
Outline Running time Examples O,Ω,Θ Complexity

Running Time Evaluation
Quadratic Vs. Linear Time

Lecturer: Georgy Gimel’farb

COMPSCI 220 Algorithms and Data Structures

1 / 19



Outline Running time Examples O,Ω,Θ Complexity

1 Running time

2 Examples

3 “Big-Oh”, “Big-Omega”, and “Big-Theta” Tools

4 Time complexity

2 / 19



Outline Running time Examples O,Ω,Θ Complexity

Running Time T (n): Estimation Rules

It is proportional to the most significant term in T (n):

• n for a linear time, T (n) = c0 + c1n; or

• nk if T (n) = c0 + c1n+ . . .+ ckn
k for a polynomial time.

Once a problem size n becomes large, the most significant term is
that which has the largest power of n.

• The most significant term increases faster than other terms
which reduce in significance.

Constants of proportionality depend on a compiler, language,
computer, programming, etc.

• It is useful to ignore the constants when analysing algorithms.

• Reducing constants of proportionality by using faster hardware
or minimising time spent on the “inner loop” does not effect
an algorithm’s behaviour for a large problem!

3 / 19



Outline Running time Examples O,Ω,Θ Complexity

Elementary Operations and Data Inputs

Basic elementary computing operations

• Arithmetic operations (+;−; ∗; /; %)

• Relational operators ( ==; ! =;>;<;≥;≤ )

• Boolean operations (AND; OR; XOR; NOT)

• Branch operations

• Return

Input size for problem domains (meaning of n)

Sorting: n items

Graph / path: n vertices / edges

Image processing: n pixels (2D images) or voxels (3D images)

Text processing: n characters, i.e. the string length n

4 / 19



Outline Running time Examples O,Ω,Θ Complexity

Estimating Running Time

Simplifying assumptions: all elementary statements / expressions
take the same amount of time to execute, e.g. simple arithmetic
assignments, return, etc.

• A single loop increases in time linearly as λ · Tbody of a loop

where λ is number of times the loop is executed.

• Nested loops result in polynomial running time T (n) = cnk if
the number of elementary operations in the innermost loop is
constant (k is the highest level of nesting and c is some constant).

• The first three values of k have special names:
• linear time for k = 1 (a single loop);
• quadratic time for k = 2 (two nested loops), and
• cubic time for k = 3 (three nested loops).

5 / 19



Outline Running time Examples O,Ω,Θ Complexity

Estimating Running Time

Conditional / switch statements like
if {condition} then {const time T1} else {const time T2}

are more complicated.

• One has to account for branching frequencies fcondition=true

and fcondition=false = 1− fcondition=true:

T = ftrueT1 + (1− ftrue)T2 ≤ max{T1, T2}

Function calls:

Tfunction =
∑

Tstatements in function

Function composition:

T (f(g(n))) = T (g(n)) + T (f(n))

6 / 19



Outline Running time Examples O,Ω,Θ Complexity

Estimating Running Time

Function calls in more detail: T =
∑

i Tstatement i

... x.myMethod( 5, ... );

...

public void myMethod( int a, ... ) {
statements 1, 2, . . . ,M

}

Function composition in more detail: T (f(g(n))):

• Computation of x = g(n) −→ T (g(n))

• Computation of y = f(x) −→ T (f(n))

• T (f(g(n))) = T (g(n)) + T (f(n))

7 / 19



Outline Running time Examples O,Ω,Θ Complexity

Example 1.5: Textbook, p.19

Logarithmic time for a simple loop due to an exponential change

i = 1, k, k2, k3, . . . , km

of the control variable in the range 1 ≤ i ≤ n:

for i← 1 step i← i ∗ k until n do
. . . constant number of elementary operations

end for

m iterations such that km−1 < n ≤ km −→ T (n) = cdlogk ne
• The ceil dze of the real number z is the least integer not less than z.

• Additional conditions for executing inner loops only for special values of
the outer variables also decrease running time.

8 / 19



Outline Running time Examples O,Ω,Θ Complexity

Example 1.6: Textbook, p.19

Linearithmic n log n running time of the conditional nested loops:

m← 2
for j ← 1 to n do

if j == m then
m← 2 ∗m
for i← 1 to n do

. . . constant number of elementary operations

end for
end if

end for

The inner loop is executed k times for j = m = 2, 4, . . . , 2k

• 2k ≤ n < 2k+1 implies that k ≤ log2 n < k + 1

• In total, T (n) is proportional to kn, that is, T (n) = nblog2 nc.
• The floor bzc is the greatest integer not greater than z.

