Outline	Running time	Examples	O, Ω, Θ	Complexity

Running Time Evaluation Quadratic Vs. Linear Time

Lecturer: Georgy Gimel'farb

COMPSCI 220 Algorithms and Data Structures

Outline	Running time	Examples	O, Ω, Θ	Complexity

Running time

2 Examples

3 "Big-Oh", "Big-Omega", and "Big-Theta" Tools

4 Time complexity

Examples

Running Time T(n): Estimation Rules

It is proportional to the **most significant term** in T(n):

- n for a linear time, $T(n) = c_0 + c_1 n$; or
- n^k if $T(n) = c_0 + c_1 n + \ldots + c_k n^k$ for a polynomial time.

Once a problem size n becomes large, the most significant term is that which has the largest power of n.

• The most significant term increases faster than other terms which reduce in significance.

Constants of proportionality depend on a compiler, language, computer, programming, etc.

- It is useful to ignore the constants when analysing algorithms.
- Reducing constants of proportionality by using faster hardware or minimising time spent on the "inner loop" does not effect an algorithm's behaviour for a large problem!

イロト イポト イヨト イヨト

Elementary Operations and Data Inputs

Basic elementary computing operations

- Arithmetic operations (+; -; *; /; %)
- Relational operators (==; ! =; >; <; \geq ; \leq)
- Boolean operations (AND; OR; XOR; NOT)
- Branch operations
- Return

Input size for problem domains (meaning of n)

```
Sorting: n items

Graph / path: n vertices / edges

Image processing: n pixels (2D images) or voxels (3D images)

Text processing: n characters, i.e. the string length n
```

Estimating Running Time

Simplifying assumptions: all elementary statements / expressions take the same amount of time to execute, e.g. simple arithmetic assignments, return, etc.

- A single loop increases in time **linearly** as $\lambda \cdot T_{body of a loop}$ where λ is number of times the loop is executed.
- Nested loops result in **polynomial** running time $T(n) = cn^k$ if the number of elementary operations in the innermost loop is constant (k is the highest level of nesting and c is some constant).
- The first three values of k have special names:
 - linear time for k = 1 (a single loop);
 - quadratic time for k = 2 (two nested loops), and
 - cubic time for k = 3 (three nested loops).

Estimating Running Time

Conditional / switch statements like

if {condition} then {const time T_1 } else {const time T_2 } are more complicated.

• One has to account for branching frequencies $f_{\text{condition}=\text{true}}$ and $f_{\text{condition}=\text{false}} = 1 - f_{\text{condition}=\text{true}}$:

$$T = f_{\text{true}}T_1 + (1 - f_{\text{true}})T_2 \le \max\{T_1, T_2\}$$

Function calls:

$$T_{\rm function} = \sum T_{\rm statements \ in \ function}$$

Function composition:

$$T(f(g(n))) = T(g(n)) + T(f(n))$$

・ロン ・四 と ・ ヨ と ・ ヨ

Function calls in more detail: $T = \sum_{i} T_{\text{statement } i}$

```
... x.myMethod( 5, ... );
. . .
public void myMethod( int a, ... ) {
   statements 1, 2, \ldots, M
}
```

Function composition in more detail: T(f(g(n))):

- Computation of $x = q(n) \longrightarrow T(q(n))$
- Computation of $y = f(x) \longrightarrow T(f(n))$
- T(f(q(n))) = T(q(n)) + T(f(n))

Logarithmic time for a simple loop due to an exponential change

$$i = 1, k, k^2, k^3, \dots, k^m$$

of the control variable in the range $1 \le i \le n$:

for $i \leftarrow 1$ step $i \leftarrow i * k$ until n do ... constant number of elementary operations end for

m iterations such that $k^{m-1} < n \le k^m \longrightarrow T(n) = c \lceil \log_k n \rceil$

- The ceil [z] of the real number z is the least integer not less than z.
- Additional conditions for executing inner loops only for special values of the outer variables also decrease running time.

