
e If h € O(logn) and g € O(n), then gh € O(nlogn).
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Big-Oh: The Limit Rule

Suppose the ratio’s limit ILm % = L exists (may be infinite, c0).
if L=0 then f € O(g)

Then if 0<L<oo then fe©O(g)
if L=o0 then f € Q(g)

When f and g are positive and differentiable functions for z > 0, but
lim f(z) = lim g(z) = oo or lim f(z)= lim g(z) =0, the limit L
T—00 T— 00 T—r00 T—00

can be computed using the standard L'Hopital rule of calculus:

i 1@ _ o F@)

z—eo g(z) =00 g'(x)

where 2/(z) = dzgf) denotes the first derivative of the function z(x).
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Examples

Example 1.22 (Textbook)

Prove that exponential functions grow faster than powers:
n¥is O(b") for all b> 1, n > 1, and k > 0.
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Example 1.22 (Textbook)

Prove that exponential functions grow faster than powers:
n¥is O(b") for all b> 1, n > 1, and k > 0.

The proof — either by induction, or what is simpler,
by the limit rule using successive (k + 1 times) differentiation of
f(z) =2 and g(x) = b* by a:
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Examples

Example 1.22 (Textbook)

Prove that exponential functions grow faster than powers:
n¥is O(b") for all b> 1, n > 1, and k > 0.

The proof — either by induction, or what is simpler,
by the limit rule using successive (k + 1 times) differentiation of
f(z) =2 and g(x) = b* by a:

e Derivatives of f(x) = 2* by x for k > 0:

dak _ pogh=1, Pl — gk — 1)ah;

dkxk:k(k_l)...Q.lzk!; e =0

dx*
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Example 1.22 (Textbook)

e Derivatives of g(x) = b* by x:

4 — b* Inb;

dkvr
dzk

b* (In b)*;

L — b7 (Inb)?;

dk+1 T

e = bx(ln b)k-i—l

13 /14



Examples

Example 1.22 (Textbook)

e Derivatives of g(x) = b* by x:

B —prnb; L = (Inb)

V. — pr(Inbyk;  COE = b (inb)k!

e Therefore, by the L'Hopital rule, the limit of the ratio

k
. n . 0
A G T A R

for b > 1, proving that n* e O(b™) forallb>1,n>1, and
k> 0.
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Example 1.23 (Textbook)

Prove that logarithmic functions grow slower than powers:

log, 1 is O(n*) forallb> 1, n > 1, and k > 0.
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Example 1.23 (Textbook)

Prove that logarithmic functions grow slower than powers:

log, 1 is O(n*) forallb> 1, n > 1, and k > 0.

The proof:

e The first derivative of f(z) = z* by z is df = kabL.

o The first derivative of g(z) = log,z by x is 4198% = _L_.
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Example 1.23 (Textbook)

Prove that logarithmic functions grow slower than powers:

log, 1 is O(n*) forallb> 1, n > 1, and k > 0.

The proof:

e The first derivative of f(x de’ _ ppk—1,

zF by z is s

)=
e The first derivative of g( ) = log, by z is dl‘;ibfr =_L
n) _

e By the limit rule, h_}m ) = hm (k:lnb)n = oo forn > 1,
b>1,and k > 0, proving n* € Q(logb n), i.e. logyn € O(n*).
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Example 1.23 (Textbook)

Prove that logarithmic functions grow slower than powers:

log, 1 is O(n*) forallb> 1, n > 1, and k > 0.

The proof:
e The first derivative of f(z) = z* by z is df = kb1
e The first derivative of g( ) = log, by z is dl?iibfr =_L
n) _

e By the limit rule, li_>m ) = hm (k:lnb)n = oo forn > 1,
b>1,and k > 0, proving n* € Q(logb n), i.e. logyn € O(n*).

As a result, logn € O(n); nlogn € O(n?), and logn € O(n"0%01). J

log, n is O(logn) for all b > 1 because log, n = log;, a x log, n J
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