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Running Time T (n): Estimation Rules

It is proportional to the most significant term in T (n):

• n for a linear time, T (n) = c0 + c1n; or

• nk if T (n) = c0 + c1n+ . . .+ ckn
k for a polynomial time.

Once a problem size n becomes large, the most significant term is
that which has the largest power of n.

• The most significant term increases faster than other terms
which reduce in significance.

Constants of proportionality depend on a compiler, language,
computer, programming, etc.

• It is useful to ignore the constants when analysing algorithms.

• Reducing constants of proportionality by using faster hardware
or minimising time spent on the “inner loop” does not effect
an algorithm’s behaviour for a large problem!
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Elementary Operations and Data Inputs

Basic elementary computing operations

• Arithmetic operations (+;−; ∗; /; %)

• Relational operators ( ==; ! =;>;<;≥;≤ )

• Boolean operations (AND; OR; XOR; NOT)

• Branch operations

• Return

Input size for problem domains (meaning of n)

Sorting: n items

Graph / path: n vertices / edges

Image processing: n pixels (2D images) or voxels (3D images)

Text processing: n characters, i.e. the string length n
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Estimating Running Time

Simplifying assumptions: all elementary statements / expressions
take the same amount of time to execute, e.g. simple arithmetic
assignments, return, etc.

• A single loop increases in time linearly as λ · Tbody of a loop

where λ is number of times the loop is executed.

• Nested loops result in polynomial running time T (n) = cnk if
the number of elementary operations in the innermost loop is
constant (k is the highest level of nesting and c is some constant).

• The first three values of k have special names:
• linear time for k = 1 (a single loop);
• quadratic time for k = 2 (two nested loops), and
• cubic time for k = 3 (three nested loops).
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Estimating Running Time

Conditional / switch statements like
if {condition} then {const time T1} else {const time T2}

are more complicated.

• One has to account for branching frequencies fcondition=true

and fcondition=false = 1− fcondition=true:

T = ftrueT1 + (1− ftrue)T2 ≤ max{T1, T2}

Function calls:

Tfunction =
∑

Tstatements in function

Function composition:

T (f(g(n))) = T (g(n)) + T (f(n))
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Estimating Running Time

Function calls in more detail: T =
∑

i Tstatement i

... x.myMethod( 5, ... );

...

public void myMethod( int a, ... ) {
statements 1, 2, . . . ,M

}

Function composition in more detail: T (f(g(n))):

• Computation of x = g(n) −→ T (g(n))

• Computation of y = f(x) −→ T (f(n))

• T (f(g(n))) = T (g(n)) + T (f(n))
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Example 1.5: Textbook, p.19

Logarithmic time for a simple loop due to an exponential change

i = 1, k, k2, k3, . . . , km

of the control variable in the range 1 ≤ i ≤ n:

for i← 1 step i← i ∗ k until n do
. . . constant number of elementary operations

end for

m iterations such that km−1 < n ≤ km −→ T (n) = cdlogk ne
• The ceil dze of the real number z is the least integer not less than z.

• Additional conditions for executing inner loops only for special values of
the outer variables also decrease running time.
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Example 1.6: Textbook, p.19

Linearithmic n log n running time of the conditional nested loops:

m← 2
for j ← 1 to n do

if j == m then
m← 2 ∗m
for i← 1 to n do

. . . constant number of elementary operations

end for
end if

end for

The inner loop is executed k times for j = m = 2, 4, . . . , 2k

• 2k ≤ n < 2k+1 implies that k ≤ log2 n < k + 1

• In total, T (n) is proportional to kn, that is, T (n) = nblog2 nc.
• The floor bzc is the greatest integer not greater than z.
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Exercise 1.2.1: Textbook

Is the running time quadratic or linear for the nested loops below?

m← 1
for j ← 1 to n do

if j == m then
m← (n− 1) ∗m
for i← 1 to n do

. . . constant number of operations

end for
end if

} end for

The inner loop is executed only twice, for j = 1 and j = n− 1; in
total: T (n) = 2n → linear running time.
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“Big-Oh”, “Big-Omega”, and “Big-Theta” Tools

How does the relative running time change if the input size, n,
increases from n1 to n2, all other things equal?

By a factor of T (n2)
T (n1)

= cf(n1

cf(n1)
= f(n2)

f(n1)

• “Big-Oh”, “Big-Omega”, and “Big-Theta” help to avoid
imprecise statements like “roughly proportional to. . . ”

• Can be applied to all non-negative-valued functions, f(n) and
g(n), defined on non-negative integers, n.

• Running time is such a function, T (n), of data size, n; n > 0.

Basic assumption:

Two algorithms have essentially the same complexity if their
running times as functions of n differ only by a constant factor.
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Definition of “Big-Oh”, g(n) is O(f(n))

Let f(n) and g(n) be non-negative-valued functions, defined on
non-negative integers, n.

Then g(n) is O(f(n)) (read “g(n) is Big Oh of f(n)) iff there
exists a positive real constant, c, and a positive integer, n0, such
that g(n) ≤ cf(n) for all n > n0.

• The notation “iff” is an abbreviation of “if and only if”.

• Meaning: g(n) is a member of the set O(f(n)) of functions
that increase at most as fast as f(n), when n→∞.

