Analysing Complexity of Algorithms Basic Concepts and Definitions

Lecturer: Georgy Gimel'farb

COMPSCI 220 Algorithms and Data Structures
(1) Definitions
(2) Examples

One simple loop
Two nested loops
Two simple loops
(3) Exercises

Informal Definition of an Algorithm

A list of unambiguous rules that specify successive steps to solve a problem.

More definitions:

- Wikipedia: ". .. a step-by-step procedure for calculations / an effective method expressed as a finite list of well-defined instructions for calculating a function."
- MathWorld: "....a specific set of instructions for carrying out a procedure or solving a problem, usually with the requirement that the procedure terminates at some point."
- The abstract idea behind a computer program, i.e. the way of arranging the sequence of computational steps, so that the program works.

A computer program - a clearly specified sequence of computer instructions implementing the algorithm.

Examples of Algorithms

Sorting a database:

- Explicit and precise computational steps required to place all its entries in a certain order.

Searching for a certain entry in a database:

- Explicit and precise computational steps required to find whether a given entry is or is not in the database.
Finding the mean μ of n numbers $\left\{a_{0}, a_{1}, \ldots, a_{n-1}\right\}$:
- Summing all the numbers and dividing the sum by $n \longrightarrow$

$$
\mu=\frac{1}{n}\left(a_{0}+a_{1}+\ldots+a_{n-1}\right) .
$$

\because Baking a cake(not a computational algorithm):

- Explicit and precise step-by-step instructions on how to bake the cake from given ingredients.

What is a Data Structure?

- Wikipedia: ". ...a data structure is a particular way of storing and organising data in a computer so it can be used efficiently.
- Encyclopedia Britannica: "Way in which data are stored for efficient search and retrieval."
- The simplest data structure - an one-dimensional array: $\left\{\right.$ element $_{1}$, element ${ }_{2}, \ldots$, element $\left._{n}\right\}$
- More complex data structures you might have already met
- Multi-dimensional arrays (each element is also an array)
- Objects: a mix of different data with algorithms attached
- Arrays of objects.
- Linked lists, stacks, and queues.
- Trees.

What is a Data Structure?

- Wikipedia: ". ..a data structure is a particular way of storing and organising data in a computer so it can be used efficiently.
- Encyclopedia Britannica: "Way in which data are stored for efficient search and retrieval."
- The simplest data structure - an one-dimensional array:

$$
\left\{\text { element }_{1}, \text { element }_{2}, \ldots, \text { element }_{n}\right\}
$$

- More complex data structures you might have already met
- Multi-dimensional arrays (each element is also an array)
- Objects: a mix of different data with algorithms attached.
- Arrays of objects.
- Linked lists, stacks, and queues.
- Trees

What is a Data Structure?

- Wikipedia: ". ...a data structure is a particular way of storing and organising data in a computer so it can be used efficiently.
- Encyclopedia Britannica: "Way in which data are stored for efficient search and retrieval."
- The simplest data structure - an one-dimensional array:

$$
\left\{\text { element }_{1}, \text { element }_{2}, \ldots, \text { element }_{n}\right\}
$$

- More complex data structures you might have already met:
- Multi-dimensional arrays (each element is also an array).
- Objects: a mix of different data with algorithms attached.
- Arrays of objects.
- Linked lists, stacks, and queues.
- Trees.

What is Not an Algorithm?

- \because A list of ingredients for a cake (no instructions how to bake it).
- An example of calculating the mean, $(5+13+6) / 3=8$ (not a set of instructions).
- A data structure (e.g. a stack or a queue) by itself.
- But the sets of instructions on how to push / pop or queue / dequeue / insert are algorithms.

It is not easy to define what is and what is not an algorithm.
A.Magidin: http://math.stackexchange.com/questions/21933/does-algorithmic-
unsolvability-imply-unsolvability-in-general [on-line: 14.02.2011]

What is Not an Algorithm?

- \because A list of ingredients for a cake (no instructions how to bake it).
- An example of calculating the mean, $(5+13+6) / 3=8$ (not a set of instructions).
- A data structure (e.g. a stack or a queue) by itself.
- But the sets of instructions on how to push / pop or queue / dequeue / insert are algorithms.
It is not easy to define what is and what is not an algorithm...
\qquad
\qquad

What is Not an Algorithm?

- \because A list of ingredients for a cake (no instructions how to bake it).
- An example of calculating the mean, $(5+13+6) / 3=8$ (not a set of instructions).
- A data structure (e.g. a stack or a queue) by itself.
- But the sets of instructions on how to push / pop or queue / dequeue / insert are algorithms.

