Introduction to Trees

Chapter 6

Why Trees?

- Trees are amazingly useful in Computer
Science.

- They provide a structure for the efficient
storage, manipulation and retrieval of
iInformation.

- They map to many of the relationships
between objects or classification systems
In the real world.

By Ptelea (Own work) [CC-BY-SA-3.0
(http://creativecommons.org/licenses/by-sa/3.0)],

- They also give an introduction to Graph

"heory (much more in 220 and 320).

107 - Trees 2

Different Types of Trees

- But the sort we will be working with are really rooted trees (they
are directed graphs) and look like this:

the root

edges or branches

nodes

leaves

http://en.wikipedia.org/wiki/File:Binary tree.svqg

107 - Trees 3

http://en.wikipedia.org/wiki/File:Binary_tree.svg

What Is Special?

- Qur trees are upside down. The root Is at the top
and the leaves are at the bottom.

- The only reason for this is that we normally write
and read from the top of the page to the bottom.

. [t is easier to add things to the bottom of our
diagrams.

. We start at the root and move down the tree.

- Usually our trees will be binary trees (a maximum of
two branches from a node).

107 - Trees 4

Example - 20 questions

- One person chooses a subject and answers 20
guestions with “yes” or “no” answers.

- This Is an example of following one branch of a
binary tree as each question leads to only two
possible answers.

- In theory (with well designed questions) this can

lead to differentiating 22° (over a million) different
subjects.

107 - Trees 5

Example - file systems

- Most file systems are trees (folders or directories and files)

8eo0e [107demos i
Lel>) |z élﬂlﬂlﬂll#vll?vl|—:v||L||¢-|I-‘ﬁllﬁl Q

Back Action Dropbox Arrange Share Edit Tags Connect Get Info Search
FAVORITES & 107 ~ (L] 107Code (] _pycache__ " &7 hash.py

I - « | 107forFaculty.docx [lectures i "m 107demos = g7 listFiles.py

&Y robert lgdl 210 L l| 107treelab " g selection.py

e (51 702 2014 . 4" bin_heap.py
@ Desktop [, 702 reference docs I « | binary_tree.py
Ej FISERMEnTs [l 707 2013 f w DbinaryTreelists.py
. & APR2011-rsheQ05.pages « bubble.py

.U Music & dissertation.pdf w createRandomFile.py

Pictures [51] EndNote libraries ' o | insertion.py

'ﬁ' DVDs [l FizzFinnish f « labTimeMergeSort.py

A Aolicati || FizzIDC2012 L o Mmergesort.py

Applications | = \5co014 . & randomData.txt

] Box Sync « | obstacles.py « | selection.py

—E'I Downloads [l 05 A2 2013 ! w ShellSort.py

|y] SpaceManagerDemao f w SOrts.py

DEVICES || Stage 1 course outlines f « limeMergeSort.py

= Robert’s Mac... & StagelRestructure.pages w limeSort.py

— . | Stagecast !

) Macintosh Hp | 2

o= acintos o TrainTicketC...nAarhus.pdf

|e2| MacinteshHD2 | 73 working iPadFizz [

,E, TimeMac... =

|2 My Book... &

|_| DVD back... &
SHARED || MacintoshHD2 » (] Dropbox » [| current work = (| 107 » [| 107Code » [| 107demos

N —"ft--
- Note the line at the bottom - this shows the path to the current directory.

- There is a unique path from the root to the leaf.
- This tree is not a binary tree (many files and directories can be descendants of one
directory)

107 - Trees 6

Subtrees

- Because all nodes in a tree (except the root node) are
descendants of exactly one other node we can recursively
think of each node being the root node of a smaller tree.

. These smaller trees are called subtrees.

. e.g. the Users/ node is the root of a subtree of users’
directories in the diagram below (from the textbook)

s S edbedbe

107 - Trees V4

XML and HTML

<html xmIns="http://www.w3.0rg/1999/xhtml"
xml:lang="en" lang="en">
<head>
<meta http-equiv="Content-Type"
content="text/html; charset=utf-8" />
<title>simple</title>
</head>
<body>
<h1>A simple web page</h1>

List item one
List item two

<h2>Luther CS <h2
</body>
</html> Figure 6.3: A Tree Corresponding to the Markup Elements of a Web Page

107 - Trees 8

More Terminology

- Parent - a node is the parent of all nodes it connects to with
outgoing edges.

. Children - all nodes with incoming edges from the same
parent node are children of that node.

. Siblings - all nodes with the same parent are siblings.

- Level - the number of edges from the root node to this node.
The root node is therefore level 0.

- Height - the height of a tree Is the maximum level of all the
nodes in the tree.

107 - Trees 0

Tree definition 1

. A tree
. has a root node

- every node (except the root node) Is connected by
one edge from Its unique parent node

- a unique path goes from the root to each node

- (and remember that a binary tree Is one where the
maximum number of children from a node is 2)

107 - Trees 10

Tree definition 2

- Atree
.+ can be empty

. Or consists of a root node and zero
or more subtrees (subtrees are
trees)

. the root of a subtree Is connected
to the root of the tree by an edge

Figure 6.5: A recursive Definition of a tree

. (a binary tree has no more than 2
subtrees from any root)

107 - Trees 11

Binary Trees

- From now on our trees will be binary trees (except in the lab
guestions)

- They are simple to work with as each parent node has left and/or right
values.

