
Outline Definitions Examples Exercises

Analysing Complexity of Algorithms
Basic Concepts and Definitions

Lecturer: Georgy Gimel’farb

COMPSCI 220 Algorithms and Data Structures

1 / 16



Outline Definitions Examples Exercises

1 Definitions

2 Examples
One simple loop
Two nested loops
Two simple loops

3 Exercises

2 / 16



Outline Definitions Examples Exercises

Informal Definition of an Algorithm

A list of unambiguous rules that specify successive steps to
solve a problem.

More definitions:

• Wikipedia: “. . . a step-by-step procedure for calculations / an effective
method expressed as a finite list of well-defined instructions for
calculating a function.”

• MathWorld: “. . . a specific set of instructions for carrying out a
procedure or solving a problem, usually with the requirement that the
procedure terminates at some point.”

• The abstract idea behind a computer program, i.e. the way of arranging
the sequence of computational steps, so that the program works.

A computer program – a clearly specified sequence of computer instructions
implementing the algorithm.

3 / 16



Outline Definitions Examples Exercises

Examples of Algorithms

Sorting a database:

• Explicit and precise computational steps required to place all
its entries in a certain order.

Searching for a certain entry in a database:

• Explicit and precise computational steps required to find
whether a given entry is or is not in the database.

Finding the mean µ of n numbers {a0, a1, . . . , an−1}:
• Summing all the numbers and dividing the sum by n −→
µ = 1

n (a0 + a1 + . . .+ an−1).

¨̂ Baking a cake(not a computational algorithm):

• Explicit and precise step-by-step instructions on how to bake
the cake from given ingredients.

4 / 16



Outline Definitions Examples Exercises

What is a Data Structure?

• Wikipedia: “. . . a data structure is a particular way of
storing and organising data in a computer so it can be used
efficiently.

• Encyclopedia Britannica: “Way in which data are stored for
efficient search and retrieval.”

• The simplest data structure – an one-dimensional array:

{element1, element2, . . . , elementn}

• More complex data structures you might have already met:
• Multi-dimensional arrays (each element is also an array).
• Objects: a mix of different data with algorithms attached.
• Arrays of objects.
• Linked lists, stacks, and queues.
• Trees.

5 / 16



Outline Definitions Examples Exercises

What is a Data Structure?

• Wikipedia: “. . . a data structure is a particular way of
storing and organising data in a computer so it can be used
efficiently.

• Encyclopedia Britannica: “Way in which data are stored for
efficient search and retrieval.”

• The simplest data structure – an one-dimensional array:

{element1, element2, . . . , elementn}

• More complex data structures you might have already met:
• Multi-dimensional arrays (each element is also an array).
• Objects: a mix of different data with algorithms attached.
• Arrays of objects.
• Linked lists, stacks, and queues.
• Trees.

5 / 16



Outline Definitions Examples Exercises

What is a Data Structure?

• Wikipedia: “. . . a data structure is a particular way of
storing and organising data in a computer so it can be used
efficiently.

• Encyclopedia Britannica: “Way in which data are stored for
efficient search and retrieval.”

• The simplest data structure – an one-dimensional array:

{element1, element2, . . . , elementn}

• More complex data structures you might have already met:
• Multi-dimensional arrays (each element is also an array).
• Objects: a mix of different data with algorithms attached.
• Arrays of objects.
• Linked lists, stacks, and queues.
• Trees.

5 / 16



Outline Definitions Examples Exercises

What is Not an Algorithm?

• ¨̂ A list of ingredients for a cake (no instructions how to
bake it).

• An example of calculating the mean, (5 + 13 + 6)/3 = 8 (not
a set of instructions).

• A data structure (e.g. a stack or a queue) by itself.
• But the sets of instructions on how to push / pop or queue /
dequeue / insert are algorithms.

It is not easy to define what is and what is not an algorithm...

“Just exactly what is and what is not an algorithm is in fact a fairly deep
philosophical question. Intuitively, we are talking about a “recipe” that, given
the input, will yield an answer in an automatic manner, following certain
pre-set rules and procedures.”

A.Magidin: http://math.stackexchange.com/questions/21933/does-algorithmic-

unsolvability-imply-unsolvability-in-general [on-line: 14.02.2011]

6 / 16



Outline Definitions Examples Exercises

What is Not an Algorithm?

• ¨̂ A list of ingredients for a cake (no instructions how to
bake it).

• An example of calculating the mean, (5 + 13 + 6)/3 = 8 (not
a set of instructions).

• A data structure (e.g. a stack or a queue) by itself.
• But the sets of instructions on how to push / pop or queue /
dequeue / insert are algorithms.

It is not easy to define what is and what is not an algorithm...

