Teaching Staff

COMPSCI 111 / 111G

Mastering Cyberspace:
An introduction to practical computing

Introduction Digital Information

16/07/2007
COMPSCI 111/111G - Lecture 01

Christof Lutteroth (Lecturer)

- From Germany; just submitted my PhD
- Room: 303.485 (4th floor CompSci building)
- Phone: 373-7599 Ext. 88114
- Email: lutteroth@cs.auckland.ac.nz
- Office hours: Mon 2pm-4pm, Fri 2pm - 4pm
- If you have questions, come to my office at any time

Ann Cameron (Lab Tutor / Course Coordinator)

- Room: 303.594 (5 $5^{\text {th }}$ floor CompSci building)
- Phone: 373-7599 Ext. 84947
- Email: ann@cs.auckland.ac.nz
- Office hours: Tue 10am - 11am, Wed 2pm-3pm, Fri 1 pm-2pm

- Come and see her if there are any problems

Support for Computer Science Students

Need to talk to someone?
We are here to listen in confidence and help.

Introduction

- Digital Information, Hardware, Software

Internet

- WWW, Email, Instant Messaging, Forum, Blog, Wiki
- Social issues and risks

Home I Office Applications and Publication Tools

- Word Processing, Spreadsheets, Databases
- HTML, PowerPoint, LaTeX

Programming

- Python

Special Topics

- History, social and legal issues
- Exam

- Labs	15%	Practical
- Test	20%	Theory
- Exam	65%	Theory
Must pass both practical and theory		$(\geq 50 \%$ each $)$!!!

Must pass both practical and theory ($\geq 50 \%$ each) !!!

Required reading

- No textbook for this course
- Coursebook is required - \$25 (available from Student Resource Centre in basement of building 303)
- Online resources (slides, web links) on course website: http://www.cs.auckland.ac.nz/compsci111s2c/

Assessment

Laboratories

Overview

- Designed to provide practical experience
- Prepare for labs by reading the coursebook and/or online sources
- Friendly atmosphere. Talk to other students.

Assessment

- Compulsory three hour lab each week (starts in week 2)
- 10 labs, worth 1.5% of final grade each
- 10% of each lab just for attendance
- Must hand in a lab report before the start of the following lab

Locations - All labs

- 303.131 - Old Tutorial Lab (OTL)

This week: Introduction to the OTL (Mo, Wed, Fri 2pm - 3pm)

Time management

- 10 hours per course
- 3 hours lectures
- 3 hour lab
-4 hours reading

Internet resources

- http://www.cs.auckland.ac.nz/compsci111s2c/
- http://en.wikipedia.org/

Getting started

- Get coursebook from the Student Resource Centre
- Find the OTL, log into a computer, read your ec email
- Meet Ann Cameron in the OTL from 2pm - 3pm on Monday, Wednesday and Friday this week.

Who wants to be class representative?

DO YOU WANT A SAY IN YOUR EDUCATION, ACCESS TO CLASS PARTY FUNDING, KNOWLEDGE OF YOUR RIGHTS AS A STUDENT?

WELL DON'T JUST SIT THERE WITH YOUR EYES SHUT HOPING THE PROBLEMS WILL GO AWAY..

VOLUNTEER NOW TO BE A CLASS REP AND BECOME PART OF THE UNIVERSITY'S MOST IMPORTANT AND FUNDAMENTAL FORM OF STUDENT REPRESENTATION

WAVE Support: Training, Funds for Class Parties, Ongoing Advice and Support
Contact us on: Phone: 3090789 Ext. 251 , e-mail: wave Qauckland.ac..nz,
or visit us at the WAE office, AUSA, Alfred Street (opposite the main libran

Digital Information

Information in real world is analogue

- Continuous signal

Weight

Information stored by a computer is digital

- Represented by discrete numbers Weight

http://en.wikipedia.org/wiki/Digital
16/07/2007

Storing Decimal Numbers in a Machine

Any information can be encoded using numbers:

Pixels

Samples

1. Give each pixel colour a number.
2. Let the computer draw the numbers as coloured pixels, e.g. black $=0$.
3. Give each sample a number (height of green box).
4. Let the computer move the loudspeaker membrane according to the samples.

Series of dials

- Each dial goes from 0 to 9
- Store information digitally:
- Finite number of states: 10 per dial
- No in-between states
- Decimal number system
- $1^{\text {st }}$ dial from right: 1 's
$-2^{\text {nd }}$ dial from right: 10 's
- 3rd dial from right: 100's
- Etc.

Exercises

All of the following questions relate to dials that have 10 different states (0-9).

1. Given a machine that used 4 dials, how many different numbers could we represent?

$$
10 * 10 * 10 * 10=10^{4}=10000 \quad \text { (from } 0 \text { to 9999) }
$$

2. If we wanted to represent 123 different colours, each encoded as a different number, how many dials do we need?

1 dial $=10$	states (from 0 to 9$)$	\ldots not enough
2 dials $=100$	states (from 0 to 99)	...still not enough
3 dials $=1000$ states (from 0 to 999)	...yes!	

