Running Time Evaluation

Quadratic Vs. Linear Time

Lecturer: Georgy Gimel'farb

COMPSCI 220 Algorithms and Data Structures

@ Running time
® Examples
® "Big-Oh”, "Big-Omega”, and "Big-Theta" Tools

O Time complexity

Running time

Running Time T'(n): Estimation Rules

It is proportional to the most significant term in T'(n):

e n for a linear time, T'(n) = c¢o + c1n; or

o nFif T(n) = co+cin+ ...+ cpn® for a polynomial time.
Once a problem size n becomes large, the most significant term is
that which has the largest power of n.

e The most significant term increases faster than other terms

which reduce in significance.

Constants of proportionality depend on a compiler, language,
computer, programming, etc.

e |t is useful to ignore the constants when analysing algorithms.

e Reducing constants of proportionality by using faster hardware
or minimising time spent on the “inner loop” does not effect
an algorithm's behaviour for a large problem!

Running time

Elementary Operations and Data Inputs

Basic elementary computing operations

e Arithmetic operations (+; —; *; /; %)

e Relational operators (==;! =;>;<;>; <)
e Boolean operations (AND; OR; XOR; NOT)
e Branch operations

e Return

Input size for problem domains (meaning of n)

Sorting: n items

Graph / path: n vertices / edges

Image processing: n pixels (2D images) or voxels (3D images)
Text processing: n characters, i.e. the string length n

Running time

Estimating Running Time

Simplifying assumptions: all elementary statements / expressions
take the same amount of time to execute, e.g. simple arithmetic
assighments, return, etc.

e A single loop increases in time linearly as) - Ti,ody of a loop
where X is number of times the loop is executed.

o Nested loops result in polynomial running time T'(n) = cn” if
the number of elementary operations in the innermost loop is
constant (k is the highest level of nesting and c is some constant).

e The first three values of k have special names:

e linear time for k = 1 (a single loop);
e quadratic time for k = 2 (two nested loops), and
e cubic time for k = 3 (three nested loops).

Running time

Estimating Running Time

Conditional / switch statements like
if {condition} then {const time 7} else {const time T5}
are more complicated.

e One has to account for branching frequencies fcondition—true

and feondition=false = 1 — fcondition=true:
T = ftruoTl + (1 - ftruo) Ty < maX{Tb T2}
Function calls:

Tfunction = § Tstatements in function

Function composition:

6/19

Running time

Estimating Running Time

Function calls in more detail: T'=), Titatement i

x.myMethod(5, ...);

public void myMethod(int a, ...) {
statements 1,2,..., M
}

Function composition in more detail: T'(f(g(n))):
e Computation of z = g(n) — T'(g(n))
e Computation of y = f(x) — T(f(n))
e T(f(g9(n))) =T(g(n)) +T(f(n))

Examples

Example 1.5: Textbook, p.19

Logarithmic time for a simple loop due to an exponential change
i=1,k kK, K™
of the control variable in the range 1 < ¢ < n:

for i<+ 1 step ¢ < ixk until n do
...constant number of elementary operations
end for

m iterations such that k™1 < n < k™ — T(n) = c[log;, n]
e The ceil [z] of the real number z is the least integer not less than z.

e Additional conditions for executing inner loops only for special values of
the outer variables also decrease running time.

Examples

Example 1.6: Textbook, p.19

Linearithmic n logn running time of the conditional nested loops:

m < 2
for j < 1 ton do
if j == m then

m<—2*m
for i < 1 ton do
...constant number of elementary operations
end for
end if
end for

Examples

Example 1.6: Textbook, p.19

Linearithmic n logn running time of the conditional nested loops:

m < 2
for j < 1 ton do
if j == m then
m<—2xm
for i < 1 ton do
...constant number of elementary operations
end for
end if
end for
The inner loop is executed k times for j =m = 2,4,...,2F
o 2F <n < 28 implies that k < logyn < k + 1
e In total, T(n) is proportional to kn, that is, T'(n) = n|log, n|.

e The floor | z] is the greatest integer not greater than 2.

Examples

Exercise 1.2.1: Textbook

Is the running time quadratic or linear for the nested loops below?

m <+ 1
for j < 1 tondo
if j == m then
m< (n—1)%xm
for i <~ 1 ton do
...constant number of operations
end for
end if
} end for

10/19

Examples

Exercise 1.2.1: Textbook

Is the running time quadratic or linear for the nested loops below?

m <+ 1
for j < 1 tondo
if j == m then
m< (n—1)%xm
for i <~ 1 ton do
...constant number of operations
end for
end if
} end for

The inner loop is executed only twice, for j =1 and j =n —1; in
total: T'(n) = 2n — linear running time.

“Big-Oh”, “Big-Omega”, and “Big-Theta” Tools

How does the relative running time change if the input size, n,
increases from nq to ng, all other things equal?