Outline Running time Examples O, Ω, Θ Complexity Example 1.6: Textbook, p.19

Linearithmic $n \log n$ running time of the conditional nested loops:

 $\begin{array}{l} m \leftarrow 2 \\ \text{for } j \leftarrow 1 \text{ to } n \text{ do} \\ \text{ if } j == m \text{ then} \\ m \leftarrow 2 * m \\ \text{ for } i \leftarrow 1 \text{ to } n \text{ do} \\ \dots \text{ constant number of elementary operations} \\ \text{ end for} \\ \text{ end if} \\ \text{ end for} \end{array}$

The inner loop is executed k times for $j = m = 2, 4, \dots, 2^k$

- $2^k \le n < 2^{k+1}$ implies that $k \le \log_2 n < k+1$
- In total, T(n) is proportional to kn, that is, $T(n) = n \lfloor \log_2 n \rfloor$.
- The floor $\lfloor z \rfloor$ is the greatest integer not greater than z.

Outline Running time Examples O, Ω, Θ Complexity Example 1.6: Textbook, p.19

Linearithmic $n \log n$ running time of the conditional nested loops:

 $\begin{array}{l} m \leftarrow 2 \\ \text{for } j \leftarrow 1 \text{ to } n \text{ do} \\ \text{ if } j == m \text{ then} \\ m \leftarrow 2 * m \\ \text{ for } i \leftarrow 1 \text{ to } n \text{ do} \\ \dots \text{ constant number of elementary operations} \\ \text{ end for} \\ \text{ end if} \\ \text{end for} \end{array}$

The inner loop is executed k times for $j = m = 2, 4, \dots, 2^k$

- $2^k \le n < 2^{k+1}$ implies that $k \le \log_2 n < k+1$
- In total, T(n) is proportional to kn, that is, $T(n) = n \lfloor \log_2 n \rfloor$.
- The floor $\lfloor z \rfloor$ is the greatest integer not greater than z.

Outline	Running time	Examples	$\mathcal{O}, \Omega, \Theta$	Complexity
Exercise 1.2	2.1: Textbook			

Is the running time quadratic or linear for the nested loops below?

```
\begin{array}{l} m \leftarrow 1 \\ \text{for } j \leftarrow 1 \text{ to } n \text{ do} \\ \text{ if } j == m \text{ then} \\ m \leftarrow (n-1) * m \\ \text{ for } i \leftarrow 1 \text{ to } n \text{ do} \\ \dots \text{ constant number of operations} \\ \text{ end for} \\ \text{ end if} \\ \end{array}
```

The inner loop is executed only twice, for j = 1 and j = n - 1; in total: $T(n) = 2n \rightarrow$ **linear** running time.

Outline	Running time	Examples	O, Ω, Θ	Complexity
Exercise 1.2	2.1: Textbook			

Is the running time quadratic or linear for the nested loops below?

```
\begin{array}{l} m \leftarrow 1 \\ \text{for } j \leftarrow 1 \text{ to } n \text{ do} \\ \text{ if } j == m \text{ then} \\ m \leftarrow (n-1) * m \\ \text{ for } i \leftarrow 1 \text{ to } n \text{ do} \\ \dots \text{ constant number of operations} \\ \text{ end for} \\ \text{ end if} \\ \} \text{ end for} \end{array}
```

The inner loop is executed only twice, for j = 1 and j = n - 1; in total: $T(n) = 2n \rightarrow$ linear running time.

"Big-Oh", "Big-Omega", and "Big-Theta" Tools

How does the relative running time change if the input size, n, increases from n_1 to n_2 , all other things equal?

By a factor of
$$rac{T(n_2)}{T(n_1)} = rac{cf(n_1)}{cf(n_1)} = rac{f(n_2)}{f(n_1)}$$

- "Big-Oh", "Big-Omega", and "Big-Theta" help to avoid imprecise statements like "roughly proportional to..."
- Can be applied to all non-negative-valued functions, f(n) and g(n), defined on non-negative integers, n.
- Running time is such a function, T(n), of data size, n; n > 0.

