
Introduction to Trees
Chapter 6

1

107 - Trees

Why Trees?
• Trees are amazingly useful in Computer

Science.

• They provide a structure for the efficient
storage, manipulation and retrieval of
information.

• They map to many of the relationships
between objects or classification systems
in the real world.

• They also give an introduction to Graph
Theory (much more in 220 and 320).

2

By Ptelea (Own work) [CC-BY-SA-3.0
(http://creativecommons.org/licenses/by-sa/3.0)],

via Wikimedia Commons

107 - Trees

Different Types of Trees
• But the sort we will be working with are really rooted trees (they

are directed graphs) and look like this:

3

http://en.wikipedia.org/wiki/File:Binary_tree.svg

the root

nodes

leaves

edges or branches

http://en.wikipedia.org/wiki/File:Binary_tree.svg

107 - Trees

What is Special?
• Our trees are upside down. The root is at the top

and the leaves are at the bottom.

• The only reason for this is that we normally write
and read from the top of the page to the bottom.

• It is easier to add things to the bottom of our
diagrams.

• We start at the root and move down the tree.

• Usually our trees will be binary trees (a maximum of
two branches from a node).

4

107 - Trees

Example - 20 questions
• One person chooses a subject and answers 20

questions with “yes” or “no” answers.

• This is an example of following one branch of a
binary tree as each question leads to only two
possible answers.

• In theory (with well designed questions) this can
lead to differentiating 220 (over a million) different
subjects.

5

107 - Trees

Example - file systems
• Most file systems are trees (folders or directories and files)

• Note the line at the bottom - this shows the path to the current directory.
• There is a unique path from the root to the leaf.
• This tree is not a binary tree (many files and directories can be descendants of one

directory)

6

107 - Trees

Subtrees
• Because all nodes in a tree (except the root node) are

descendants of exactly one other node we can recursively
think of each node being the root node of a smaller tree.

• These smaller trees are called subtrees.

• e.g. the Users/ node is the root of a subtree of users’
directories in the diagram below (from the textbook)

7

107 - Trees

XML and HTML

8

<html xmlns="http://www.w3.org/1999/xhtml"
 xml:lang="en" lang="en">
<head>
 <meta http-equiv="Content-Type"
 content="text/html; charset=utf-8" />
 <title>simple</title>
</head>
<body>
<h1>A simple web page</h1>

 List item one
 List item two

<h2>Luther CS <h2>
</body>
</html>

107 - Trees

More Terminology
• Parent - a node is the parent of all nodes it connects to with

outgoing edges.

• Children - all nodes with incoming edges from the same
parent node are children of that node.

• Siblings - all nodes with the same parent are siblings.

• Level - the number of edges from the root node to this node.
The root node is therefore level 0.

• Height - the height of a tree is the maximum level of all the
nodes in the tree.

9

107 - Trees

Tree definition 1
• A tree

• has a root node

• every node (except the root node) is connected by
one edge from its unique parent node

• a unique path goes from the root to each node

• (and remember that a binary tree is one where the
maximum number of children from a node is 2)

10

107 - Trees

Tree definition 2
• A tree

• can be empty

• or consists of a root node and zero
or more subtrees (subtrees are
trees)

• the root of a subtree is connected
to the root of the tree by an edge

• (a binary tree has no more than 2
subtrees from any root)

11

107 - Trees

Binary Trees
• From now on our trees will be binary trees (except in the lab

questions)

• They are simple to work with as each parent node has left and/or right
values.

• We can represent this something like:

12

class BinaryTree():

 def __init__(self, root_data):
 self.data = root_data
 self.left = None
 self.right = None

107 - Trees

But we can simply use lists
• Before we develop our binary tree class with links to left and

right subtrees we could simply use Python lists.

• e.g. this binary tree can be represented by the list

['a',
 ['b',
 [],
 ['d',
 [],
 []
]
],
 ['c',
 ['e',
 [],
 []
],
 ['f',
 [],
 []
]
]
]

13

a

b c

d e f

And of course this list is actually just:
['a', ['b', [], ['d', [], []]], ['c', ['e', [], []], ['f', [], []]]]

107 - Trees

[data, left, right]

• Each node in the tree is a list of three elements

• the data or value or payload or key

• the left subtree (which is another list)

• the right subtree (which is also a list)

14

107 - Trees

Binary Tree ADT
• Some tree operations

• BinaryTree() - create a new BinaryTree

• set_value(new_value) - sets the value of the node to new_value

• get_value() - gets the value of the node

• insert_left(value) - creates a new node with value to the left of the current node,
the existing left node becomes the left node of the new one

• insert_right(value) - as above but to the right

• get_left_subtree() - gets the subtree to the left of this node

• get_right_subtree() - gets the subtree to the right of this node

• N.B. Using the recursive definition each node is the root of a subtree.

