Introduction

COMPSCI 111 / 111G

Mastering Cyberspace: An introduction to practical computing

Computer Graphics

What is Computer Graphics?

- Definition
- Development

Creating an image

Techniques

Applications

Uses

21/09/2007

Social Implications

COMPSCI 111/111G - Computer Graphics

2

What is Computer Graphics?

COMPSCI 111/111G - Computer Graphics

A subfield of Computer Science

• Creating and manipulating digital images

Major subfields

21/09/2007

- Representing and manipulating surfaces
- Representing and manipulating light
- Representing and manipulating motion

Description

Computer Graphics

Image

Development of Computer Graphics

Two-dimensional rendering

- Drawing algorithms
- Curves, 2D objects
- Vector graphics
- Typography

Three-dimensional rendering

- Surfaces, lighting, transformations
- Modelling 3D objects

http://en.wikipedia.org/wiki/2D_computer_graphics http://en.wikipedia.org/wiki/3D_computer_graphics

http://en.wikipedia.org/wiki/Computer_graphics

Development of Computer Graphics

Animation

- Creating a sequence of 3D images
- Simulation
- CGI (Computer Generated Imagery)

Interactive Computer Graphics

- Fast enough to render in real-time
- · Computer games, scientific visualization

http://en.wikipedia.org/wiki/Computer-generated_imagery http://en.wikipedia.org/wiki/Computer_animation http://en.wikipedia.org/wiki/Real-time_computer_graphics

21/09/2007

COMPSCI 111/111G - Computer Graphics

Development of Computer Graphics

Virtual Reality

- "Virtual Immersion"
- Head mounted display
- Haptic feedback (touch)

Augmented Reality

- Enhanced experience of real world
- Combines real world and CG
- Interactive

http://en.wikipedia.org/wiki/Virtual_Reality http://en.wikipedia.org/wiki/Augmented reality

objects

21/09/2007

COMPSCI 111/111G - Computer Graphics

6

Creating 3D Graphics

eye

Need to model

- Object
- Camera (eye)
- Light source
- View window

Ray Tracing

- Trace the path of light from camera
- Through each pixel
- When it hits an object
 - calculate colour of the object at that point

http://www.siggraph.org/education/materials/HyperGraph/raytrace/rtrace1.htm

21/09/200

screeo

Projected ray misses all object

Projected ray hits an object

Create a secondary ray to light

The ray can't reach the light

Creates a shadow

Project a ray bouncing off object

Creates reflections

Photorealistic Ray Tracing

Creating 3D Graphics

Uses a model of the object.

- Similar to Vector Graphics
- Based on objects described mathematically
- More accurate models -> more realistic images

2 Dimensional Objects		3 Dimensional Objects		
Circle		Sphere		
Radius 100		Radius 100		
Center 20, 45		Center 20, 45, 30		
Appearance		Appearance		
Line Thickness	3	Surface Texture		
Fill Pattern	Plain	Surface Pigment		
Colour	Blue	Surface Finish		

21/09/2007

COMPSCI 111/111G - Computer Graphics

15

21/09/2007

20, 45, 30

Modelling and Simulation

Representing objects in three dimensions

- Must model properties of light (diffusion, refraction etc.)
- Dust, Fog, etc.
- Model surface properties of objects

Animation can be automated

- Provide laws describing interaction between objects
- Realistic animation requires physical laws (gravity, solidity etc.)

Simulation

21/09/2007

- Requires and internal model, and physical laws
- · Graphics and Simulation often work hand-in-hand

Some simple techniques

Modelling

- Wire-Frame
- Solid Object
- Polygon-Surface

Shading

21/09/2007

- Lambert shading (flat shading)
- Gouraud shading
- Phong shading

COMPSCI 111/111G - Computer Graphics

18

Developing a Scene

COMPSCI 111/111G - Computer Graphics

 Plate II.21
 Shutterbug, Living room scene

 with movie camera, Orthographic projec tions (Sections 6.1.2 and 14.3.1). (a) Plan

 view. (b) Ford view. (c) Side wiew. Polygo nal models generated from spline patches.

 Note the "patch racks" (Section 11.3.5)
 Visible along the entire right front side of

 the teapot, and how they cause shading discontinuities in the polygon-mesh interpolated-shading models used in Color Plates
 FF

 Lade-3hading models used in Color Plates
 H.S. Slegel using Pixar 3 PhotoRealistic
 FR

 Rendered by Townaw Villams and
 H.S. Slegel using Pixar 3 PhotoRealistic
 SS

Orthographic projections •Top View (Plan) •Front View •Side View

Polygon Mesh used to represent objects. Note that spheres and other curved objects are represented with few points

Wireframe drawing with perspective

Plate II.23 Shutterbug. Perspective projection (Sections 6.1.1 and 14.3.3). (Copyright © 1990, Paar. Rendered by Thomas Williams and H.B. Siegel using Pixar's PhotoRealistic RenderMan[™] software.)