Basic assumption:

Two algorithms have essentially the same complexity if their running times as functions of n differ only by a constant factor.

Definition of "Big-Oh", g(n) is O(f(n))

Let $f(n) \mbox{ and } g(n)$ be non-negative-valued functions, defined on non-negative integers, n.

Then g(n) is O(f(n)) (read "g(n) is Big Oh of f(n)) iff there exists a positive real constant, c, and a positive integer, n_0 , such that $g(n) \leq cf(n)$ for all $n > n_0$.

- The notation "iff" is an abbreviation of "if and only if".
- Meaning: g(n) is a member of the set O(f(n)) of functions that increase **at most** as fast as f(n), when $n \to \infty$.
- In other words, $g(n) \in O(f(n))$ if g(n) increases eventually at the same or lesser rate than f(n), to within a constant factor.
- $g(n) \in O(f(n))$ specifies a generalised "asymptotic upper bound", such that g(n) for large n may approach closer and closer to cf(n).

Definition of "Big-Omega", g(n) is $\Omega(f(n))$

g(n) is $\Omega(f(n))$ (read "g(n) is Big Omega of f(n)) iff there exists a positive real constant, c, and a positive integer, n_0 , such that $g(n) \ge cf(n)$ for all $n > n_0$.

- Meaning: g(n) is a member of the set $\Omega(f(n))$ of functions that increase **at least** as fast as f(n), when $n \to \infty$.
- In other words, $g(n) \in \Omega(f(n))$ if g(n) increases eventually at the same or larger rate than f(n), to within a constant factor.
- "Big Omega" is complementary to "Big Oh" and generalises the concept of "asymptotic lower bound" (≥_{n→∞}) just as "Big Oh" generalises the asymptotic upper bound (≤_{n→∞}).
- If g(n) is O(f(n)), then f(n) is $\Omega(g(n))$.

Definition of "Big Theta", g(n) is $\Theta(f(n))$

g(n) is $\Theta(f(n))$ (read "g(n) is Big Theta of f(n)) iff there exist two positive real constants, c_1 and c_2 , and a positive integer, n_0 , such that $c_1f(n) \leq g(n) \leq c_2f(n)$.

- Meaning: g(n) is a member of the set $\Theta(f(n))$ of functions that increase as fast as f(n), when $n \to \infty$
- Im other words, $g(n) \in \Theta(f(n))$ if g(n) increases eventually at the same rate as f(n), to within a constant factor.
- "Big Theta" generalises the concept of "asymptotic tight bound".
- If $g(n) \in O(f(n))$ and $f(n) \in O(g(n))$, then $f(n) \in \Theta(g(n))$ and $g(n) \in \Theta(f(n))$, i.e. both algorithms are of the same time complexity.

Proving g(n) is O(f(n)), or $\Omega(f(n))$, or $\Theta(f(n))$

Proving the 'Big-X" property means finding constants, (c, n_0) or (c_1, c_2, n_0) specified in Definitions.

- It might be done by a chain of inequalities, starting from f(n).
- Mathematical induction can be used in more intricate cases.

Proving g(n) is **not** "Big-X" of f(n) finds the required constants do not exist, i.e. lead to a contradiction.

Example 1: Prove that $g(n) = 5n^2 + 3n$ is not O(n).

If $g(n) = 5n^2 + 3n \le c \cdot n$ for $n > n_0$, then for any n_0 the factor $c > 5n_0 + 3$, i.e. it cannot be constant. Therefore, $g(n) \notin O(n)$.

Example 2: Prove that $g(n) = 5n^2 + 3n$ is $\Omega(n)$.

If $g(n) = 5n^2 + 3n \ge c \cdot n$ for $n > n_0$, then for any n_0 there exist the required factor $c < 5n_0 + 3$. Therefore, $g(n) \in \Omega(n)$.