• In other words, g(n) ∈ O(f(n)) if g(n) increases eventually at
the same or lesser rate than f(n), to within a constant factor.

• g(n) ∈ O(f(n)) specifies a generalised “asymptotic upper
bound”, such that g(n) for large n may approach closer and
closer to cf(n).
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Definition of “Big-Omega”, g(n) is Ω(f(n))

g(n) is Ω(f(n)) (read “g(n) is Big Omega of f(n)) iff there exists
a positive real constant, c, and a positive integer, n0, such that
g(n) ≥ cf(n) for all n > n0.

• Meaning: g(n) is a member of the set Ω(f(n)) of functions
that increase at least as fast as f(n), when n→∞.

• In other words, g(n) ∈ Ω(f(n)) if g(n) increases eventually at
the same or larger rate than f(n), to within a constant factor.

• “Big Omega” is complementary to “Big Oh” and generalises
the concept of “asymptotic lower bound” (≥n→∞) just as
“Big Oh” generalises the asymptotic upper bound (≤n→∞).

• If g(n) is O(f(n)), then f(n) is Ω(g(n)).
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Definition of “Big Theta”, g(n) is Θ(f(n))

g(n) is Θ(f(n)) (read “g(n) is Big Theta of f(n)) iff there exist
two positive real constants, c1 and c2, and a positive integer, n0,
such that c1f(n) ≤ g(n) ≤ c2f(n).

• Meaning: g(n) is a member of the set Θ(f(n)) of functions
that increase as fast as f(n), when n→∞

• Im other words, g(n) ∈ Θ(f(n)) if g(n) increases eventually
at the same rate as f(n), to within a constant factor.

• “Big Theta” generalises the concept of “asymptotic tight
bound”.

• If g(n) ∈ O(f(n)) and f(n) ∈ O(g(n)), then f(n) ∈ Θ(g(n))
and g(n) ∈ Θ(f(n)), i.e. both algorithms are of the same
time complexity.
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Proving g(n) is O(f(n)), or Ω(f(n)), or Θ(f(n))

Proving the ‘Big-X” property means finding constants, (c, n0) or
(c1, c2, n0) specified in Definitions.

• It might be done by a chain of inequalities, starting from f(n).

• Mathematical induction can be used in more intricate cases.

Proving g(n) is not “Big-X” of f(n) finds the required constants
do not exist, i.e. lead to a contradiction.

Example 1: Prove that g(n) = 5n2 + 3n is not O(n).

If g(n) = 5n2 + 3n ≤ c · n for n > n0, then for any n0 the factor
c > 5n0 + 3, i.e. it cannot be constant. Therefore, g(n) 6∈ O(n).

Example 2: Prove that g(n) = 5n2 + 3n is Ω(n).

If g(n) = 5n2 + 3n ≥ c · n for n > n0, then for any n0 there exist the
required factor c < 5n0 + 3. Therefore, g(n) ∈ Ω(n).
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Time Complexity of Algorithms

T (n) = 100 log10 n

T (n) ≤ n for all n > 238

T (n) ≤ 0.3n for all n > 1000

T (n) ∈ O(n)

In analysing running time,
T (n) ∈ O(f(n)), functions
f(n) measure approximate
time complexity like log n, n,
n2 etc.

• Polynomial algorithms:
T (n) is O(nk); k = const.

• Exponential algorithms
otherwise.

Intractable problems: if no
polynomial algorithm is known
for solution.
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Time Complexity Growth

f(n) Approximate number of data items processed per:
1 minute 1 day 1 year 1 century

n 10 14, 400 5.3× 106 5.3× 108

n log10 n 10 3, 997 8.8× 105 6.7× 107

n1.5 10 1, 275 65, 128 1.4× 106

n2 10 379 7, 252 72, 522
n3 10 112 807 3, 746
2n 10 20 29 35

Beware Exponential Complexity!

• A linear, O(n), algorithm processing 10 items per minute, can
process 1.4× 104 items per day, 5.3× 106 items per year, and
5.3× 108 items per century.

• An exponential, O(2n), algorithm processing 10 items per minute,
can process only 20 items per day and only 35 items per century. . .
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Big-Oh vs. Actual Running Time

Example 1:

Algorithms A and B with running times TA(n) = 20n time units
and TB(n) = 0.1n log2 n time units, respectively.

• In the “Big-Oh” sense, the linear algorithm A is better than
the linearithmic algorithm B. . .

• But: on which data volume can A outperform B, i.e. for
which value n the running time for A is less than for B?

TA(n) < TB(n) if 20n < 0.1n log2 n,
or log2 n > 200, that is, when n > 2200 ≈ 1060!

Thus, in all practical cases the algorithm B is better than A. . .
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Big-Oh vs. Actual Running Time

Example 2:

Algorithms A and B with running times TA(n) = 20n time units
and TB(n) = 0.1n2 time units, respectively.

• In the “Big-Oh” sense, the linear algorithm A is better than
the quadratic algorithm B. . .

• But: on which data volume can A outperform B, i.e. for
which value n the running time for A is less than for B?

TA(n) < TB(n) if 20n < 0.1n2, or n > 200

Thus the algorithm A is better than B in most of practical cases
except for n < 200 when B becomes faster. . .
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