\sim	11		
 U			

Analysing Complexity of Algorithms Basic Concepts and Definitions

Lecturer: Georgy Gimel'farb

COMPSCI 220 Algorithms and Data Structures

Outline	Definitions	Examples 000000	Exercises

1 Definitions

2 Examples

One simple loop Two nested loops Two simple loops

3 Exercises

Informal Definition of an Algorithm

A list of unambiguous rules that specify successive steps to solve a problem.

More definitions:

- Wikipedia: "...a step-by-step procedure for calculations / an effective method expressed as a finite list of well-defined instructions for calculating a function."
- MathWorld: "... a specific set of instructions for carrying out a procedure or solving a problem, usually with the requirement that the procedure terminates at some point."
- The abstract idea behind a computer program, i.e. the way of arranging the sequence of computational steps, so that the program works.

A computer program – a clearly specified sequence of computer instructions implementing the algorithm.

Outline	Definitions	Examples 000000	Exercises
Examples of	Algorithms		

Sorting a database:

 Explicit and precise computational steps required to place all its entries in a certain order.

Searching for a certain entry in a database:

 Explicit and precise computational steps required to find whether a given entry is or is not in the database.

Finding the mean μ of *n* numbers $\{a_0, a_1, \ldots, a_{n-1}\}$:

- Summing all the numbers and dividing the sum by $n \rightarrow \infty$ $\mu = \frac{1}{n} \left(a_0 + a_1 + \ldots + a_{n-1} \right).$
- **Baking a cake**(not a computational algorithm):
 - Explicit and precise step-by-step instructions on how to bake the cake from given ingredients.

Outline	Defi	nitions	Examples 000000	Exercises

What is a Data Structure?

- Wikipedia: "... a data structure is a particular way of storing and organising data in a computer so it can be used efficiently.
- Encyclopedia Britannica: "Way in which data are stored for efficient search and retrieval."
- The simplest data structure an one-dimensional array:

 $\{\mathsf{element}_1, \mathsf{element}_2, \ldots, \mathsf{element}_n\}$

- More complex data structures you might have already met:
 - Multi-dimensional arrays (each element is also an array).
 - Objects: a mix of different data with algorithms attached.
 - Arrays of objects.
 - Linked lists, stacks, and queues.
 - Trees.

Outline		Definitions	Examples 000000	Exercises
	_			

What is a Data Structure?

- Wikipedia: "... a data structure is a particular way of storing and organising data in a computer so it can be used efficiently.
- Encyclopedia Britannica: "Way in which data are stored for efficient search and retrieval."
- The simplest data structure an one-dimensional array:

$\{\mathsf{element}_1, \, \mathsf{element}_2, \dots, \mathsf{element}_n\}$

- More complex data structures you might have already met:
 - Multi-dimensional arrays (each element is also an array).
 - Objects: a mix of different data with algorithms attached.
 - Arrays of objects.
 - Linked lists, stacks, and queues.
 - Trees.

Outline		Definitions		Examples 000000	Exercises
	_		-		

What is a Data Structure?

- Wikipedia: "... a data structure is a particular way of storing and organising data in a computer so it can be used efficiently.
- Encyclopedia Britannica: "Way in which data are stored for efficient search and retrieval."
- The simplest data structure an one-dimensional array:

 $\{\mathsf{element}_1, \mathsf{element}_2, \ldots, \mathsf{element}_n\}$

- More complex data structures you might have already met:
 - Multi-dimensional arrays (each element is also an array).
 - Objects: a mix of different data with algorithms attached.
 - Arrays of objects.
 - Linked lists, stacks, and queues.
 - Trees.

Outline	Definitions	Examples 000000	Exercises

What is Not an Algorithm?

- C A list of ingredients for a cake (no instructions how to bake it).
- An example of calculating the mean, (5+13+6)/3 = 8 (not a set of instructions).
- A data structure (e.g. a stack or a queue) by itself.
 - But the sets of instructions on how to push / pop or queue / dequeue / insert are algorithms.

It is not easy to define what is and what is not an algorithm...

"Just exactly what is and what is not an algorithm is in fact a fairly deep philosophical question. Intuitively, we are talking about a "recipe" that, given the input, will yield an answer in an automatic manner, following certain pre-set rules and procedures."

A.Magidin: http://math.stackexchange.com/questions/21933/does-algorithmicunsolvability-imply-unsolvability-in-general [on-line: 14.02.2011]

イロト イポト イヨト イヨト

Outline	Definitions	Examples 000000	Exercises

What is Not an Algorithm?

- C A list of ingredients for a cake (no instructions how to bake it).
- An example of calculating the mean, (5+13+6)/3 = 8 (not a set of instructions).
- A data structure (e.g. a stack or a queue) by itself.
 - But the sets of instructions on how to push / pop or queue / dequeue / insert are algorithms.

It is not easy to define what is and what is not an algorithm...

"Just exactly what is and what is not an algorithm is in fact a fairly deep philosophical question. Intuitively, we are talking about a "recipe" that, given the input, will yield an answer in an automatic manner, following certain pre-set rules and procedures."