It is not easy to define what is and what is not an algorithm...
"Just exactly what is and what is not an algorithm is in fact a fairly deep philosophical question. Intuitively, we are talking about a "recipe" that, given the input, will yield an answer in an automatic manner, following certain pre-set rules and procedures."
A.Magidin: http://math.stackexchange.com/questions/21933/does-algorithmic-unsolvability-imply-unsolvability-in-general [on-line: 14.02.2011]

Efficiency of Algorithms

How to compare algorithms / programs:

- By domain of definition - what inputs are legal?
- By correctness - does it solve the problem for all legal inputs? (in fact, you need a formal proof!)
- By efficiency - its maximum or average requirements to basic resources:
- Computing time
- Memory space
- Other resources

Different implementations of the same algorithm: different programs, programming languages, computer platforms, operating systems...

In searching for the best algorithm, general features of algorithms must be isolated from peculiarities of particular implementations.

Informal Definitions

An elementary operation is a computer instruction executed in a single time unit.

- Typically, a standard unary or binary arithmetic operation:
- Negation (-5)
- Addition / subtraction $(5+37 ; 350-75)$
- Multiplication / division / modulo ($67 \times 89 ; 399 / 54 ; 399 \% 54$)
- Boolean operations (x AND $y ; x$ OR y, etc.)
- Binary comparisons ($x==y ; x \leq y ; x<y ; x \geq y ;$ etc.)
- Branching operations, etc.

The running time (or computing time) of an algorithm is the number of its elementary operations.

Informal Definitions

An elementary operation is a computer instruction executed in a single time unit.

- Typically, a standard unary or binary arithmetic operation:
- Negation (-5)
- Addition / subtraction ($5+37 ; 350-75$)
- Multiplication / division / modulo ($67 \times 89 ; 399 / 54 ; 399 \% 54$)
- Boolean operations (x AND $y ; x$ OR y, etc.)
- Binary comparisons ($x==y ; x \leq y ; x<y ; x \geq y$; etc.)
- Branching operations, etc.

The running time (or computing time) of an algorithm is the number of its elementary operations.

Informal Definitions

An elementary operation is a computer instruction executed in a single time unit.

- Typically, a standard unary or binary arithmetic operation:
- Negation (-5)
- Addition / subtraction ($5+37 ; 350-75$)
- Multiplication / division / modulo ($67 \times 89 ; 399 / 54 ; 399 \% 54$)
- Boolean operations (x AND $y ; x$ OR y, etc.)
- Binary comparisons ($x==y ; x \leq y ; x<y ; x \geq y$; etc.)
- Branching operations, etc.

The running time (or computing time) of an algorithm is the number of its elementary operations.

Example 1: $s=\sum_{i=0}^{n-1} a[i]$ - Linear Time Complexity

Algorithm 1: Summing n elements of a linear array $a[0 . . n-1]$. Input: array $a[0 . . n-1]$; Output: sum s begin
$s \leftarrow 0$
for $i \leftarrow 0$ step $i \leftarrow i+1$ until $n-1$ do $s \leftarrow s+a[i]$
end for
return S
end
Summing n elements of the array a repeats elementary fetch/add operations n times.

Therefore, running time is linear in n, i.e., $T(n)=c n$.

Example 2: Sums of Subarrays, or a "Moving Window"

For an array $\mathbf{a}=\{a[i]: i=0,1, \ldots, n-1\}$ of size n, compute $n-m+1$ sums of the m successive elements:

$$
s[j]=\sum_{k=0}^{m-1} a[j+k] ; \quad j=0, \ldots, n-m
$$

at each of the possible $n-m+1$ positions of the window supporting each current subarray.

Brute force computation:

$\Rightarrow \mathrm{cm}$ elementary operations per subarray
$\Rightarrow n-m+1$ subarrays
\Rightarrow In total: $c m(n-m+1)$ operations
Time is linear in n if m is fixed and is quadratic if m is growing with n (e.g. if $m=0.5 n$).

Quadratic Time (Two Nested Loops; $n=2 m$)

Algorithm 2 (slowsum):
Getting $m+1$ sums of subarrays $a[j . .(m+j-1)] ; j=0, \ldots, m$.
Input: array $a[0 . .2 m-1]$; Output: array of sums $s[0 . . m]$
begin
for $j \leftarrow 0$ step $j \leftarrow j+1$ until m do
$s[j] \leftarrow 0$
for $i \leftarrow 0$ step $i \leftarrow i+1$ until $m-1$ do $s[j] \leftarrow s[j]+a[j+i]$
end for
end for
return s
end

$$
T(2 m)=c m(m+1) \Rightarrow T(n)=c \frac{n}{2}\left(\frac{n}{2}+1\right) \approx c^{\prime} n^{2}=n^{2} T(1)
$$