“Just exactly what is and what is not an algorithm is in fact a fairly deep
philosophical question. Intuitively, we are talking about a “recipe” that, given
the input, will yield an answer in an automatic manner, following certain
pre-set rules and procedures.”

A.Magidin: http://math.stackexchange.com/questions/21933/does-algorithmic-

unsolvability-imply-unsolvability-in-general [on-line: 14.02.2011]

6 / 16



Outline Definitions Examples Exercises

What is Not an Algorithm?

• ¨̂ A list of ingredients for a cake (no instructions how to
bake it).

• An example of calculating the mean, (5 + 13 + 6)/3 = 8 (not
a set of instructions).

• A data structure (e.g. a stack or a queue) by itself.
• But the sets of instructions on how to push / pop or queue /
dequeue / insert are algorithms.

It is not easy to define what is and what is not an algorithm...

“Just exactly what is and what is not an algorithm is in fact a fairly deep
philosophical question. Intuitively, we are talking about a “recipe” that, given
the input, will yield an answer in an automatic manner, following certain
pre-set rules and procedures.”

A.Magidin: http://math.stackexchange.com/questions/21933/does-algorithmic-

unsolvability-imply-unsolvability-in-general [on-line: 14.02.2011]

6 / 16



Outline Definitions Examples Exercises

Efficiency of Algorithms

How to compare algorithms / programs:

• By domain of definition – what inputs are legal?

• By correctness – does it solve the problem for all legal inputs?
(in fact, you need a formal proof!)

• By efficiency – its maximum or average requirements to
basic resources:

• Computing time
• Memory space
• Other resources

Different implementations of the same algorithm: different programs,

programming languages, computer platforms, operating systems. . .

In searching for the best algorithm, general features of algorithms
must be isolated from peculiarities of particular implementations.

7 / 16



Outline Definitions Examples Exercises

Informal Definitions

An elementary operation is a computer instruction executed in a
single time unit.

• Typically, a standard unary or binary arithmetic operation:
• Negation (−5)
• Addition / subtraction (5 + 37; 350− 75)
• Multiplication / division / modulo (67× 89; 399/54; 399%54)
• Boolean operations (x AND y; x OR y, etc.)
• Binary comparisons (x == y; x ≤ y; x < y; x ≥ y; etc.)
• Branching operations, etc.

The running time (or computing time) of an algorithm is the
number of its elementary operations.

8 / 16



Outline Definitions Examples Exercises

Informal Definitions

An elementary operation is a computer instruction executed in a
single time unit.

• Typically, a standard unary or binary arithmetic operation:
• Negation (−5)
• Addition / subtraction (5 + 37; 350− 75)
• Multiplication / division / modulo (67× 89; 399/54; 399%54)
• Boolean operations (x AND y; x OR y, etc.)
• Binary comparisons (x == y; x ≤ y; x < y; x ≥ y; etc.)
• Branching operations, etc.

The running time (or computing time) of an algorithm is the
number of its elementary operations.

8 / 16



Outline Definitions Examples Exercises

Informal Definitions

An elementary operation is a computer instruction executed in a
single time unit.

• Typically, a standard unary or binary arithmetic operation:
• Negation (−5)
• Addition / subtraction (5 + 37; 350− 75)
• Multiplication / division / modulo (67× 89; 399/54; 399%54)
• Boolean operations (x AND y; x OR y, etc.)
• Binary comparisons (x == y; x ≤ y; x < y; x ≥ y; etc.)
• Branching operations, etc.

The running time (or computing time) of an algorithm is the
number of its elementary operations.

8 / 16



Outline Definitions Examples Exercises

One simple loop

Example 1: s =
n−1∑
i=0

a[i] – Linear Time Complexity

Algorithm 1: Summing n elements of a linear array a[0..n− 1].

Input: array a[0..n− 1]; Output: sum s
begin

s← 0
for i← 0 step i← i+ 1 until n− 1 do

s← s+ a[i]
end for
return s

end

Summing n elements of the array a repeats elementary fetch/add
operations n times.

Therefore, running time is linear in n, i.e., T (n) = cn.

9 / 16



Outline Definitions Examples Exercises

Two nested loops

Example 2: Sums of Subarrays, or a “Moving Window”

For an array a = {a[i] : i = 0, 1, . . . , n− 1} of size n, compute
n−m+ 1 sums of the m successive elements:

s[j] =

m−1∑
k=0

a[j + k]; j = 0, . . . , n−m

at each of the possible n−m+ 1 positions of the window
supporting each current subarray.

Brute force computation:

⇒ cm elementary operations per subarray
⇒ n−m+ 1 subarrays
⇒ In total: cm(n−m+ 1) operations

Time is linear in n if m is fixed and is quadratic if m is growing
with n (e.g. if m = 0.5 n).

