
Binary Search Trees
continued

1

107 - Trees

Draw the BST

• Insert the elements in this order 50, 70, 30, 37, 43,
81, 12, 72, 99

2

107 - Trees

Delete the red element

3

23

51

76

32 17

45

80

9 28

26

40

33

107 - Trees

Delete the red element

4

23

51

76

32 17

45

80

9 28

26

40

33

107 - Trees

Delete the red element

5

23

51

76

32 17

45

80

9 28

26

40

33

107 - Trees

Delete the red element

6

23

51

76

32 17

45

80

9 28

26

40

33

107 - Trees

Deleting Code

 def delete(self, value):
 """Delete value from the BST."""
 node = self.locate(value) # saw this last lecture
 if node:
 node.delete_this_node()

 def delete_this_node(self):
 left = self.left
 right = self.right
 if left and right: # two children
 self.delete_with_children()
 elif left or right: # one child
 self.delete_with_child()
 else: # no children
 self.delete_no_children()

7

• We need to find the node the value is stored in.
• There are three cases

• the node has two children
• the node has one child
• the node has no children

107 - Trees

Deleting without children

 def delete_no_children(self):
 if self.parent:
 if self.parent.left == self:
 self.parent.left = None
 else:
 self.parent.right = None
 else: # special case the root node
 self.value = None

8

• Just delete the node and fix up its parent.

107 - Trees

Deleting with one child

 def delete_with_child(self):
 child = self.left if self.left else self.right
 if self.parent:
 if self.parent.left == self:
 self.parent.left = child
 else:
 self.parent.right = child
 child.parent = self.parent
 else: # special case the root node
 self.replace(child)

9

• Delete the node and shift its child up to take its place by cha

107 - Trees

Replacing the node contents

We have deleted the root value however we don’t want
to remove the root node (as this defines our BST).
So we put new info into the root node.

 def replace(self, other):
 """Replace this node with the values from other.

 Also need to reattach other's children.
 """
 self.value = other.value
 self.left = other.left
 if self.left: self.left.parent = self
 self.right = other.right
 if self.right: self.right.parent = self

10

107 - Trees

Deleting with children

def delete_with_children(self):
 replacement = self.right.min() # the successor
 successor_value = replacement.value
 replacement.delete_this_node() # max of one child of this
 self.value = successor_value

11

• Replace the value in the node with its inorder successor.

• We also have to delete the inorder successor node.

107 - Trees

Inorder successor code

 def min(self):
 """Returns the left most node of the BST."""
 min_node = self
 while min_node.left:
 min_node = min_node.left
 return min_node

12

107 - Trees

Big O of the operations
• It depends on how the tree has been constructed.

• A full binary tree or one close to it (every node not a
leaf node has two children) is ideal.

• The algorithms depend on how far down the tree
you have to go in order to insert or delete nodes.

• With a full binary tree the number of nodes in level d
is 2d. And the number of nodes in a tree of height h
is 2h+1 - 1.

13

107 - Trees

Balanced and Unbalanced
• A balanced tree has approximately the same number of nodes in

the left subtree as in the right subtree. This will give O(log n)
operations for retrieval, insertion and deletion.

• Unbalanced trees have runs of single children. This can be as
bad as a simple list and so has O(n) operations.

14

Regular Expressions

15

107 - Trees

Scanning text
• In many applications we have to accept strings of

information and extract parts of those strings.

• e.g. a program which reads the files in a directory and
finds text files which start with a university UPI -
rshe001.txt, afer002.txt, alux003.txt

• We can read each character of the file names and compare
them to what they should be, or we can use regular
expressions.

• Regular expressions or regexes are faster and more
powerful - but the regex language has to be learnt.

16

107 - Trees

What is a regular
expression?

• They are expressions designed to match sequences
of characters in strings.

• They use their own language to define these
expressions.

• We will only look at a tiny subset of some of the
things you can do with regular expressions.

17

107 - Trees

Simple matching
• Regular expressions are compared with strings (or vice versa)

looking for matches between the sequence of characters in the
string and the regular expression.

• Most characters in a regular expression just mean the character.

• e.g. the regular expression robert would match the string
robert

• but we can match the strings Robert or robert with the regex
[Rr]obert

• the brackets make a character group and either of the
characters can be acceptable in the string

18

107 - Trees

Matching a University UPI
• Let’s start with the “simple” University UPI of 4 letters followed by 3

digits.

• This can be matched with the regular expression

• [a-z][a-z][a-z][a-z][0-9][0-9][0-9]

• this uses the “-” shortcut which indicates a range of characters

• e.g. we could have used [0123456789] for a digit

• remember the brackets indicate a character class - one (and only
one) of the values in the class must match, so in this case we
have 4 lowercase letters followed by 3 digits

19

107 - Trees

Making it smaller
• We could also match a UPI with these regular

expressions

• [a-z][a-z][a-z][a-z]\d\d\d

• where \d is shorthand for [0-9] the digit character
class

• [a-z]{4}\d{3}

• the numbers in {} say how many of each preceding
character we are wanting

20

107 - Trees

Trickier

• Some UPIs only have 3 letters (for people with 2
letter surnames)

• We can match those with

• [a-z]{3,4}\d{3}

• 3 or 4 characters from a to z.

21

107 - Trees

Some special characters

• Some characters (we have already seen [and]
and { and })are special.

• If we want to match them they have to be “escaped”
by a \.

• Other special characters include . ? + and *

22

107 - Trees

What do they mean?
• A full stop . matches any character

• A question mark ? means the character before it is
optional e.g. colou?r matches both colour and
color

• A plus + means one or more of the character before
it e.g. ab+a matches abba and aba

• A star * means zero or more of the character before
it e.g. ab*a matches abba and aa

23

107 - Trees

Finding a phone number

• We want to write a regular expression which would
match a phone number like (09)876-1234

• We have to escape the special characters “(” and
“)”.

• The “-” is only special within [and]

• \(\d{2}\)\d{3}-\d{4}

24

107 - Trees

Doing this in Python
• The regular expression module is called re

import re

• We write our regexes as raw strings e.g.
r'[aA]nd'

• The r tells Python not to do any escapes, this
means any \ escape characters get sent to the
regex interpreter.

25

107 - Trees

search
• The search method is the normal way of checking a

string with a regex.

• It returns a match object if the search was
successful or None otherwise.

• A match object has several useful methods but the
most useful are start() and end(). They tell us
where the match started in the string and where it
ended (the index one past the end as traditional in
Python).

26

107 - Trees

Handy display function
import re

def show_regexp(regex, string):
 print(regex, '-', string)
 match = re.search(regex, string)
 if match:
 start = match.start()
 end = match.end()
 print(string[:start],’<<',string[start:end],
 '>>',string[end:],sep='')
 else:
 print('no match')
 print()

27

107 - Trees

Input and Output

show_regexp(r'[rR]obert', ‘proberty')

produces

[rR]obert - proberty
p<<robert>>y

28

	Binary Search Trees
	Draw the BST
	Delete the red element
	Delete the red element
	Delete the red element
	Delete the red element
	Deleting Code
	Deleting without children
	Deleting with one child
	Replacing the node contents
	Deleting with children
	Inorder successor code
	Big O of the operations
	Balanced and Unbalanced
	Regular Expressions
	Scanning text
	What is a regular expression?
	Simple matching
	Matching a University UPI
	Making it smaller
	Trickier
	Some special characters
	What do they mean?
	Finding a phone number
	Doing this in Python
	search
	Handy display function
	Input and Output

