
Binary Search Trees 
Section 6.8  
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107 - Trees 

Trees are efficient 

• Many algorithms can be performed on trees in O(log 
n) time. 

• Searching for elements using a binary search can 
work on a tree if the elements are ordered in the 
obvious way. 

• Adding and removing elements is a little trickier. 
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107 - Trees 

The Binary Search Tree 
property 

• All values in the nodes in the 
left subtree of a node are 
less than the value in the 
node. 

• All values in the nodes in the 
right subtree of a node are 
greater than the value in the 
node. 
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107 - Trees 

Constructing a BST 

• We can go through a list of elements adding them in 
the order they occur. 

• e.g. 70, 31, 93, 94, 14, 23, 73 
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70, 31, 93, 94, 14, 23, 73 
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Your turn 

• Add the elements 17, 5, 25, 2, 11, 35, 9, 16, 29, 38, 
7 to a binary search tree 
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Map ADT and BSTs 
• If we use a key as the ordering component in our BSTs we 

can also store a separate value. 

• We can then use a BST as a Map with functions such as: 

• put(key, value) - stores value using key 

• get(key) - returns the value found from key 

• The text book does this. 

• Most introductions just use a value - this is what I will use. 
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Binary Search Tree code 
class BST: 
    """A Binary Search Tree (BST) class.""" 
     
    def __init__(self, value, parent=None): 
        """Construct a BST. 
         
        value -- the value of the root node 
        parent -- the parent node (of this BST subtree) 
        """ 
        self.value = value 
        self.left = None 
        self.right = None 
        self.parent = parent # useful for some operations 
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Inserting a value 
    def insert(self, value): 
        """Insert value into the BST.""" 
        if value == self.value: # already in the tree 
            return 
        elif value < self.value: 
            if self.left: 
                self.left.insert(value) 
            else: 
                self.left = BST(value, parent=self) 
        else: 
            if self.right: 
                self.right.insert(value) 
            else: 
                self.right = BST(value, parent=self) 

15 



107 - Trees 

A Factory Method 

    def create(a_list): 
        """Create a BST from the elements in a_list.""" 
        bst = BST(a_list[0]) 
        for i in range(1, len(a_list)): 
            bst.insert(a_list[i]) 
        return bst 
 
# A factory method is one which creates and returns 
# a new object. 
 
# e.g. this would be called like this 
bst = BST.create([70, 31, 93, 94, 14, 23, 73]) 
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Doing something in order 

def inorder(self, function): 
    """Traverse the BST in order performing function.""" 
    if self.left: self.left.inorder(function) 
    function(self.value) 
    if self.right: self.right.inorder(function) 
 
# for example: 
bst = BST.create([70, 31, 93, 94, 14, 23, 73]) 
bst.inorder(print) 
 
# The output is 14 23 31 70 73 93 94 
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Your turn 

• Write a __contains__ method which returns True if 
the BST contains the value, otherwise False. 

def __contains__(self, value): 
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Deleting a value 

• We need to find the node the value is stored in. 

• There are three cases 

• the node has no children 

• the node has one child 

• the node has two children 
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Finding the node 

    def locate(self, value): 
        """Return the node holding value.""" 
        if value == self.value: 
            return self 
        elif value < self.value and self.left: 
            return self.left.locate(value) 
        elif value > self.value and self.right: 
            return self.right.locate(value) 
        else: 
            return None 
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No children 
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No children 

• Just delete the node and fix up its parent. 
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One child 
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One child 

• Delete the node and shift its child up to take its 
place by changing the parent. 
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Two children 
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Two children 

• Replace the value in the node with its inorder 
successor. 

• We also have to delete the inorder successor node. 

• But this can’t have more than one child. 

• Why not? 
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