
Priority Queues and 
Binary Heaps

Chapter 6.5
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Some animals are 
more equal than others

• A queue is a FIFO data structure

• the first element in is the first element out

• which of course means the last one in is the last 
one out

• But sometimes we want to sort of have a queue but 
we want to order items according to some 
characteristic the item has.
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Priorities
• We call the ordering characteristic the priority.

• When we pull something from this “queue” we always get the 
element with the best priority (sometimes best means lowest).

• It is really common in Operating Systems to use priority to 
schedule when something happens. e.g.

• the most important process should run before a process 
which isn’t so important

• data off disk should be retrieved for more important 
processes first
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Priority Queue
• A priority queue always produces the element with the best priority 

when queried.

• You can do this in many ways

• keep the list sorted

• or search the list for the minimum value (if like the textbook - and 
Unix actually - you take the smallest value to be the best)

• You should be able to estimate the Big O values for implementations 
like this. e.g. O(n) for choosing the minimum value of an unsorted list.

• There is a clever data structure which allows all operations on a priority 
queue to be done in O(log n).
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Binary Heap
Actually binary min heap

• Shape property - a 
complete binary tree - all 
levels except the last full. 
The last level nodes are 
filled from the left.

• Heap property - all 
parents are < or = to their 
children
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http://en.wikipedia.org/wiki/Binary_heap



107 - Trees

Cool cleverness
• Complete binary trees can be represented very nicely in arrays or 

lists.

• Because there are no gaps we can represent the rows of the tree 
as a series of lists which we can then join together into one list.
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My child is 2 x Me
• If we add an empty element at the beginning of the list we 

can then find the left child of any node at position p at        2 
x p, and right child at 2 x p + 1.

• e.g. The children of the element at position 2 are in position 
4 and 5. In this case the children of 2 are 17 and 19.
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1 2 3 17 19 36 7 25 100
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Binary Heap Operations

• Create an empty binary heap

• Insert an item in the heap

• Retrieve the smallest item (removing it)

• Get the size of the heap

• Build a heap from a list
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Create a new binary heap

# We could start with something like:

class BinHeap:
def __init__(self):

self.heap_list = [0]

# We will develop something better later.
# N.B. I don’t keep track of the size as the textbook
# does because we can use len(self.heap_list) - 1.

def size(self):
"""Return the size of the heap."""
return len(self.heap_list) - 1
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Insert into the heap
• We want to maintain the two 

properties

• the shape property (so the 
tree stays complete)

• the heap property (so the 
smallest value is at the root)

• The shape property is easy to 
maintain. We just add the value 
into the next leaf position of our 
tree. In the list implementation 
this means we append the 
element onto the list.
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Preserve the heap

• To keep the heap property we may need to move 
the new value further up the tree.

• We repeatedly compare it to its parent exchanging 
them if it is smaller than its parent.

• This is sometimes called percolating because the 
smallest values bubble to the top.
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Why is the exchange safe?
• When we are swapping a value with its parent (say we 

are halfway up the tree) we know that the heap property 
will still be true for the subtree we are currently looking at 
because

• The new value is smaller than its parent and if the other 
child was greater than or equal to the parent value it 
must be greater than the new value.

• Any subtree below the current position of the new value 
must have values all greater than the parent so they 
are still in the correct positions.
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Insertion code

def insert(self, k):
self.heap_list.append(k)
self.perc_up(self.size())

def perc_up(self, i):
# we keep comparing with the parent until we reach the top
# or the parent is smaller than the child
while i // 2 > 0 and self.heap_list[i] < self.heap_list[i // 2]:

self.heap_list[i], self.heap_list[i // 2] = \
self.heap_list[i // 2], self.heap_list[i]

i = i // 2
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Getting the minimum value

• With a min heap this is trivial.

• It is the root element or in our list implementation 
the element at index 1.

• If we remove it we need to fix the shape and heap 
properties.

• The shape is easy to fix once again - we move the 
last leaf in the heap to the first position (or root).
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Preserving the heap again

• This time we have almost certainly moved a larger 
value into the root.

• We want to percolate this value down the tree.
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Going down is a little trickier 
than going up

• Percolating up was straight-forward because each 
child only has one parent.

• Percolating down we want to swap with the smallest 
child (to preserve the heap property).

19



107 - Trees

Deleting code

def del_min(self):
ret_val = self.heap_list[1]
replacement = self.heap_list.pop()
if self.size() > 0:

self.heap_list[1] = replacement
self.perc_down(1)
return ret_val
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Percolating down
def perc_down(self, i):

while (i * 2) <= self.size():
child = self.min_child(i)
if self.heap_list[i] > self.heap_list[child]:

self.heap_list[child], self.heap_list[i] = \
self.heap_list[i], self.heap_list[child]

i = child

def min_child(self, i):
”””Return the index of the minimum child of index i.”””
left = i * 2
right = left + 1
if right > self.size():

return left
if self.heap_list[left] < self.heap_list[right]:

return left
else:

return right
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Building a heap from a list

• We can do it the boring way.

• Start with an empty list and insert each element in 
turn.

• This will be O(n log n) as there are n elements to 
add and each could percolate up the levels of the 
tree.

• Or we can do it the clever way.
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The Efficient Way
• We start half way through the list.

• Any nodes in the last half of the list are leaves 
because of the shape of our complete binary tree. 
Each level of the tree has one more node than the 
sum of the nodes in all previous levels.

• Moving backwards through the list percolate each 
element down to its correct position.

• This is O(n) - but I am not going to prove it :).
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This is what Figure 6.12 should look like.
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Sifting up and down
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Building the heap code

def __init__(self, a_list=[]):
"""Constructs a BinHeap object.

Can either create an empty BinHeap or can construct
it from a_list.
"""
self.heap_list = [0] + a_list # add the dummy to list
for i in range(self.size() // 2, 0, -1):

self.perc_down(i)
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Different heaps but the same 
outcome

bh = BinHeap()
bh.insert(9)
bh.insert(6)
bh.insert(5)
bh.insert(2)
bh.insert(3)
print(bh)

bh = BinHeap([9,6,5,2,3])
print(bh)
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Output

[2, 3, 6, 9, 5]

[2, 3, 5, 6, 9]
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And by the way

• The BinHeap class has a special __str__ method to 
print out the heap values but leave out the dummy 
first element.

def __str__(self):
return str(self.heap_list[1:])
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