9 / 19



Outline Running time Examples O,Ω,Θ Complexity

Example 1.6: Textbook, p.19

Linearithmic n log n running time of the conditional nested loops:

m← 2
for j ← 1 to n do

if j == m then
m← 2 ∗m
for i← 1 to n do

. . . constant number of elementary operations

end for
end if

end for

The inner loop is executed k times for j = m = 2, 4, . . . , 2k

• 2k ≤ n < 2k+1 implies that k ≤ log2 n < k + 1

• In total, T (n) is proportional to kn, that is, T (n) = nblog2 nc.
• The floor bzc is the greatest integer not greater than z.

9 / 19



Outline Running time Examples O,Ω,Θ Complexity

Exercise 1.2.1: Textbook

Is the running time quadratic or linear for the nested loops below?

m← 1
for j ← 1 to n do

if j == m then
m← (n− 1) ∗m
for i← 1 to n do

. . . constant number of operations

end for
end if

} end for

The inner loop is executed only twice, for j = 1 and j = n− 1; in
total: T (n) = 2n → linear running time.

10 / 19



Outline Running time Examples O,Ω,Θ Complexity

Exercise 1.2.1: Textbook

Is the running time quadratic or linear for the nested loops below?

m← 1
for j ← 1 to n do

if j == m then
m← (n− 1) ∗m
for i← 1 to n do

. . . constant number of operations

end for
end if

} end for

The inner loop is executed only twice, for j = 1 and j = n− 1; in
total: T (n) = 2n → linear running time.

10 / 19



Outline Running time Examples O,Ω,Θ Complexity

“Big-Oh”, “Big-Omega”, and “Big-Theta” Tools

How does the relative running time change if the input size, n,
increases from n1 to n2, all other things equal?

By a factor of T (n2)
T (n1)

= cf(n1

cf(n1)
= f(n2)

f(n1)

• “Big-Oh”, “Big-Omega”, and “Big-Theta” help to avoid
imprecise statements like “roughly proportional to. . . ”

• Can be applied to all non-negative-valued functions, f(n) and
g(n), defined on non-negative integers, n.

• Running time is such a function, T (n), of data size, n; n > 0.

Basic assumption:

Two algorithms have essentially the same complexity if their
running times as functions of n differ only by a constant factor.

11 / 19



Outline Running time Examples O,Ω,Θ Complexity

Definition of “Big-Oh”, g(n) is O(f(n))

Let f(n) and g(n) be non-negative-valued functions, defined on
non-negative integers, n.

Then g(n) is O(f(n)) (read “g(n) is Big Oh of f(n)) iff there
exists a positive real constant, c, and a positive integer, n0, such
that g(n) ≤ cf(n) for all n > n0.

• The notation “iff” is an abbreviation of “if and only if”.

• Meaning: g(n) is a member of the set O(f(n)) of functions
that increase at most as fast as f(n), when n→∞.

• In other words, g(n) ∈ O(f(n)) if g(n) increases eventually at
the same or lesser rate than f(n), to within a constant factor.

• g(n) ∈ O(f(n)) specifies a generalised “asymptotic upper
bound”, such that g(n) for large n may approach closer and
closer to cf(n).

12 / 19



Outline Running time Examples O,Ω,Θ Complexity

Definition of “Big-Omega”, g(n) is Ω(f(n))

g(n) is Ω(f(n)) (read “g(n) is Big Omega of f(n)) iff there exists
a positive real constant, c, and a positive integer, n0, such that
g(n) ≥ cf(n) for all n > n0.

• Meaning: g(n) is a member of the set Ω(f(n)) of functions
that increase at least as fast as f(n), when n→∞.

• In other words, g(n) ∈ Ω(f(n)) if g(n) increases eventually at
the same or larger rate than f(n), to within a constant factor.

• “Big Omega” is complementary to “Big Oh” and generalises
the concept of “asymptotic lower bound” (≥n→∞) just as
“Big Oh” generalises the asymptotic upper bound (≤n→∞).

• If g(n) is O(f(n)), then f(n) is Ω(g(n)).

13 / 19



Outline Running time Examples O,Ω,Θ Complexity

Definition of “Big Theta”, g(n) is Θ(f(n))

g(n) is Θ(f(n)) (read “g(n) is Big Theta of f(n)) iff there exist
two positive real constants, c1 and c2, and a positive integer, n0,
such that c1f(n) ≤ g(n) ≤ c2f(n).

• Meaning: g(n) is a member of the set Θ(f(n)) of functions
that increase as fast as f(n), when n→∞

• Im other words, g(n) ∈ Θ(f(n)) if g(n) increases eventually
at the same rate as f(n), to within a constant factor.

• “Big Theta” generalises the concept of “asymptotic tight
bound”.

• If g(n) ∈ O(f(n)) and f(n) ∈ O(g(n)), then f(n) ∈ Θ(g(n))
and g(n) ∈ Θ(f(n)), i.e. both algorithms are of the same
time complexity.

