
Binary Search Trees
Section 6.8

1

107 - Trees

Trees are efficient

• Many algorithms can be performed on trees in O(log
n) time.

• Searching for elements using a binary search can
work on a tree if the elements are ordered in the
obvious way.

• Adding and removing elements is a little trickier.

2

107 - Trees

The Binary Search Tree
property

• All values in the nodes in the
left subtree of a node are
less than the value in the
node.

• All values in the nodes in the
right subtree of a node are
greater than the value in the
node.

3

http://en.wikipedia.org/wiki/Binary_search_tree

http://en.wikipedia.org/wiki/Binary_search_tree
http://en.wikipedia.org/wiki/Binary_search_tree

107 - Trees

Constructing a BST

• We can go through a list of elements adding them in
the order they occur.

• e.g. 70, 31, 93, 94, 14, 23, 73

4

107 - Trees

70, 31, 93, 94, 14, 23, 73

5

70

107 - Trees

70, 31, 93, 94, 14, 23, 73

6

70

31

107 - Trees

70, 31, 93, 94, 14, 23, 73

7

70

31 93

107 - Trees

70, 31, 93, 94, 14, 23, 73

8

70

31 93

94

107 - Trees

70, 31, 93, 94, 14, 23, 73

9

70

31 93

94 14

107 - Trees

70, 31, 93, 94, 14, 23, 73

10

70

31 93

94 14

23

107 - Trees

70, 31, 93, 94, 14, 23, 73

11

70

31 93

94 14

23

73

107 - Trees

Your turn

• Add the elements 17, 5, 25, 2, 11, 35, 9, 16, 29, 38,
7 to a binary search tree

12

107 - Trees

Map ADT and BSTs
• If we use a key as the ordering component in our BSTs we

can also store a separate value.

• We can then use a BST as a Map with functions such as:

• put(key, value) - stores value using key

• get(key) - returns the value found from key

• The text book does this.

• Most introductions just use a value - this is what I will use.

13

107 - Trees

Binary Search Tree code
class BST:
 """A Binary Search Tree (BST) class."""

 def __init__(self, value, parent=None):
 """Construct a BST.

 value -- the value of the root node
 parent -- the parent node (of this BST subtree)
 """
 self.value = value
 self.left = None
 self.right = None
 self.parent = parent # useful for some operations

14

107 - Trees

Inserting a value
 def insert(self, value):
 """Insert value into the BST."""
 if value == self.value: # already in the tree
 return
 elif value < self.value:
 if self.left:
 self.left.insert(value)
 else:
 self.left = BST(value, parent=self)
 else:
 if self.right:
 self.right.insert(value)
 else:
 self.right = BST(value, parent=self)

15

107 - Trees

A Factory Method

 def create(a_list):
 """Create a BST from the elements in a_list."""
 bst = BST(a_list[0])
 for i in range(1, len(a_list)):
 bst.insert(a_list[i])
 return bst

A factory method is one which creates and returns
a new object.

e.g. this would be called like this
bst = BST.create([70, 31, 93, 94, 14, 23, 73])

16

107 - Trees

Doing something in order

def inorder(self, function):
 """Traverse the BST in order performing function."""
 if self.left: self.left.inorder(function)
 function(self.value)
 if self.right: self.right.inorder(function)

for example:
bst = BST.create([70, 31, 93, 94, 14, 23, 73])
bst.inorder(print)

The output is 14 23 31 70 73 93 94

17

107 - Trees

Your turn

• Write a __contains__ method which returns True if
the BST contains the value, otherwise False.

def __contains__(self, value):

18

107 - Trees

Deleting a value

• We need to find the node the value is stored in.

• There are three cases

• the node has no children

• the node has one child

• the node has two children

19

107 - Trees

Finding the node

 def locate(self, value):
 """Return the node holding value."""
 if value == self.value:
 return self
 elif value < self.value and self.left:
 return self.left.locate(value)
 elif value > self.value and self.right:
 return self.right.locate(value)
 else:
 return None

20

107 - Trees

No children

21

107 - Trees

No children

• Just delete the node and fix up its parent.

22

107 - Trees

One child

23

107 - Trees

One child

• Delete the node and shift its child up to take its
place by changing the parent.

24

107 - Trees

Two children

25

107 - Trees

Two children

• Replace the value in the node with its inorder
successor.

• We also have to delete the inorder successor node.

• But this can’t have more than one child.

• Why not?

26

	Binary Search Trees
	Trees are efficient
	The Binary Search Tree property
	Constructing a BST
	70, 31, 93, 94, 14, 23, 73
	70, 31, 93, 94, 14, 23, 73
	70, 31, 93, 94, 14, 23, 73
	70, 31, 93, 94, 14, 23, 73
	70, 31, 93, 94, 14, 23, 73
	70, 31, 93, 94, 14, 23, 73
	70, 31, 93, 94, 14, 23, 73
	Your turn
	Map ADT and BSTs
	Binary Search Tree code
	Inserting a value
	A Factory Method
	Doing something in order
	Your turn
	Deleting a value
	Finding the node
	No children
	No children
	One child
	One child
	Two children
	Two children