A.Magidin: http://math.stackexchange.com/questions/21933/does-algorithmicunsolvability-imply-unsolvability-in-general [on-line: 14.02.2011]

Outline	Definitions	Examples 000000	Exercises

What is Not an Algorithm?

- C A list of ingredients for a cake (no instructions how to bake it).
- An example of calculating the mean, (5+13+6)/3 = 8 (not a set of instructions).
- A data structure (e.g. a stack or a queue) by itself.
 - But the sets of instructions on how to push / pop or queue / dequeue / insert are algorithms.

It is not easy to define what is and what is not an algorithm...

"Just exactly what is and what is not an algorithm is in fact a fairly deep philosophical question. Intuitively, we are talking about a "recipe" that, given the input, will yield an answer in an automatic manner, following certain pre-set rules and procedures."

A.Magidin: http://math.stackexchange.com/questions/21933/does-algorithmicunsolvability-imply-unsolvability-in-general [on-line: 14.02.2011]

Outline	Definitions	Examples 000000	Exercises
Efficiency of	Algorithms		

How to compare algorithms / programs:

- By domain of definition what inputs are legal?
- By correctness does it solve the problem for all legal inputs? (in fact, you need a formal proof!)
- By *efficiency* its **maximum** or **average** requirements to basic resources:
 - Computing time
 - Memory space
 - Other resources

Different implementations of the same algorithm: different programs,

programming languages, computer platforms, operating systems...

In searching for the best algorithm, general features of algorithms must be isolated from peculiarities of particular implementations.

(日) (同) (三) (三)

Outline	Definitions	Examples 000000	Exercises

Informal Definitions

An elementary operation is a computer instruction executed in a single time unit.

- Typically, a standard unary or binary arithmetic operation:
 - Negation (-5)
 - Addition / subtraction (5 + 37; 350 75)
 - Multiplication / division / modulo (67×89 ; 399/54; 399%54)
 - Boolean operations (x AND y; x OR y, etc.)
 - Binary comparisons (x == y; $x \le y$; x < y; $x \ge y$; etc.)
 - Branching operations, etc.

The running time (or computing time) of an algorithm is the number of its elementary operations.

Outline	Definitions	Examples 000000	Exercises
Informal De	finitions		

An elementary operation is a computer instruction executed in a single time unit.

- Typically, a standard unary or binary arithmetic operation:
 - Negation (-5)
 - Addition / subtraction (5 + 37; 350 75)
 - Multiplication / division / modulo (67×89 ; 399/54; 399%54)
 - Boolean operations (x AND y; x OR y, etc.)
 - Binary comparisons (x == y; x ≤ y; x < y; x ≥ y; etc.)
 - Branching operations, etc.

The running time (or computing time) of an algorithm is the number of its elementary operations.

Outline	Definitions	Examples 000000	Exercises
Informal Def	initions		

An elementary operation is a computer instruction executed in a single time unit.

- Typically, a standard unary or binary arithmetic operation:
 - Negation (-5)
 - Addition / subtraction (5 + 37; 350 75)
 - Multiplication / division / modulo (67×89 ; 399/54; 399%54)
 - Boolean operations (x AND y; x OR y, etc.)
 - Binary comparisons (x == y; x ≤ y; x < y; x ≥ y; etc.)
 - Branching operations, etc.

The running time (or computing time) of an algorithm is the number of its elementary operations.

Outline

Definitions

Examples ••••••

One simple loop

Example 1: $s = \sum_{i=0}^{n-1} a[i]$ – Linear Time Complexity

 $\begin{array}{l} \textbf{Algorithm 1: Summing n elements of a linear array $a[0..n-1]$.}\\ \hline \textbf{Input: array $a[0..n-1]$; Output: sum s begin $$s \leftarrow 0$ for $i \leftarrow 0$ step $i \leftarrow i+1$ until $n-1$ do $$s \leftarrow s+a[i]$ end for $$return s end $$ end $$ \end{array}$

Summing n elements of the array a repeats elementary fetch/add operations n times.

Therefore, running time is linear in n, i.e., T(n) = cn.

Jutline			
	·) :	11	0
	$-\iota$	a u	

Definitions

Examples

Two nested loops

Example 2: Sums of Subarrays, or a "Moving Window"

For an array $\mathbf{a} = \{a[i] : i = 0, 1, \dots, n-1\}$ of size n, compute n - m + 1 sums of the m successive elements:

$$s[j] = \sum_{k=0}^{m-1} a[j+k]; \ j = 0, \dots, n-m$$

at each of the possible n - m + 1 positions of the window supporting each current subarray.

Brute force computation:

- $\Rightarrow cm$ elementary operations per subarray
- $\Rightarrow n m + 1$ subarrays

 \Rightarrow In total: cm(n-m+1) operations

Time is **linear** in n if m is fixed and is **quadratic** if m is growing with n (e.g. if m = 0.5 n).

