Learning Outcomes

Outline the difference between strong and weak AI

Describe the Turing Test for Artificial Intelligence

Describe one of the philosophical objections to strong AI.

Describe some of the applications of AI

Artificial Intelligence

Mastering Cyberspace:

COMPSCI 111/111G - Lecture 20

COMPSCI 111 / 111G

An introduction to practical computing

What is AI?

13/09/2007

Philosophical approaches and thought experiments

Historical development and issues

Practical applications

Summary

Exercise

COMPSCI 111/111G - Lecture 20

Definition of intelligence - OED

Intelligence

• The intellect, the understanding

Intellect

• Faculty of reasoning, knowing, thinking as distinct from feeling

Thinking

• Using thought or rational judgement

Thought

• Faculty of reason, process of thinking

Definition of Artificial Intelligence

Systems that think like humans

• "...machines with minds, in the fill and literal sense." (Haugelang, 1985)

Systems that act like humans

• "The art of creating machines that perform functions that require intelligence when performed by people." (Kurzweil, 1990)

Computational models of thinking

• "The study of the computations that make it possible to perceive, reason and act." (Winston, 1992)

http://en.wikipedia.org/wiki/Intelligence

13/09/2007 COMPSCI 111/111G - Lecture 20

Strong vs Weak Al

Strong Al

• The view that a computer could become self-aware and exhibit intelligent behaviour

Weak Al

 The view that computers could not become self-aware and reason, but that they could solve specific problems in a well-defined domain (e.g. play chess)

Philosophy

COMPSCI 111/111G - Lecture 20

Behaviourist / Functionalist approach

- External behaviour matters
- If it behaves intelligently, then it is intelligent
- Turing test

13/09/2007

Cognitive approach

- What happens internally matters
- We must consider how it thinks, not just look at the behaviour
- Chinese room
- Blockhead

The Turing Test

Professor Alan Turing

- Computing machinery and intelligence (1950)
- His view belongs to category of Strong Al

Defines criteria for determining AI

- Human judge converses with two other entities
- One is a machine
- One is a human
- If the judge cannot tell them apart, then the machine is intelligent.

http://en.wikipedia.org/wiki/Turing_test

13/09/2007

COMPSCI 111/111G - Lecture 20

Chinese Room Rulebook

The Chinese Room

John Searle

- Minds, Brains and Programs (1980)
- Counter argument against Strong AI

Chinese Room

- Imagine a computer that can speak fluent Chinese
 Strong AI would claim the computer is intelligent
- Imagine John Searle sitting in a room full of books
- He receives a set of Chinese symbols, looks them up in a book and writes down the symbols in response
- John Searle does not understand Chinese, but can converse in Chinese
- Computers do the same thing.
- The internal processes do matter.

http://en.wikipedia.org/wiki/Chinese_room

COMPSCI 111/111G - Lecture 20

10

Blockhead

Ned Block

13/09/2007

• Psychologism and Behaviourism (1981)

Blockhead

- Similar to Searle
- · Finite number of syntactically and grammatically correct sentences

COMPSCI 111/111G - Lecture 20

- For each starting sentence, a finite number of syntactically and grammatically correct responses exist.
- A complex tree structure results, but not intelligence.

12

	Exercise		The study of Artificial Intelligence		
			Inherited ideas Philosophy Mathematics Statistics Biological Scie Neuroscience Psychology Computer Eng Linguistics	from many other disciplin inces jineering http://en.wikipedia.org/wi	es
13/09/2007	COMPSCI 111/111G - Lecture 20	13	13/09/2007	COMPSCI 111/111G - Lecture 20	14

Historical success

McCulloch, W. and Pitts, W.

- A logical calculus of the ideas immanent in nervous activity (1943).
- A network of neurons can compute any computable function
- · An appropriately defined network can learn

Newell, A. and Simon, H.

- The logic theory machine (1956)
- Software that finds proofs for theorems in symbolic logic

Samuel, Arthur L.

- Some Studies in Machine Learning Using the Game of Checkers (1959)
- · Checkers program written in 1952 able to beat good amateur players

Failure to meet expectations

Many AI problems are intractable

- Combinatorial explosion
- General knowledge problem

Combinatorial Explosion

- Exponential growth
- One grain of rice on the first square
- · Two grains of rice on the second square
- Double the rice on each subsequent square

General Knowledge problem

- · Knowledge about the world
- If my hand is in the room, then so are my fingers, and my arm and...
- "The flesh is willing but the spirit is weak"
- "The vodka is good but the meat is rotton"

I B(tx)Kx 2 (∃x)((∀y)(Ky⊷y∽x)

3 ((∀y) (Ky---y--a) ∧ Ba) 4(Vy)(Ky++y-a) 5 (3x)(Vy)(Ky--y-x) 6 (3x)(Vy)(Ky--y-x) 7 E!(tx)Kx