10 / 16



Outline Definitions Examples Exercises

Two nested loops

Quadratic Time (Two Nested Loops; n = 2m)

Algorithm 2 (slowsum):
Getting m+ 1 sums of subarrays a[j..(m+ j − 1)]; j = 0, . . . ,m.

Input: array a[0..2m− 1]; Output: array of sums s[0..m]
begin

for j ← 0 step j ← j + 1 until m do
s[j]← 0
for i← 0 step i← i+ 1 until m− 1 do

s[j]← s[j] + a[j + i]
end for

end for
return s

end

T (2m) = cm(m+ 1)⇒ T (n) = c
n

2

(n
2
+ 1
)
≈ c′n2 = n2T (1)

11 / 16



Outline Definitions Examples Exercises

Two simple loops

Getting Linear Computing Time

Quadratic time due to reiterated innermost computations:

s[j] = a[j] + a[j + 1] + . . .+ a[j +m− 1]

s[j + 1] = a[j + 1] + . . .+ a[j +m− 1] + a[j +m]

Linear time T (n) = c(m+ 2m) = 1.5cn after excluding reiterated
computations:

s[0] = a[0] + a[1] + . . .+ a[m− 1]

s[1] = s[0]− a[0] + a[m]

s[j + 1] = s[j]− a[j] + a[m+ j]; j = 1, . . . ,m− 1

12 / 16



Outline Definitions Examples Exercises

Two simple loops

Linear Time (Two Simple Loops)

Algorithm 3 (fastsum):
Getting m+ 1 sums of subarrays a[j..(m+ j − 1)]; j = 0, . . . ,m.

Input: array a[0..2m− 1]; Output: array of sums s[0..m]
begin

s[0]← 0
for i← 0 step i← i+ 1 until m− 1 do

s[0]← s[0] + a[i]
end for
for j ← 0 step j ← j + 1 until m− 1 do

s[j + 1]← s[j] + a[m+ j]− a[j]
end for
return s

end

13 / 16



Outline Definitions Examples Exercises

Two simple loops

Linear Vs. Quadratic Complexity

Relative growth of linear and quadratic terms in the expression
T (n) = cn2

(
n
2 + 1

)
= c

(
0.25n2 + 0.5n

)
:

n T (n) 0.25n2 0.5n
value % of quadratic term

10 30 25 5 20.0
100 2550 2500 50 2.0

1000 250500 250000 500 0.2
5000 6252500 6250000 2500 0.04

Computing time for T (1) = 1 µsec:

Size of array n 2, 000 2, 000, 000
Size of subarray m 1, 000 1, 000, 000
Number of subarrays m+ 1 1, 001 1, 000, 001
Brute-force (quadratic) algorithm T (n) 2 sec > 23 days
Efficient (linear) algorithm T (n) 1.5 msec 1.5 sec

14 / 16



Outline Definitions Examples Exercises

Exercise 1.1.1∗

A quadratic algorithm with processing time T (n) = cn2 uses 500
elementary operations for processing 10 data items. How many will
it use for processing 1000 data items?

Solution:

T (10) = c · 102 = 500, that is,
⇒ c = 500/100 = 5
⇒ T (1000) = 5 · 10002 = 5 · 106

that is, 5 million operations to process 1000 data items.

In fact, we need not compute c, because T (1000)
T (10) = c106

c102
= 104, so

that T (1000) = 104T (10) = 104 · 500, or 5 million.
∗ M.J.Dinneen, G. Gimel’farb, M. C. Wilson: Introduction to Algorithms and
Data Structures. 4th ed. (e-book), 2016, p.18/210.

15 / 16



Outline Definitions Examples Exercises

Exercise 1.1.2∗

Algorithms A and B use TA(n) = cAn log2 n and TB(n) = cBn
2

elementary operations for a problem of size n. Find the fastest
algorithm for processing n = 220 data items if A and B spend 10
and 1 operations, respectively, to process 210 items.

Solution:

TA
(
210
)

= 10 ⇒ cA = 10
10·210 = 2−10

TB
(
210
)

= 1 ⇒ cB = 1
220

= 2−20

TA(220) = 2−10 · 20 · 220 = 20 · 210 << TB(2
20) = 2−20 · 240 = 220

Therefore, algorithm A is the fastest for n = 220.

∗ M.J.Dinneen, G. Gimel’farb, M. C. Wilson: Introduction to Algorithms and
Data Structures. 4th ed. (e-book), 2016, p.19/210.

16 / 16


	Definitions
	Examples
	One simple loop
	Two nested loops
	Two simple loops

	Exercises