Getting Linear Computing Time

Quadratic time due to reiterated innermost computations:

$$
\begin{array}{lll}
s[j] & =a[j]+\underline{a[j+1]+\ldots+a[j+m-1]} \\
s[j+1] & = & \underline{a[j+1]+\ldots+a[j+m-1]}+a[j+m]
\end{array}
$$

Linear time $T(n)=c(m+2 m)=1.5 c n$ after excluding reiterated computations:

$$
\begin{array}{ll}
s[0] & = \\
s[1] & =s[0]+a[1]+\ldots+a[m-1] \\
s[j+1] & =s[j]-a[j]+a[m+j] ; \quad j=1, \ldots, m-1
\end{array}
$$

Linear Time (Two Simple Loops)

Algorithm 3 (fastsum):
Getting $m+1$ sums of subarrays $a[j . .(m+j-1)] ; j=0, \ldots, m$.
Input: array $a[0 . .2 m-1]$; Output: array of sums $s[0 . . m]$
begin
$s[0] \leftarrow 0$
for $i \leftarrow 0$ step $i \leftarrow i+1$ until $m-1$ do $s[0] \leftarrow s[0]+a[i]$
end for
for $j \leftarrow 0$ step $j \leftarrow j+1$ until $m-1$ do $s[j+1] \leftarrow s[j]+a[m+j]-a[j]$
end for
return s
end

Linear Vs. Quadratic Complexity

Relative growth of linear and quadratic terms in the expression $T(n)=c \frac{n}{2}\left(\frac{n}{2}+1\right)=c\left(0.25 n^{2}+0.5 n\right)$:

n	$T(n)$	$0.25 n^{2}$	$0.5 n$	
			value	\% of quadratic term
10	30	25	5	20.0
100	2550	2500	50	2.0
1000	250500	250000	500	0.2
5000	6252500	6250000	2500	0.04

Computing time for $T(1)=1 \mu \mathrm{sec}$:

Size of array	n	2,000	$2,000,000$
Size of subarray	m	1,000	$1,000,000$
Number of subarrays	$m+1$	1,001	$1,000,001$
Brute-force (quadratic) algorithm	$T(n)$	2 sec	>23 days
Efficient (linear) algorithm	$T(n)$	1.5 msec	1.5 sec

Exercise 1.1.1*

A quadratic algorithm with processing time $T(n)=c n^{2}$ uses 500 elementary operations for processing 10 data items. How many will it use for processing 1000 data items?

Solution:

$$
\begin{aligned}
& T(10)=c \cdot 10^{2}=500 \text {, that is, } \\
& \Rightarrow c=500 / 100=5 \\
& \Rightarrow T(1000)=5 \cdot 1000^{2}=5 \cdot 10^{6}
\end{aligned}
$$

that is, 5 million operations to process 1000 data items.
In fact, we need not compute c, because $\frac{T(1000)}{T(10)}=\frac{c 10^{6}}{c 10^{2}}=10^{4}$, so that $T(1000)=10^{4} T(10)=10^{4} \cdot 500$, or 5 million.

[^0]
Exercise 1.1.2*

Algorithms \mathbf{A} and \mathbf{B} use $T_{\mathbf{A}}(n)=c_{\mathbf{A}} n \log _{2} n$ and $T_{\mathbf{B}}(n)=c_{\mathbf{B}} n^{2}$ elementary operations for a problem of size n. Find the fastest algorithm for processing $n=2^{20}$ data items if \mathbf{A} and \mathbf{B} spend 10 and 1 operations, respectively, to process 2^{10} items.

Solution:

$$
\begin{aligned}
& T_{\mathbf{A}}\left(2^{10}\right)=10 \Rightarrow c_{\mathbf{A}}=\frac{10}{10 \cdot 2^{10}}=2^{-10} \\
& T_{\mathbf{B}}\left(2^{10}\right)=1 \Rightarrow c_{\mathbf{B}}=\frac{1}{2^{20}}=2^{-20}
\end{aligned}
$$

$T_{\mathbf{A}}\left(2^{20}\right)=2^{-10} \cdot 20 \cdot 2^{20}=20 \cdot 2^{10} \ll T_{\mathbf{B}}\left(2^{20}\right)=2^{-20} \cdot 2^{40}=2^{20}$
Therefore, algorithm \mathbf{A} is the fastest for $n=2^{20}$.

[^1] Data Structures. $4^{\text {th }}$ ed. (e-book), 2016, p.19/210.

[^0]: * M.J.Dinneen, G. Gimel'farb, M. C. Wilson: Introduction to Algorithms and Data Structures. $4^{\text {th }}$ ed. (e-book), 2016, p.18/210.

[^1]: * M.J.Dinneen, G. Gimel'farb, M. C. Wilson: Introduction to Algorithms and