8 (B(Tx)Kx -> EV(Tx)K

Fragmented discipline

No longer focused on creating a thinking machine

Strong AI

Instead, focus on specialised aspects of cognition

Weak Al

Moore's Law

Increasing computing power enables many AI applications that were impractical previously

http://en.wikipedia.org/wiki/Strong_Al

17

13/09/2007

COMPSCI 111/111G - Lecture 20

13/09/2007

COMPSCI 111/111G - Lecture 20

Exercise

18

Applications of Al

Tasks that improve human computer interaction

- Recognition of Faces, Emotions, Handwriting, Speech, Objects
- Speech production, Natural language queries, Conversation

Tasks that help humans interact with the world

- Wheeled/Bipedal movement, Robotic limbs
- Knowledge databases, Subject Experts
- Reading comprehension

Tasks that allow robots to act independently

- Coordination of teams, Robot Soccer, Navigation
- Reasoning about the physical world, planning

Surpassing Humans

Chinook

- Written by Jonathan Schaeffer
- · Checkers program (Chinook) came second in world in 1992
- It won man-machine world champs in 1994

IBM Deep Blue

- Won a game against Kasparov in 1996, lost the match
- Won the match against Kasparov in 1997 (3 1/2 vs 2 1/2)
- Deep blue was programmed with history of Kasparov's previous games
- Programming modified between games to avoid traps
- Kasparov was not permitted to study Deep Blue's previous games

http://en.wikipedia.org/wiki/Deep_blue

http://en.wikipedia.org/wiki/Chinook_Checkers_Program

Kasparov vs Deep Blue

Expert Systems

Expert Systems

- · Database of facts
- Inference Rules used to combine facts
- Input new facts and derive new information

MYCIN

- World class Medical Expert System
- Enter symptoms and get diagnosis

CYC

- Universal expert system (database of human knowledge)
- Facts entered since 1984
- · Aim to eventually have CYC read and understand books.

http://en.wikipedia.org/wiki/Expert systems

COMPSCI 111/111G - Lecture 20

13/09/2007

COMPSCI 111/111G - Lecture 20

Natural Language Processing

Natural language understanding

- Linguistics (sentence trees, syntax, grammar)
- · Using storyboards/ scripts for context
- Telephone customer service, voice recognition

Examples

- Intelligent database guery
- Text-based adventure games
- Self-help web sites

Natural Language Generation

- Speech Production
- ELIZA
- Loebner Prize (beating the Turing Test).

http://en.wikipedia.org/wiki/Natural language processing

Loebner Prize 2003 Winner

JUDGE: i think i would like to talk about the weather today, what is it like with you? JABBERWOCK: Much the same as it would be for you. JUDGE: which is what? JABBERWOCK: That's a good guestion - but perhaps a little bit too short in words JUDGE: what is the weather like with you? Is it sunny or raining? JABBERWOCK: Cool, at least here in my room JUDGE: does that then mean it is hot outside? JABBERWOCK: The weather in here is dry and well tempered

JUDGE: that's nice. have you ever been to Australia? JABBERWOCK: Thank you

JUDGE: you seem as though you are half asleep! what do you think about the rugby world cup at the moment? who do you think will win?

JABBERWOCK: How would I know who will win?

JUDGE: well maybe you have started watching the games? what about the match today. I think south Africa will win, and you? JABBERWOCK: Never mind, it's not important

http://www.loebner.net/Prizef/loebner-prize.html

Computer Vision

Handwriting Recognition

Training to recognise handwriting from an individual

Edge detection

Medical imagery, object recognition

Object Recognition

- Fingerprints
- Faces
- Animals

http://en.wikipedia.org/wiki/Computer_vision

13/09/2007

COMPSCI 111/111G - Lecture 20

DARPA Grand Challenge

Autonomous vehicle to complete an off-road course in the Mojave Desert within a specified time limit (10 hours)

- 2004 (142 miles) No vehicle came close
- 2005 (135 miles) Stanford team completed course and won US \$2 million

http://www.darpa.mil/grandchallenge/index.asp

25

Autonomous Agents

Agents

- · Programs which work in a defined environment
- Normally Autonomous
- Often cooperative

Mission to Mars

- Communications between Earth and Mars take too long
- Robot has limited resources e.g. battery
- Robot must make its own schedule
- Spaceship that can fix its own malfunctions

RoboCup Soccer

- Robots play each other in soccer
- · Estimated that by 2050, robot team will beat world's best soccer team

http://en.wikipedia.org/wiki/Autonomous_agent

COMPSCI 111/111G - Lecture 20

26

Artificial Life

Artificial Life

13/09/2007

- Study of systems related to life
- Genetic algorithms
- Genetic programming
- Simulations
- Evolutionary processes

Emergent behaviour

- Carl Reynolds Boids (1986)
- Flocking simulation
- http://ccl.northwestern.edu/netlogo/models/Flocking

http://en.wikipedia.org/wiki/Artificial_Life

Summary

Al draws inspiration from many other fields of study

Began as a promising discipline with much early success

Prompted philosophical debate about the nature of thinking and the possibility of a thinking machine

Few people today are focused on Strong AI

The study of Weak AI (specialised aspects of intelligent behaviour) has produced many useful applications

13/09/2007

COMPSCI 111/111G - Lecture 20

29