Two nested loops

Quadratic Time (Two Nested Loops; n = 2m)

Algorithm 2 (slowsum): Getting m + 1 sums of subarrays a[j..(m + j - 1)]; j = 0, ..., m. **Input**: array a[0..2m-1]; **Output**: array of sums s[0..m]begin for $i \leftarrow 0$ step $i \leftarrow i+1$ until m do $s[j] \leftarrow 0$ for $i \leftarrow 0$ step $i \leftarrow i+1$ until m-1 do $s[j] \leftarrow s[j] + a[j+i]$ end for end for return s end

$$T(2m) = cm(m+1) \Rightarrow T(n) = c\frac{n}{2} \left(\frac{n}{2} + 1\right) \approx c'n^2 = n^2 T(1)$$

Outline	Definitions	Examples ○○○●○○	Exercises
Two simple loops			

Getting Linear Computing Time

Quadratic time due to reiterated innermost computations:

$$s[j] = a[j] + \underline{a[j+1] + \ldots + a[j+m-1]}$$

$$s[j+1] = \underline{a[j+1] + \ldots + a[j+m-1]} + a[j+m]$$

Linear time T(n) = c(m + 2m) = 1.5cn after excluding reiterated computations:

$$s[0] = a[0] + a[1] + \ldots + a[m-1]$$

$$s[1] = s[0] - a[0] + a[m]$$

 $s[j+1] = s[j] - a[j] + a[m+j]; \ j = 1, \dots, m-1$

< □ > < □ > < □ > < Ξ > < Ξ > < Ξ > Ξ の Q () 12/16 Two simple loops

Linear Time (Two Simple Loops)

Algorithm 3 (fastsum): Getting m + 1 sums of subarrays a[j..(m + j - 1)]; j = 0, ..., m. **Input**: array a[0..2m-1]; **Output**: array of sums s[0..m]begin $s[0] \leftarrow 0$ for $i \leftarrow 0$ step $i \leftarrow i+1$ until m-1 do $s[0] \leftarrow s[0] + a[i]$ end for for $j \leftarrow 0$ step $j \leftarrow j+1$ until m-1 do $s[i+1] \leftarrow s[i] + a[m+i] - a[i]$ end for return s end

Examples

Two simple loops

Linear Vs. Quadratic Complexity

Relative growth of linear and quadratic terms in the expression $T(n) = c\frac{n}{2} \left(\frac{n}{2} + 1\right) = c \left(0.25n^2 + 0.5n\right)$:

n	T(n)	$0.25n^2$	0.5n	
			value	% of quadratic term
10	30	25	5	20.0
100	2550	2500	50	2.0
1000	250500	250000	500	0.2
5000	6252500	6250000	2500	0.04

Computing time for $T(1) = 1 \ \mu sec$:

Size of array	n	2,000	2,000,000
Size of subarray	m	1,000	1,000,000
Number of subarrays	m+1	1,001	1,000,001
Brute-force (quadratic) algorithm	T(n)	$2 \ sec$	$> 23 \ days$
Efficient (linear) algorithm	T(n)	$1.5\ msec$	$1.5 \ sec$

◆□> ◆□> ◆三> ◆三> 三 のへで

Outline	Definitions	Examples 000000	Exercises
Evoreico 1 1 1			

A quadratic algorithm with processing time $T(n) = cn^2$ uses 500 elementary operations for processing 10 data items. How many will it use for processing 1000 data items?

Solution:

$$T(10) = c \cdot 10^2 = 500, \text{ that is}, \Rightarrow c = 500/100 = 5 \Rightarrow T(1000) = 5 \cdot 1000^2 = 5 \cdot 10^6$$

that is, 5 million operations to process 1000 data items. In fact, we need not compute c, because $\frac{T(1000)}{T(10)} = \frac{c10^6}{c10^2} = 10^4$, so that $T(1000) = 10^4 T(10) = 10^4 \cdot 500$, or 5 million.

* M.J.Dinneen, G. Gimel'farb, M. C. Wilson: Introduction to Algorithms and Data Structures. 4th ed. (e-book), 2016, p.18/210.

Outline	Definitions	Examples 000000	Exercises

Exercise 1.1.2*

Algorithms A and B use $T_{\mathbf{A}}(n) = c_{\mathbf{A}}n \log_2 n$ and $T_{\mathbf{B}}(n) = c_{\mathbf{B}}n^2$ elementary operations for a problem of size n. Find the fastest algorithm for processing $n = 2^{20}$ data items if A and B spend 10 and 1 operations, respectively, to process 2^{10} items.

Solution:

$$T_{\mathbf{A}} (2^{10}) = 10 \Rightarrow c_{\mathbf{A}} = \frac{10}{10 \cdot 2^{10}} = 2^{-10}$$
$$T_{\mathbf{B}} (2^{10}) = 1 \Rightarrow c_{\mathbf{B}} = \frac{1}{2^{20}} = 2^{-20}$$

 $T_{\mathbf{A}}(2^{20}) = 2^{-10} \cdot 20 \cdot 2^{20} = 20 \cdot 2^{10} << T_{\mathbf{B}}(2^{20}) = 2^{-20} \cdot 2^{40} = 2^{20}$

Therefore, algorithm **A** is the fastest for $n = 2^{20}$.

* M.J.Dinneen, G. Gimel'farb, M. C. Wilson: Introduction to Algorithms and Data Structures. 4th ed. (e-book), 2016, p.19/210.