
Priority Queues and
Binary Heaps

Chapter 6.5

1

107 - Trees

Some animals are
more equal than others

• A queue is a FIFO data structure

• the first element in is the first element out

• which of course means the last one in is the last
one out

• But sometimes we want to sort of have a queue but
we want to order items according to some
characteristic the item has.

2

107 - Trees

Priorities
• We call the ordering characteristic the priority.

• When we pull something from this “queue” we always get the
element with the best priority (sometimes best means lowest).

• It is really common in Operating Systems to use priority to
schedule when something happens. e.g.

• the most important process should run before a process
which isn’t so important

• data off disk should be retrieved for more important
processes first

3

107 - Trees

Priority Queue
• A priority queue always produces the element with the best priority

when queried.

• You can do this in many ways

• keep the list sorted

• or search the list for the minimum value (if like the textbook - and
Unix actually - you take the smallest value to be the best)

• You should be able to estimate the Big O values for implementations
like this. e.g. O(n) for choosing the minimum value of an unsorted list.

• There is a clever data structure which allows all operations on a priority
queue to be done in O(log n).

4

107 - Trees

Binary Heap
Actually binary min heap

• Shape property - a
complete binary tree - all
levels except the last full.
The last level nodes are
filled from the left.

• Heap property - all
parents are < or = to their
children

5

http://en.wikipedia.org/wiki/Binary_heap

107 - Trees

Cool cleverness
• Complete binary trees can be represented very nicely in arrays or

lists.

• Because there are no gaps we can represent the rows of the tree
as a series of lists which we can then join together into one list.

6

1

2 3

17 19 36 7

25 100

1 2 3 17 19 36 7 25 100

107 - Trees

My child is 2 x Me
• If we add an empty element at the beginning of the list we

can then find the left child of any node at position p at 2
x p, and right child at 2 x p + 1.

• e.g. The children of the element at position 2 are in position
4 and 5. In this case the children of 2 are 17 and 19.

7

1 2 3 17 19 36 7 25 100

1 2 3 4 5 6 7 8 9 0

107 - Trees 8

107 - Trees

Binary Heap Operations

• Create an empty binary heap

• Insert an item in the heap

• Retrieve the smallest item (removing it)

• Get the size of the heap

• Build a heap from a list

9

107 - Trees

Create a new binary heap

We could start with something like:

class BinHeap:
def __init__(self):

self.heap_list = [0]

We will develop something better later.
N.B. I don’t keep track of the size as the textbook
does because we can use len(self.heap_list) - 1.

def size(self):
"""Return the size of the heap."""
return len(self.heap_list) - 1

10

107 - Trees

Insert into the heap
• We want to maintain the two

properties

• the shape property (so the
tree stays complete)

• the heap property (so the
smallest value is at the root)

• The shape property is easy to
maintain. We just add the value
into the next leaf position of our
tree. In the list implementation
this means we append the
element onto the list.

11

107 - Trees

Preserve the heap

• To keep the heap property we may need to move
the new value further up the tree.

• We repeatedly compare it to its parent exchanging
them if it is smaller than its parent.

• This is sometimes called percolating because the
smallest values bubble to the top.

12

107 - Trees 13

107 - Trees

Why is the exchange safe?
• When we are swapping a value with its parent (say we

are halfway up the tree) we know that the heap property
will still be true for the subtree we are currently looking at
because

• The new value is smaller than its parent and if the other
child was greater than or equal to the parent value it
must be greater than the new value.

• Any subtree below the current position of the new value
must have values all greater than the parent so they
are still in the correct positions.

14

107 - Trees

Insertion code

def insert(self, k):
self.heap_list.append(k)
self.perc_up(self.size())

def perc_up(self, i):
we keep comparing with the parent until we reach the top
or the parent is smaller than the child
while i // 2 > 0 and self.heap_list[i] < self.heap_list[i // 2]:

self.heap_list[i], self.heap_list[i // 2] = \
self.heap_list[i // 2], self.heap_list[i]

i = i // 2

15

107 - Trees

Getting the minimum value

• With a min heap this is trivial.

• It is the root element or in our list implementation
the element at index 1.

• If we remove it we need to fix the shape and heap
properties.

• The shape is easy to fix once again - we move the
last leaf in the heap to the first position (or root).

16

107 - Trees

Preserving the heap again

• This time we have almost certainly moved a larger
value into the root.

• We want to percolate this value down the tree.

17

107 - Trees 18

107 - Trees

Going down is a little trickier
than going up

• Percolating up was straight-forward because each
child only has one parent.

• Percolating down we want to swap with the smallest
child (to preserve the heap property).

19

107 - Trees

Deleting code

def del_min(self):
ret_val = self.heap_list[1]
replacement = self.heap_list.pop()
if self.size() > 0:

self.heap_list[1] = replacement
self.perc_down(1)
return ret_val

20

107 - Trees

Percolating down
def perc_down(self, i):

while (i * 2) <= self.size():
child = self.min_child(i)
if self.heap_list[i] > self.heap_list[child]:

self.heap_list[child], self.heap_list[i] = \
self.heap_list[i], self.heap_list[child]

i = child

def min_child(self, i):
”””Return the index of the minimum child of index i.”””
left = i * 2
right = left + 1
if right > self.size():

return left
if self.heap_list[left] < self.heap_list[right]:

return left
else:

return right

21

107 - Trees

Building a heap from a list

• We can do it the boring way.

• Start with an empty list and insert each element in
turn.

• This will be O(n log n) as there are n elements to
add and each could percolate up the levels of the
tree.

• Or we can do it the clever way.

22

107 - Trees

The Efficient Way
• We start half way through the list.

• Any nodes in the last half of the list are leaves
because of the shape of our complete binary tree.
Each level of the tree has one more node than the
sum of the nodes in all previous levels.

• Moving backwards through the list percolate each
element down to its correct position.

• This is O(n) - but I am not going to prove it :).

23

107 - Trees 24

This is what Figure 6.12 should look like.

107 - Trees

Sifting up and down

107 - Trees

Building the heap code

def __init__(self, a_list=[]):
"""Constructs a BinHeap object.

Can either create an empty BinHeap or can construct
it from a_list.
"""
self.heap_list = [0] + a_list # add the dummy to list
for i in range(self.size() // 2, 0, -1):

self.perc_down(i)

26

107 - Trees

Different heaps but the same
outcome

bh = BinHeap()
bh.insert(9)
bh.insert(6)
bh.insert(5)
bh.insert(2)
bh.insert(3)
print(bh)

bh = BinHeap([9,6,5,2,3])
print(bh)

27

Output

[2, 3, 6, 9, 5]

[2, 3, 5, 6, 9]

107 - Trees

And by the way

• The BinHeap class has a special __str__ method to
print out the heap values but leave out the dummy
first element.

def __str__(self):
return str(self.heap_list[1:])

28