14 / 19



Outline Running time Examples O,Ω,Θ Complexity

Proving g(n) is O(f(n)), or Ω(f(n)), or Θ(f(n))

Proving the ‘Big-X” property means finding constants, (c, n0) or
(c1, c2, n0) specified in Definitions.

• It might be done by a chain of inequalities, starting from f(n).

• Mathematical induction can be used in more intricate cases.

Proving g(n) is not “Big-X” of f(n) finds the required constants
do not exist, i.e. lead to a contradiction.

Example 1: Prove that g(n) = 5n2 + 3n is not O(n).

If g(n) = 5n2 + 3n ≤ c · n for n > n0, then for any n0 the factor
c > 5n0 + 3, i.e. it cannot be constant. Therefore, g(n) 6∈ O(n).

Example 2: Prove that g(n) = 5n2 + 3n is Ω(n).

If g(n) = 5n2 + 3n ≥ c · n for n > n0, then for any n0 there exist the
required factor c < 5n0 + 3. Therefore, g(n) ∈ Ω(n).

15 / 19



Outline Running time Examples O,Ω,Θ Complexity

Time Complexity of Algorithms

T (n) = 100 log10 n

T (n) ≤ n for all n > 238

T (n) ≤ 0.3n for all n > 1000

T (n) ∈ O(n)

In analysing running time,
T (n) ∈ O(f(n)), functions
f(n) measure approximate
time complexity like log n, n,
n2 etc.

• Polynomial algorithms:
T (n) is O(nk); k = const.

• Exponential algorithms
otherwise.

Intractable problems: if no
polynomial algorithm is known
for solution.

16 / 19



Outline Running time Examples O,Ω,Θ Complexity

Time Complexity Growth

f(n) Approximate number of data items processed per:
1 minute 1 day 1 year 1 century

n 10 14, 400 5.3× 106 5.3× 108

n log10 n 10 3, 997 8.8× 105 6.7× 107

n1.5 10 1, 275 65, 128 1.4× 106

n2 10 379 7, 252 72, 522
n3 10 112 807 3, 746
2n 10 20 29 35

Beware Exponential Complexity!

• A linear, O(n), algorithm processing 10 items per minute, can
process 1.4× 104 items per day, 5.3× 106 items per year, and
5.3× 108 items per century.

• An exponential, O(2n), algorithm processing 10 items per minute,
can process only 20 items per day and only 35 items per century. . .

17 / 19



Outline Running time Examples O,Ω,Θ Complexity

Time Complexity Growth

f(n) Approximate number of data items processed per:
1 minute 1 day 1 year 1 century

n 10 14, 400 5.3× 106 5.3× 108

n log10 n 10 3, 997 8.8× 105 6.7× 107

n1.5 10 1, 275 65, 128 1.4× 106

n2 10 379 7, 252 72, 522
n3 10 112 807 3, 746
2n 10 20 29 35

Beware Exponential Complexity!

• A linear, O(n), algorithm processing 10 items per minute, can
process 1.4× 104 items per day, 5.3× 106 items per year, and
5.3× 108 items per century.

• An exponential, O(2n), algorithm processing 10 items per minute,
can process only 20 items per day and only 35 items per century. . .

17 / 19



Outline Running time Examples O,Ω,Θ Complexity

Big-Oh vs. Actual Running Time

Example 1:

Algorithms A and B with running times TA(n) = 20n time units
and TB(n) = 0.1n log2 n time units, respectively.

• In the “Big-Oh” sense, the linear algorithm A is better than
the linearithmic algorithm B. . .

• But: on which data volume can A outperform B, i.e. for
which value n the running time for A is less than for B?

TA(n) < TB(n) if 20n < 0.1n log2 n,
or log2 n > 200, that is, when n > 2200 ≈ 1060!

Thus, in all practical cases the algorithm B is better than A. . .

18 / 19



Outline Running time Examples O,Ω,Θ Complexity

Big-Oh vs. Actual Running Time

Example 1:

Algorithms A and B with running times TA(n) = 20n time units
and TB(n) = 0.1n log2 n time units, respectively.

• In the “Big-Oh” sense, the linear algorithm A is better than
the linearithmic algorithm B. . .

• But: on which data volume can A outperform B, i.e. for
which value n the running time for A is less than for B?

TA(n) < TB(n) if 20n < 0.1n log2 n,
or log2 n > 200, that is, when n > 2200 ≈ 1060!

Thus, in all practical cases the algorithm B is better than A. . .

18 / 19



Outline Running time Examples O,Ω,Θ Complexity

Big-Oh vs. Actual Running Time

Example 1:

Algorithms A and B with running times TA(n) = 20n time units
and TB(n) = 0.1n log2 n time units, respectively.

• In the “Big-Oh” sense, the linear algorithm A is better than
the linearithmic algorithm B. . .