16/07/2007
COMPSCI 111/111G - Lecture 01

Binary Digits (Bits)

Each switch is known as a binary digit, or bit
http://en.wikipedia.org/wiki/Bit

Switches

A dial is complicated

- Each dial has 10 different states ($0,1,2,3,4,5,6,7,8,9$).
- Physically creating circuits that distinguish all 10 states is complicated
- Would need to distinguish 10 different strengths of electricity (voltages)

Switches are simple

- Each switch is off or on (0 or 1)

- Switch on: electrical current can flow
- Switch off: electrical current cannot flow
- A bit can be either a 0 or a 1

We use them in groups

Using just 0 and 1 to represent numbers is called binary number system

Binary	Decimal	
00	0	
01	1	2
4	11	3

Exercises

3. How many different numbers can we represent using 3 bits?

$$
2 * 2 * 2=2^{3}=8 \quad \text { (from } 000 \text { to 111) }
$$

4. How many different numbers can we represent using 4 bits?

$$
\begin{aligned}
& \text { \#d \#d } \\
& 2 * 2 * 2 * 2=2^{4}=16 \quad \text { (from } 0000 \text { to 1111) }
\end{aligned}
$$

Converting Binary to Decimal

What decimal number has the decimal digits 1521 ?

$1 * 1000$	$+5 * 100$	$+2 * 10$	$+1 * 1$
$=1 * 10^{3}$	$+5 * 10^{2}$	$+2 * 10^{1}$	$+1 * 10^{0}$

What decimal number has the binary digits 1101 ?

$1 * 2^{2}$	$+1 * 2^{2}$	$+0 * 2^{1}$	$+1 * 2^{0}$
$=1 * 8$	$+1 * 4$	$+0 * 2$	$+1 * 1$

$=13$

- Go through the bits from right to left: rightmost bit is worth 1 , next bit worth 2 , next bit worth 4 etc.
- Add it all up

$16 / 07 / 2007$	COMPSCI 111/111G - Lecture 01	18

Byte

5. What decimal number has the binary representation 110 ?
```
1* 2
1*4 +1*2 +0*1
= 6
```

Group the bits together into sets of 8

- 8 bits is known as a byte
- Can represent $2 \times 2 \times 2 \times 2 \times 2 \times 2 \times 2 \times 2=2^{8}=256$ different numbers
- Bytes are the common unit of measurement for memory capacity

One byte

How much bytes does a ... roughly consume ?

- 1 page text document $\approx 30,000$ bytes $=30$ kilobytes (KB)
- 1 high-quality digital photo $\approx 2,000,000$ bytes $=2$ megabytes $(M B)$
- 1 high-quality movie $\approx 2,000,000,000$ bytes $=2$ gigabytes (GB)

Decimal Prefixes

Decimal prefixes

$\mathbf{1 0 ^ { n }}$	Prefix	Symbol	Decimal
$10^{\mathbf{0}}$	none		1
10^{3}	kilo	k	1000
10^{6}	mega	M	$1,000,000$
10^{9}	giga	G	$1,000,000,000$
10^{12}	tera	T	$1,000,000,000,000$
10^{15}	peta	P	$1,000,000,000,000,000$
10^{18}	exa	E	$1,000,000,000,000,000,000$
10^{21}	zetta	Z	$1,000,000,000,000,000,000,000$
10^{24}	yotta	Y	$1,000,000,000,000,000,000,000,000$

http://en.wikipedia.org/wiki/SI_prefix

Using prefixes in Computer Science
Situation is very confused

- Designers of computers use multiples of 2

Incorrect, but in common usage

- 8 bits	$=$	1 Byte	(still correct)
- 1024 B	$=$	1 KB	(not 1000, therefore incorrect)
- $1024 \mathrm{~KB}=$	1 MB	In binary, easier to caclulate with 1024:	
- $1024 \mathrm{MB}=$	1 GB	$1,0000000000_{\text {bin }}=1,024_{\text {dec }}$	

Also in common use is the decimal usage (as seen on previous slide)

- 8 bits $=1$ Byte
- $1000 \mathrm{~B}=1 \mathrm{~KB}$
- $1000 \mathrm{~KB}=1 \mathrm{MB}$
- $1000 \mathrm{MB}=1 \mathrm{~GB}$

Usage depends on industry conventions

Summary

Any information can be digitized

- Simply decide how to encode the information using numbers
- Computers use numbers to store all information

Computers are built with hardware that uses binary numbers

- Made up of bits (0's and 1's)
- We can convert a binary to a decimal number, and vice versa

Unit of measurement for information is a byte

- Computer industry uses decimal prefixes correctly and incorrectly
"There are 10 types of people in the world: those who understand binary, and those who don't."