By a factor of T(ni) - cf(nll) - f(”i)

e "Big-Oh”, “Big-Omega”, and "Big-Theta" help to avoid
imprecise statements like “roughly proportional to..."

e Can be applied to all non-negative-valued functions, f(n) and
g(n), defined on non-negative integers, n.

e Running time is such a function, T'(n), of data size, n; n > 0.

Basic assumption:
Two algorithms have essentially the same complexity if their
running times as functions of n differ only by a constant factor.

11/19

Definition of “Big-Oh", g(n) is O(f(n))

Let f(n) and g(n) be non-negative-valued functions, defined on
non-negative integers, n.

Then g(n) is O(f(n)) (read “g(n) is Big Oh of f(n)) iff there
exists a positive real constant, ¢, and a positive integer, ng, such
that g(n) < cf(n) for all n > nyg.

e The notation “iff" is an abbreviation of “if and only if".

e Meaning: g(n) is a member of the set O(f(n)) of functions
that increase at most as fast as f(n), when n — oc.

e In other words, g(n) € O(f(n)) if g(n) increases eventually at
the same or lesser rate than f(n), to within a constant factor.

e g(n) € O(f(n)) specifies a generalised “asymptotic upper
bound”, such that g(n) for large n may approach closer and
closer to ¢f(n).

12 /19

Definition of “Big-Omega”, g(n) is Q(f(n))

g(n) is Q(f(n)) (read “g(n) is Big Omega of f(n)) iff there exists
a positive real constant, ¢, and a positive integer, ng, such that

g(n) > cf(n) for all n. > ny.

e Meaning: g(n) is a member of the set Q(f(n)) of functions
that increase at least as fast as f(n), when n — co.

e In other words, g(n) € Q(f(n)) if g(n) increases eventually at
the same or larger rate than f(n), to within a constant factor.

e “Big Omega"” is complementary to “Big Oh" and generalises
the concept of “asymptotic lower bound” (>,) just as
“Big Oh” generalises the asymptotic upper bound (<, _o0).

e If g(n) is O(f(n)), then f(n) is Q(g(n)).

13 /19

Definition of “Big Theta”, g(n) is O(f(n))

g(n) is O(f(n)) (read “g(n) is Big Theta of f(n)) iff there exist
two positive real constants, ¢; and co, and a positive integer, ng,
such that ¢1 f(n) < g(n) < caf(n).

e Meaning: g(n) is a member of the set O(f(n)) of functions
that increase as fast as f(n), when n — oo

e Im other words, g(n) € ©(f(n)) if g(n) increases eventually
at the same rate as f(n), to within a constant factor.

e "Big Theta" generalises the concept of “asymptotic tight
bound"”.

e If g(n) € O(f(n)) and f(n) € O(g(n)), then f(n) € ©(g(n))
and g(n) € O(f(n)), i.e. both algorithms are of the same
time complexity.

14 /19

Proving g(n) is O(f(n)), or Q(f(n)), or ©(f(n))

Proving the ‘Big-X" property means finding constants, (c,ng) or
(c1,c2,n0) specified in Definitions.

e |t might be done by a chain of inequalities, starting from f(n).

e Mathematical induction can be used in more intricate cases.
Proving g(n) is not "Big-X" of f(n) finds the required constants
do not exist, i.e. lead to a contradiction.

Example 1: Prove that g(n) = 5n? + 3n is not O(n).

If g(n) = 5n% +3n < c¢-n for n > ng, then for any ng the factor
¢ > b5ng + 3, i.e. it cannot be constant. Therefore, g(n) ¢ O(n).

Example 2: Prove that g(n) = 5n2 + 3n is Q(n).

If g(n) = 5n% 4+ 3n > c-n for n > ng, then for any ng there exist the
required factor ¢ < 5ng + 3. Therefore, g(n) € Q(n).

15/19

Time Complexity of Algorithms

o

A T(n);{ f(n)=n
400 i/
- / o
f -
/ Pl
300 — lj “'
"
7
200 — /. ,.¢/
/ »”
i r
/4 ,0‘” =y)
100 —| _i’ e f(n) =0.3-n
", '\4
oy n, n,
T T T T T T 1 1
0 200 400 600 800 1000 1200

T(n) = 1001log;on
T(n) <n for all n > 238
T'(n) < 0.3n for all n > 1000
T(n) € O(n)

n

Complexity

In analysing running time,
T(n) € O(f(n)), functions
f(n) measure approximate
time complexity like logn, n,
n? etc.
e Polynomial algorithms:
T(n) is O(n*); k = const.
e Exponential algorithms
otherwise.

Intractable problems: if no
polynomial algorithm is known
for solution.