17

Determining visible lines

Plate II.27 Shutterbug. Visible-line determination (Section 14.3.8), (Copyright © 1990, Pixar. Rendered by Thomas Williams and H.B. Siegel using Pixar's PhotoRealistic RenderMan™ software.)

21/09/2007

21/09/2007

COMPSCI 111/111G - Computer Graphics

Flat Polygon Shading

Plate II.29 Shutterbug. Individually shaded polygons with diffuse reflection (Sections 14.4.2 and 16.2.3). (Copyright © 1990, Pixar. Rendered by Thomas Williams and H.B. Siegel using Pixar's PhotoRealistic RenderMan[™] software.)

21/09/2007

COMPSCI 111/111G - Computer Graphics

22

Gouraud Shading

Plate II.31 Shutterbug. Gouraud shaded polygons with specular reflection (Sections 14.4.4 and 16.2.5). (Copyright © 1990, Pixar. Rendered by Thomas Williams and H.B. Siegel using Pixar's PhotoRealistic RenderMan¹ Software.)

Gouraud Shading

21

Phong Shading

Plate II.32 Shutterbug. Phong shaded polygons with specular reflection (Sections 14.4.4 and 18.2.5). (Copyright © 1990, Pixar. Rendered by Thomas Williams and H.B. Siegel using Pixar's PhotoRealistic RenderMan ™ software.)

Phong Shading

Interpolates normals from vertices

• Normal used to calculate the colour value

FLAT SHADING

PHONG SHADING

http://en.wikipedia.org/wiki/Phong_shading

21/09/2007	COMPSCI 111/111G - Computer Graphics	25	21/09/2007	COMPSCI 111/111G - Computer Graphics	26

Curved Surfaces

Plate II.33 Shutterbug. Curved surfaces with specular reflection (Section 14.4.5). (Copyright ▷ 1990, Pixar. Rendered by Thomas Williams and H.B. Siegel using Pixar's PhotoRealistic RenderMan[™] software.)

Texture Mapping

Plate II.35 Shutterbug. Texture mapping (Sections 14.4.7, 16.3.2, 17.4.2, and 17.4.3). (Copyright © 1990, Pixar. Rendered by Thomas Williams and H.B. Siegel using Pixar's PhotoRealistic RenderMan[™] software.)

Shadows

Plate II.36 Shutterbug. Displacement mapping (Sections 14.4.7 and 16.3.4) and shadows Sections 14.4.8 and 16.4). (Copyright © 1990, Pixar. Rendered by Thomas Williams and H.B. Siegel using Pixar's PhotoRealistic RenderMan™ software.)

21/09/2007

COMPSCI 111/111G - Computer Graphics

Reflection

Plate II.37 Shutterbug. Reflection mapping (Sections 14.4.9 and 16.6). (Copyright © 1990, ¹ixar. Rendered by Thomas Williams and H.B. Siegel using Pixar's PhotoRealistic tenderMan™software.)

21/09/2007

COMPSCI 111/111G - Computer Graphics

30

Complexity in Computer Graphics

Plain colour

Reflection

Transparency

Refraction

Translucency

Irregularity is often difficult

- Animated motion is often too regular and smooth
- · Objects are often simplified (regular), textures are too clean / crisp

31

29

The normal determines reflected light

Introducing some irregularity into smooth objects

Bump mapping

Applications

Entertainment

- Movies (CGI Computer Generated Imagery)
- Computer Games

Engineering/Science/Medicine/Education

- CAD (Computer Aided Design)
- Visualization
 - Biomedical Imaging (CT, MRI)
 - Scientific visualization
 - Information Visualization

Architectural Design / Planning

Advertising / Commerce

Military

Machinima

Using a game engine to create animated story

http://rvb.roosterteeth.com/home.php

http://en.wikipedia.org/wiki/Machinima

34

 21/09/2007
 COMPSCI 111/111G - Computer Graphics
 33
 21/09/2007
 COMPSCI 111/111G - Computer Graphics

Virtual Worlds

Second Life

- 9 Million "residents"
- Free to play
- Create new objects, sell them
- Spend USD 1 million per day

World of Warcraft

- 8 million subscribers
- Subscription \$12-15 USD per month

MMORPGs

- Claimed that about 40% of players are addicted
- Buy items / gold / power levelling services

http://www.nickyee.com/daedalus/gateway_intro.html

COMPSCI 111/111G - Computer Graphics