
Binary Tree 
Applications

Chapter 6.6

1



107 - Trees

Parse Trees
• What is parsing?

• Originally from language study

• The breaking up of sentences into component 
parts e.g. noun phrase

• In computing compilers and interpreters parse 
programming languages.

• One aspect is parsing expressions.

2



107 - Trees

Expression Trees
• The leaves are values and the 

other nodes are operators.

• We can use them to represent 
and evaluate the expression.

• We work up from the bottom 
evaluating subtrees.

• Compilers can use this to 
generate efficient code - e.g. 
how many registers are needed 
to calculate this expression.

3



107 - Trees

Tokens
• Parsing starts with recognising tokens.

• A token is a symbol made up of one or more 
characters (commonly separated by white space).

• e.g. a variable name or a number or an operator 
“+”.

• For an expression tree the tokens are numbers, 
operators and parentheses.

4



107 - Trees

Parsing Rules

• As we identify tokens we can apply rules to what we 
should do.

• If the expression is fully parenthesised

• a left parenthesis “(“ starts a subtree

• a right parenthesis “)” finishes a subtree

5



107 - Trees

4 Rules
1.If the current token is a ‘(’, add a new node as the left child 
of the current node, and descend to the left child. 

2.If the current token is in the list [‘+’,’−’,’*’,‘/’], set the root 
value of the current node to the operator represented by the 
current token. Add a new node as the right child of the 
current node and descend to the right child. 

3.If the current token is a number, set the root value of the 
current node to the number and return to the parent. 

4.If the current token is a ‘)’, go to the parent of the current 
node. 

6



107 - Trees

(3 + (4 * 5))

7

Current node



107 - Trees

(3 + (4 * 5))

8

Current node



107 - Trees

(3 + (4 * 5))

9

3

Current node



107 - Trees

(3 + (4 * 5))

10

+

3 Current node



107 - Trees

(3 + (4 * 5))

11

+

3

Current node



107 - Trees

(3 + (4 * 5))

12

+

3

4

Current node



107 - Trees

(3 + (4 * 5))

13

+

3 *

4



107 - Trees

(3 + (4 * 5))

14

+

3 *

4 5

Current node



107 - Trees

(3 + (4 * 5))

15

+

3 *

4 5

Current node



107 - Trees

(3 + (4 * 5))

16

+

3 *

4 5



107 - Trees

Your turn

17

• Generate the expression tree for 

((2 * ((3 - 4) + 6)) + 2)



107 - Trees

Keeping Track of the Parent

• We need to be able to move back up the tree.

• So we need to keep track of the parent of the current working node.

• We could do this with links from each child node back to its parent.

• Or we could store the tree in a list and use the 2 x n trick (if the tree 
is not complete - most won’t be) then there will be lots of empty 
space in this list.

• Or we could push the parent node onto a stack as we move down 
the tree and pop parent nodes off the stack when we move back up.

18



107 - Trees

Build the tree code
set up

def build_expression_tree(parenthesized_expression):
"""Builds an expression parse tree.

parenthesized_expression -- a fully parenthesized expression
with spaces between tokens
"""
token_list = parenthesized_expression.split()
parent_stack = Stack()
expression_tree = BinaryTree('')
parent_stack.push(expression_tree)
current_tree = expression_tree

19



107 - Trees

Implementing the rules

for token in token_list:
if token == '(':

current_tree.insert_left('')
parent_stack.push(current_tree)
current_tree = current_tree.get_left_child()

20

1.If the current token is a ‘(’, add a new node as the 
left child of the current node, and descend to the left 
child. 



107 - Trees

Implementing the rules

elif token in ['+', '-', '*', '/']:
current_tree.set_value(token)
current_tree.insert_right('')
parent_stack.push(current_tree)
current_tree = current_tree.get_right_child()

21

2.If the current token is in the list [‘+’,‘−’,‘*’,‘/’], set the 
root value of the current node to the operator 
represented by the current token. Add a new node 
as the right child of the current node and descend to 
the right child. 



107 - Trees

Implementing the rules

elif is_number(token):
current_tree.set_value(float(token))
current_tree = parent_stack.pop()

22

3.If the current token is a number, set the root value 
of the current node to the number and return to the 
parent. 

def is_number(token):
"""Check if the token is a number."""
try:

float(token)
except:

return False
else:

return True



107 - Trees

Implementing the rules

elif token == ')':
current_tree = parent_stack.pop()

else:
raise ValueError

23

4.If the current token is a ‘)’, go to the parent of the 
current node. 



107 - Trees

Evaluating the expression

• Once we have generated the expression tree we 
can easily evaluate the expression.

• In a compiler the expression would contain variables 
which we wouldn’t know the value of until the 
program ran, so the evaluation would be done at run 
time.

24



107 - Trees

How would you evaluate?

25

+

3 *

4 5

evaluate this subtree



107 - Trees

Algorithm
• To evaluate the subtree under a node

• if the node has children

• the node holds an operator

• return the result of applying the operator on the left 
and right subtrees

• else the node held a number

• return the number

26



107 - Trees

Evaluation Code

import operator
def evaluate(expression_tree):

"""Return the result of evaluating the expression."""
token = expression_tree.get_value()

operations = {'+':operator.add, '-':operator.sub,
'*':operator.mul, ‘/':operator.truediv}

left = expression_tree.get_left_child()
right = expression_tree.get_right_child()
if left and right:

return operations[token](evaluate(left), evaluate(right))
else:

return token

27



107 - Trees

What is that operator stuff?
• The operator module provides functions to add, 

subtract etc.

• We use a dictionary “operations” to connect the 
tokens “+”, “-”, “*” and “/” with the corresponding 
function.

• The line 

operations[token](evaluate(left), evaluate(right))

evokes the function on its parameters.

28



107 - Trees

Tree Traversals
Text book Section 6.7

• With a binary tree we can recursively travel through all of the nodes (or traverse) 
in three standard ways.

• We can deal with the node first then deal with the left subtree, then the right 
subtree.

• This is a preorder traversal.

• We can deal with the left subtree, then with the node, then with the right subtree.

• This is an inorder traversal (and as we will see this keeps things in order).

• We can deal with the left subtree, then the right subtree and lastly the node 
itself.

• This is a postorder traversal (we used this to evaluate expression trees).

29



107 - Trees

Code for printing tree 
traversals

def print_preorder(tree):
"""Print the preorder traversal of the tree."""
if tree:

print(tree.get_value(), end=' ')
print_preorder(tree.get_left_child())
print_preorder(tree.get_right_child())

def print_postorder(tree):
"""Print the postorder traversal of the tree."""
if tree:

print_postorder(tree.get_left_child())
print_postorder(tree.get_right_child())
print(tree.get_value(), end=' ')

def print_inorder(tree):
"""Print the inorder traversal of the tree."""
if tree:

print_inorder(tree.get_left_child())
print(tree.get_value(), end=' ')
print_inorder(tree.get_right_child())

30


