Binary Search Trees

Section 6.8

Trees are efficient

- Many algorithms can be performed on trees in O(log n) time.
- Searching for elements using a binary search can work on a tree if the elements are ordered in the obvious way.
- Adding and removing elements is a little trickier.

The Binary Search Tree property

- All values in the nodes in the left subtree of a node are less than the value in the node.
- All values in the nodes in the right subtree of a node are greater than the value in the node.

Constructing a BST

- We can go through a list of elements adding them in the order they occur.
- e.g. $70,31,93,94,14,23,73$

70, 31, 93, 94, 14, 23, 73

70

70, 31, 93, 94, 14, 23, 73

70, 31, 93, 94, 14, 23, 73

70, 31, 93, 94, 14, 23, 73

70, 31, 93, 94, 14, 23, 73

70, 31, 93, 94, 14, 23, 73

70, 31, 93, 94, 14, 23, 73

Your turn

- Add the elements $17,5,25,2,11,35,9,16,29,38$, 7 to a binary search tree

Map ADT and BSTs

- If we use a key as the ordering component in our BSTs we can also store a separate value.
- We can then use a BST as a Map with functions such as:
- put(key, value) - stores value using key
- get(key) - returns the value found from key
- The text book does this.
- Most introductions just use a value - this is what I will use.

Binary Search Tree code

class BST:
"""A Binary Search Tree (BST) class."""
def __init__(self, value, parent=None): """Construct a BST.
value -- the value of the root node parent -- the parent node (of this BST subtree) """
self.value = value self.left = None self.right = None self.parent = parent \# useful for some operations

Inserting a value

```
def insert(self, value):
    """Insert value into the BST."""
    if value == self.value: # already in the tree
        return
    elif value < self.value:
        if self.left:
            self.left.insert(value)
            else:
                self.left = BST(value, parent=self)
    else:
        if self.right:
                self.right.insert(value)
        else:
                self.right = BST(value, parent=self)
```


A Factory Method

```
def create(a_list):
    """Create a BST from the elements in a_list."""
    bst = BST(a_list[0])
    for i in range(1, len(a_list)):
        bst.insert(a_list[i])
    return bst
```

\# A factory method is one which creates and returns
\# a new object.
\# e.g. this would be called like this
bst = BST.create([70, 31, 93, 94, 14, 23, 73])

Doing something in order

```
def inorder(self, function):
    """Traverse the BST in order performing function."""
    if self.left: self.left.inorder(function)
    function(self.value)
    if self.right: self.right.inorder(function)
# for example:
bst = BST.create([70, 31, 93, 94, 14, 23, 73])
bst.inorder(print)
# The output is 14 23 31 70 73 93 94
```


Your turn

- Write a __contains _ method which returns True if the BST contains the value, otherwise False.
def __contains__(self, value):

Deleting a value

- We need to find the node the value is stored in.
- There are three cases
- the node has no children
- the node has one child
- the node has two children

Finding the node

```
def locate(self, value):
    """Return the node holding value."""
    if value == self.value:
        return self
    elif value < self.value and self.left:
            return self.left.locate(value)
    elif value > self.value and self.right:
        return self.right.locate(value)
    else:
        return None
```


No children

Figure 6.20: Deleting Node 16, a Node without Children

No children

- Just delete the node and fix up its parent.

One child

Figure 6.21: Deleting Node 25, a Node That Has a Single Child

One child

- Delete the node and shift its child up to take its place by changing the parent.

Two children

Figure 6.22: Deleting Node 5, a Node with Two Children

Two children

- Replace the value in the node with its inorder successor.
- We also have to delete the inorder successor node.
- But this can't have more than one child.
- Why not?