Examples

Time Complexity of Algorithms

In analysing running time, $T(n) \in O(f(n))$, functions f(n) measure approximate time complexity like $\log n$, n, n^2 etc.

- Polynomial algorithms: T(n) is $O(n^k)$; k = const.
- Exponential algorithms otherwise.

Intractable problems: if no polynomial algorithm is known for solution.

イロト イポト イヨト イヨト

Time Complexity Growth

f(n)	Approximate number of data items processed per:				
	1 minute	1 day	1 year	1 century	
n	10	14,400	$5.3 imes 10^6$	$5.3 imes 10^8$	
$n \log_{10} n$	10	3,997	$8.8 imes 10^5$	6.7×10^{7}	
$n^{1.5}$	10	1,275	65,128	1.4×10^{6}	
n^2	10	379	7,252	72,522	
n^3	10	112	807	3,746	
2^n	10	20	29	35	

Beware Exponential Complexity!

- A linear, O(n), algorithm processing 10 items per minute, can process 1.4 × 10⁴ items per day, 5.3 × 10⁶ items per year, and 5.3 × 10⁸ items per century.
- An exponential, $O(2^n)$, algorithm processing **10** items per minute, can process only **20** items per day and only **35** items per century.

(a)

Time Complexity Growth

f(n)	Approximate number of data items processed per:				
	1 minute	1 day	1 year	1 century	
n	10	14,400	$5.3 imes 10^6$	$5.3 imes 10^8$	
$n \log_{10} n$	10	3,997	$8.8 imes 10^5$	6.7×10^{7}	
$n^{1.5}$	10	1,275	65,128	1.4×10^{6}	
n^2	10	379	7,252	72,522	
n^3	10	112	807	3,746	
2^n	10	20	29	35	

Beware Exponential Complexity!

- A linear, O(n), algorithm processing 10 items per minute, can process 1.4 × 10⁴ items per day, 5.3 × 10⁶ items per year, and 5.3 × 10⁸ items per century.
- An exponential, $O(2^n)$, algorithm processing 10 items per minute, can process only 20 items per day and only 35 items per century...

Example 1:

Algorithms A and B with running times $T_A(n) = 20n$ time units and $T_B(n) = 0.1n \log_2 n$ time units, respectively.

- In the "Big-Oh" sense, the linear algorithm A is better than the linearithmic algorithm B...
- **But:** on which data volume can A outperform B, i.e. for which value n the running time for A is less than for B?

 $T_A(n) < T_B(n)$ if $20n < 0.1n \log_2 n$, or $\log_2 n > 200$, that is, when $\mathbf{n} > \mathbf{2^{200}} \approx \mathbf{10^{60}}!$

Thus, in all practical cases the algorithm B is better than A...

Example 1:

Algorithms A and B with running times $T_A(n) = 20n$ time units and $T_B(n) = 0.1n \log_2 n$ time units, respectively.

• In the "Big-Oh" sense, the linear algorithm A is better than the linearithmic algorithm B...

• **But:** on which data volume can A outperform B, i.e. for which value n the running time for A is less than for B?

 $T_A(n) < T_B(n)$ if $20n < 0.1n \log_2 n$, or $\log_2 n > 200$, that is, when $\mathbf{n} > \mathbf{2^{200}} \approx \mathbf{10^{60}}!$

Thus, in all practical cases the algorithm B is better than A...

・ロ ・ ・ 一部 ・ く 言 ・ く 言 ・ う 気 や
18/19

Example 1:

Algorithms A and B with running times $T_A(n) = 20n$ time units and $T_B(n) = 0.1n \log_2 n$ time units, respectively.

- In the "Big-Oh" sense, the linear algorithm A is better than the linearithmic algorithm B...
- But: on which data volume can A outperform B, i.e. for which value n the running time for A is less than for B?

 $T_A(n) < T_B(n)$ if $20n < 0.1n \log_2 n$, or $\log_2 n > 200$, that is, when $\mathbf{n} > \mathbf{2^{200}} \approx \mathbf{10^{60}}!$

Thus, in all practical cases the algorithm B is better than A...