• But: on which data volume can A outperform B, i.e. for
which value n the running time for A is less than for B?

TA(n) < TB(n) if 20n < 0.1n log2 n,
or log2 n > 200, that is, when n > 2200 ≈ 1060!

Thus, in all practical cases the algorithm B is better than A. . .

18 / 19



Outline Running time Examples O,Ω,Θ Complexity

Big-Oh vs. Actual Running Time

Example 1:

Algorithms A and B with running times TA(n) = 20n time units
and TB(n) = 0.1n log2 n time units, respectively.

• In the “Big-Oh” sense, the linear algorithm A is better than
the linearithmic algorithm B. . .

• But: on which data volume can A outperform B, i.e. for
which value n the running time for A is less than for B?

TA(n) < TB(n) if 20n < 0.1n log2 n,
or log2 n > 200, that is, when n > 2200 ≈ 1060!

Thus, in all practical cases the algorithm B is better than A. . .

18 / 19



Outline Running time Examples O,Ω,Θ Complexity

Big-Oh vs. Actual Running Time

Example 1:

Algorithms A and B with running times TA(n) = 20n time units
and TB(n) = 0.1n log2 n time units, respectively.

• In the “Big-Oh” sense, the linear algorithm A is better than
the linearithmic algorithm B. . .

• But: on which data volume can A outperform B, i.e. for
which value n the running time for A is less than for B?

TA(n) < TB(n) if 20n < 0.1n log2 n,
or log2 n > 200, that is, when n > 2200 ≈ 1060!

Thus, in all practical cases the algorithm B is better than A. . .

18 / 19



Outline Running time Examples O,Ω,Θ Complexity

Big-Oh vs. Actual Running Time

Example 2:

Algorithms A and B with running times TA(n) = 20n time units
and TB(n) = 0.1n2 time units, respectively.

• In the “Big-Oh” sense, the linear algorithm A is better than
the quadratic algorithm B. . .

• But: on which data volume can A outperform B, i.e. for
which value n the running time for A is less than for B?

TA(n) < TB(n) if 20n < 0.1n2, or n > 200

Thus the algorithm A is better than B in most of practical cases
except for n < 200 when B becomes faster. . .

19 / 19



Outline Running time Examples O,Ω,Θ Complexity

Big-Oh vs. Actual Running Time

Example 2:

Algorithms A and B with running times TA(n) = 20n time units
and TB(n) = 0.1n2 time units, respectively.

• In the “Big-Oh” sense, the linear algorithm A is better than
the quadratic algorithm B. . .

• But: on which data volume can A outperform B, i.e. for
which value n the running time for A is less than for B?

TA(n) < TB(n) if 20n < 0.1n2, or n > 200

Thus the algorithm A is better than B in most of practical cases
except for n < 200 when B becomes faster. . .

19 / 19



Outline Running time Examples O,Ω,Θ Complexity

Big-Oh vs. Actual Running Time

Example 2:

Algorithms A and B with running times TA(n) = 20n time units
and TB(n) = 0.1n2 time units, respectively.

• In the “Big-Oh” sense, the linear algorithm A is better than
the quadratic algorithm B. . .

• But: on which data volume can A outperform B, i.e. for
which value n the running time for A is less than for B?

TA(n) < TB(n) if 20n < 0.1n2, or n > 200

Thus the algorithm A is better than B in most of practical cases
except for n < 200 when B becomes faster. . .

19 / 19



Outline Running time Examples O,Ω,Θ Complexity

Big-Oh vs. Actual Running Time

Example 2:

Algorithms A and B with running times TA(n) = 20n time units
and TB(n) = 0.1n2 time units, respectively.

• In the “Big-Oh” sense, the linear algorithm A is better than
the quadratic algorithm B. . .

• But: on which data volume can A outperform B, i.e. for
which value n the running time for A is less than for B?

TA(n) < TB(n) if 20n < 0.1n2, or n > 200

Thus the algorithm A is better than B in most of practical cases
except for n < 200 when B becomes faster. . .

19 / 19



Outline Running time Examples O,Ω,Θ Complexity

Big-Oh vs. Actual Running Time

Example 2:

Algorithms A and B with running times TA(n) = 20n time units
and TB(n) = 0.1n2 time units, respectively.

• In the “Big-Oh” sense, the linear algorithm A is better than
the quadratic algorithm B. . .

• But: on which data volume can A outperform B, i.e. for
which value n the running time for A is less than for B?

TA(n) < TB(n) if 20n < 0.1n2, or n > 200

Thus the algorithm A is better than B in most of practical cases
except for n < 200 when B becomes faster. . .

19 / 19


	Running time
	Examples
	``Big-Oh", ``Big-Omega", and ``Big-Theta" Tools
	Time complexity