16 /19

Time Complexity Growth

Complexity

f(n) Approximate number of data items processed per:
1 minute | 1 day 1 year 1 century
n 10 14,400 | 5.3 x 10° 5.3 x 10°
nlog;yn 10 3,997 | 8.8 x 10° 6.7 x 107
nto 10 1,275 | 65,128 1.4 x 10
n? 10 379 7,252 72,522
n3 10 112 807 3,746
A 10 20 29 35

17 /19

Time Complexity Growth

Complexity

f(n) Approximate number of data items processed per:
1 minute | 1 day 1 year 1 century
n 10 14,400 | 5.3 x 10° 5.3 x 10°
nlog;yn 10 3,997 | 8.8 x 10° 6.7 x 107
nto 10 1,275 | 65,128 1.4 x 10
n? 10 379 7,252 72,522
n3 10 112 807 3,746
A 10 20 29 35

Beware Exponential Complexity!

e A linear, O(n), algorithm processing 10 items per minute, can
process 1.4 x 10% items per day, 5.3 x 109 items per year, and
5.3 x 10® items per century.

e An exponential, O(2™), algorithm processing 10 items per minute,
can process only 20 items per day and only 35 items per century. ..

V.

17 /19

Complexity

Big-Oh vs. Actual Running Time

Algorithms A and B with running times 74(n) = 20n time units
and Ts(n) = 0.1nlog, n time units, respectively.

18 /19

Complexity

Big-Oh vs. Actual Running Time

Algorithms A and B with running times 74(n) = 20n time units
and Ts(n) = 0.1nlog, n time units, respectively.

e In the “Big-Oh" sense, the linear algorithm A is better than
the linearithmic algorithm B. ..

18 /19

Complexity

Big-Oh vs. Actual Running Time

Algorithms A and B with running times 74(n) = 20n time units
and Ts(n) = 0.1nlog, n time units, respectively.

e In the “Big-Oh" sense, the linear algorithm A is better than
the linearithmic algorithm B. ..

e But: on which data volume can A outperform B, i.e. for
which value n the running time for A is less than for B?

18 /19

Complexity

Big-Oh vs. Actual Running Time

Algorithms A and B with running times 74(n) = 20n time units
and Ts(n) = 0.1nlog, n time units, respectively.

e In the “Big-Oh" sense, the linear algorithm A is better than
the linearithmic algorithm B. ..

e But: on which data volume can A outperform B, i.e. for
which value n the running time for A is less than for B?

Ta(n) <Tg(n) if 20n < 0.1nlogyn,
or logyn > 200, that is, when n > 2200 ~ 1060]

18 /19

Complexity

Big-Oh vs. Actual Running Time

Algorithms A and B with running times 74(n) = 20n time units
and Ts(n) = 0.1nlog, n time units, respectively.

e In the “Big-Oh" sense, the linear algorithm A is better than
the linearithmic algorithm B. ..

e But: on which data volume can A outperform B, i.e. for
which value n the running time for A is less than for B?

Ta(n) <Tg(n) if 20n < 0.1nlogyn,
or logyn > 200, that is, when n > 2200 ~ 1060]

Thus, in all practical cases the algorithm B is better than A. ..

18 /19

Complexity

Big-Oh vs. Actual Running Time

Algorithms A and B with running times 7'4(n) = 20n time units
and Tg(n) = 0.1n? time units, respectively.

19/19

Complexity

Big-Oh vs. Actual Running Time

Algorithms A and B with running times 7'4(n) = 20n time units
and Tg(n) = 0.1n? time units, respectively.

e In the "Big-Oh" sense, the linear algorithm A is better than
the quadratic algorithm B. ..

19/19

Complexity

Big-Oh vs. Actual Running Time

Algorithms A and B with running times 7'4(n) = 20n time units
and Tg(n) = 0.1n? time units, respectively.

e In the "Big-Oh" sense, the linear algorithm A is better than
the quadratic algorithm B. ..

e But: on which data volume can A outperform B, i.e. for
which value n the running time for A is less than for B?

19/19

Complexity

Big-Oh vs. Actual Running Time

Algorithms A and B with running times 7'4(n) = 20n time units
and Tg(n) = 0.1n? time units, respectively.

e In the "Big-Oh" sense, the linear algorithm A is better than
the quadratic algorithm B. ..

e But: on which data volume can A outperform B, i.e. for
which value n the running time for A is less than for B?

Ta(n) < Tg(n) if 20n < 0.1n2, or n > 200

19/19

Complexity

Big-Oh vs. Actual Running Time

Algorithms A and B with running times 7'4(n) = 20n time units
and Tg(n) = 0.1n? time units, respectively.

e In the "Big-Oh" sense, the linear algorithm A is better than
the quadratic algorithm B. ..

e But: on which data volume can A outperform B, i.e. for
which value n the running time for A is less than for B?

Ta(n) < Tg(n) if 20n < 0.1n2, or n > 200

Thus the algorithm A is better than B in most of practical cases
except for n < 200 when B becomes faster. ..

19/19

	Running time
	Examples
	``Big-Oh", ``Big-Omega", and ``Big-Theta" Tools
	Time complexity