(ロ)、(型)、(目)、(目)、(目)、(Q)、(R)(19)

Example 1:

Algorithms A and B with running times $T_A(n) = 20n$ time units and $T_B(n) = 0.1n \log_2 n$ time units, respectively.

- In the "Big-Oh" sense, the linear algorithm A is better than the linearithmic algorithm B...
- But: on which data volume can A outperform B, i.e. for which value n the running time for A is less than for B?

 $T_A(n) < T_B(n)$ if $20n < 0.1n \log_2 n$, or $\log_2 n > 200$, that is, when $n > 2^{200} \approx 10^{60}!$

Thus, in all practical cases the algorithm B is better than $A.\ldots$

Example 1:

Algorithms A and B with running times $T_A(n) = 20n$ time units and $T_B(n) = 0.1n \log_2 n$ time units, respectively.

- In the "Big-Oh" sense, the linear algorithm A is better than the linearithmic algorithm B...
- But: on which data volume can A outperform B, i.e. for which value n the running time for A is less than for B?

 $T_A(n) < T_B(n)$ if $20n < 0.1n \log_2 n$, or $\log_2 n > 200$, that is, when $n > 2^{200} \approx 10^{60}!$

Thus, in all practical cases the algorithm B is better than A...

Example 2:

Algorithms A and B with running times $T_A(n) = 20n$ time units and $T_B(n) = 0.1n^2$ time units, respectively.

• In the "Big-Oh" sense, the linear algorithm A is better than the quadratic algorithm $B\ldots$

• **But:** on which data volume can A outperform B, i.e. for which value n the running time for A is less than for B?

 $T_A(n) < T_B(n)$ if $20n < 0.1n^2$, or n > 200

Thus the algorithm A is better than B in most of practical cases except for n<200 when B becomes faster. . .

Example 2:

Algorithms A and B with running times $T_A(n) = 20n$ time units and $T_B(n) = 0.1n^2$ time units, respectively.

• In the "Big-Oh" sense, the linear algorithm A is better than the quadratic algorithm B...

• **But:** on which data volume can A outperform B, i.e. for which value n the running time for A is less than for B?

 $T_A(n) < T_B(n)$ if $20n < 0.1n^2$, or n > 200

Thus the algorithm A is better than B in most of practical cases except for n<200 when B becomes faster. . .

Example 2:

Algorithms A and B with running times $T_A(n) = 20n$ time units and $T_B(n) = 0.1n^2$ time units, respectively.

- In the "Big-Oh" sense, the linear algorithm A is better than the quadratic algorithm B...
- But: on which data volume can A outperform B, i.e. for which value n the running time for A is less than for B?

$T_A(n) < T_B(n)$ if $20n < 0.1n^2$, or n > 200

Thus the algorithm A is better than B in most of practical cases except for n < 200 when B becomes faster...

Example 2:

Algorithms A and B with running times $T_A(n) = 20n$ time units and $T_B(n) = 0.1n^2$ time units, respectively.

- In the "Big-Oh" sense, the linear algorithm A is better than the quadratic algorithm B...
- But: on which data volume can A outperform B, i.e. for which value n the running time for A is less than for B?

$T_A(n) < T_B(n)$ if $20n < 0.1n^2$, or n > 200

Thus the algorithm A is better than B in most of practical cases except for n < 200 when B becomes faster...

Example 2:

Algorithms A and B with running times $T_A(n) = 20n$ time units and $T_B(n) = 0.1n^2$ time units, respectively.

- In the "Big-Oh" sense, the linear algorithm A is better than the quadratic algorithm B...
- But: on which data volume can A outperform B, i.e. for which value n the running time for A is less than for B?

$$T_A(n) < T_B(n)$$
 if $20n < 0.1n^2$, or $n > 200$

Thus the algorithm A is better than B in most of practical cases except for n<200 when B becomes faster. . .