15

107 - Trees

My Version
See binaryTreeLists.py and compare with the textbooks 6.4.1

class BinaryTree:

 DATA = 0 # just to make things more readable
 LEFT = 1 # can be referenced as either
 RIGHT = 2 # e.g. BinaryTree.DATA or self.DATA

 def __init__(self, root_value, left=None, right=None):
 self.node = [root_value, left, right]

The default values for “left” and “right” mean that the constructor can be called
with only the value for the root node. In this case the left and right subtrees are
empty.

16

107 - Trees

Inserting

Theirs (I don’t bother showing the insert_right)
def insert_left(root, new_branch):
 t = root.pop(1)
 if len(t) > 0:
 root.insert(1, [new_branch, t, []])
 else:
 root.insert(1, [new_branch, [], []])
 return root

Mine
 def insert_left(self, value):
 self.node[self.LEFT] = BinaryTree(value, self.node[self.LEFT], None)

 def insert_right(self, value):
 self.node[self.RIGHT] = BinaryTree(value, None, self.node[self.RIGHT])

17

107 - Trees

The other functions are
straightforward

 def set_value(self, new_value):
 """Sets the value of the node."""
 self.node[self.DATA] = new_value

 def get_value(self):
 """Gets the value of the node."""
 return self.node[self.DATA]

 def get_left_subtree(self):
 """Gets the left subtree of the node."""
 return self.node[self.LEFT]

 def get_right_subtree(self):
 """Gets the right subtree of the node."""
 return self.node[self.RIGHT]

18

107 - Trees

Printing using str()

Printing is easier in the textbook version because it just prints a list.
But my way allows me to use recursion and the __str__ special function.
Remember that __str__(self) is called when the str() function is used e.g. by
the print() function.

 def __str__(self):
 return '['+str(self.node[self.DATA])+', '+\
 str(self.node[self.LEFT])+', '+\
 str(self.node[self.RIGHT])+']'

19

107 - Trees

Output
r = BinaryTree(1)
r.insert_left(2)
r.insert_right(3)
r.insert_right(4)
r.get_left_subtree().insert_left(5)
r.get_left_subtree().insert_right(6)
print(r)
print(r.get_left_subtree())
print(r.get_right_subtree())
print(r.get_left_subtree().get_left_subtree())

Produces

[1, [2, [5, None, None], [6, None, None]], [4, None, [3, None, None]]]
[2, [5, None, None], [6, None, None]]
[4, None, [3, None, None]]
[5, None, None]

20

1

2 4

6 5 3

107 - Trees

K.I.S.S.
• Normally if you can use a built-in or standard Python data

type to represent your data you should.

• Or as we just did create a new class with Python standard
types as “instance variables” of the class.

• Sometimes you may subclass an existing class or data
type to provide additional behaviour but this is beyond the
scope of this course.

• With the BinaryTree class we could use a completely
different implementation which doesn’t rely on Python lists.

21

107 - Trees

Nodes and References
See binaryTreeRef.py and once again compare with the
textbook version of BinaryTree.

class MyBinaryTree:

 def __init__(self, root_key, left=None, right=None):
 self.key = root_key
 self.left = left
 self.right = right

Once again the default values mean that we can call this in multiple ways. e.g.

MyBinaryTree(3)
MyBinaryTree(3, existing_left, None)
MyBinaryTree(3, MyBinaryTree(4), MyBinaryTree(5))

22

107 - Trees

More implementation
 def insert_left(self, value):
 self.left = MyBinaryTree(value, left=self.left) # right?

 def insert_right(self, value):
 self.right = MyBinaryTree(value, right=self.right) # left?

 def get_left_subtree(self):
 return self.left

 def get_right_subtree(self):
 return self.right

 def set_value(self, new_value):
 self.data = new_value

 def get_value(self):
 return self.data

23

	Introduction to Trees
	Why Trees?
	Different Types of Trees
	What is Special?
	Example - 20 questions
	Example - file systems
	Subtrees
	XML and HTML
	More Terminology
	Tree definition 1
	Tree definition 2
	Binary Trees
	But we can simply use lists
	[data, left, right]
	Binary Tree ADT
	My VersionSee binaryTreeLists.py and compare with the textbooks 6.4.1
	Inserting
	The other functions are straightforward
	Printing using str()
	Output
	K.I.S.S.
	Nodes and References
	More implementation