- We can represent this something like:
class BinaryTree():

def 1nit_ (self, root data):-:
self.data = root data
self.left None
self.right = None

107 - Trees 12

But we can simply use lists

- Before we develop our binary tree class with links to left and
right subtrees we could simply use Python lists.

. e.g. this binary tree can be represented by the list

["a”,
b,
[1.
[Fd",
[1.
[]
1
1,
["c”,
[Te",
[1.
[]
1,
[f,
[1.
[]
1
1
1
107 - Trees

[Fa”,

And of course this list is actuall

[*b", 1. [*d”, [, 011, [Tc~,

13

[Te",

't

ust:

1. 011, [°f°, 0. [111]

ldata, left, right]

- Each node In the tree Is a list of three elements
. the data or value or payload or key
. the left subtree (which is another list)

. the right subtree (which is also a list)

107 - Trees 14

Binary Tree ADT

. Some tree operations

BinaryTree() - create a new BinaryTree
- set value(new value) - sets the value of the node to new_value
- get_value() - gets the value of the node

- Insert_left(value) - creates a new node with value to the left of the current node,
the existing left node becomes the left node of the new one

. Insert_right(value) - as above but to the right
. get_left_subtree() - gets the subtree to the left of this node
. get_right_subtree() - gets the subtree to the right of this node

- N.B. Using the recursive definition each node is the root of a subtree.

107 - Trees 15

My Version

See binaryTreeLists.py and compare with the textbooks 6.4.1

class BinaryTree:

DATA = O # just to make things more readable
LEFT 1 # can be referenced as eilther
RIGHT = 2 # e.g. BinaryTree.DATA or self_DATA

def 1nit_ (self, root value, left=None, right=None):
self.node = [root value, left, right]

The default values for “left” and “right” mean that the constructor can be called
with only the value for the root node. In this case the left and right subtrees are
empty.

107 - Trees 16

Inserting

Theirs (I don’t bother showing the Insert right)
def 1nsert _left(root, new branch):
t = root.pop(l)
if len(t) > O:
root.insert(l, [new branch, t, []11])
else:
root.insert(l, [new branch, [1, [1D
return root

Mine
def i1nsert_left(self, value):
self_node[self.LEFT] = BinaryTree(value, self._node[self.LEFT], None)

def 1nsert_right(self, value):
self_node[selTf_.RIGHT] = BinaryTree(value, None, self._node[self.RIGHT])

107 - Trees 17

The other functions are
straightforward

def set value(self, new value):
""" Sets the value of the node.''™
self.node[selT_.DATA] = new value

def get value(selT):
""" Gets the value of the node.''™
return self._node|[self.DATA]

def get left subtree(self):
""" Gets the left subtree of the node."""
return self._node|self.LEFT]

def get right subtree(self):

""" Gets the right subtree of the node.'™
return self._node[self.RIGHT]

107 - Trees 18

Printing using str()

Printing is easier in the textbook version because it just prints a list.

But my way allows me to use recursion and the __str _ special function.
Remember that str (self) is called when the str() function is used e.g. by
the print() function.

def str_ (self):
return "["+str(self.node[self_.DATA])+", "+\
str(self.node[self.LEFT])+", "+\

str(self.node[self_RIGHT])+"]"

107 - Trees 19

Output

= BinaryTree(l)

.Insert_left(2)

r
r

r.insert_right(d) a G
r.insert right(4)

r

.get_left subtree().i1nsert _left(5)
r.get _left subtree().insert right(6)

ONONERO
print(r.get_left subtree())

print(r.get _right subtree())
print(r.get _left subtree().get left subtree())

Produces
[1, [2, [5, None, None], [6, None, None]], [4, None, [3, None, None]l]]
[2, [5, None, None], [6, None, Nonel]

[4, None, [3, None, None]]
[5, None, None]

107 - Trees 20

K.LS.S.

- Normally If you can use a built-in or standard Python data
type to represent your data you should.

- Or as we just did create a new class with Python standard
types as “instance variables” of the class.

- Sometimes you may subclass an existing class or data
type to provide additional behaviour but this is beyond the
scope of this course.

- With the BinaryTree class we could use a completely
different implementation which doesn’t rely on Python lists.

107 - Trees 21

Nodes and References

See binaryTreeRef.py and once again compare with the
textbook version of BinaryTree.

class MyBinaryTree:

def __1nit (self, root key, left=None, right=None):
self.key = root key
self.left = left
self.right = right

Once again the default values mean that we can call this in multiple ways. e.g.

MyBinaryTree(3)
MyBinaryTree(3, existing left, None)
MyBinaryTree(3, MyBinaryTree(4), MyBinaryTree(5))

107 - Trees 22

More iImplementation

def 1nsert left(self, value):
self._left = MyBinaryTree(value, left=self._left) # right?

def i1nsert_right(self, value):
self.right = MyBinaryTree(value, right=self.right) # left?

def get left subtree(self):
return self._left

def get right subtree(self):
return self.right

def set value(self, new value):
self.data = new value

def get value(self):
return self.data

107 - Trees 23

	Introduction to Trees
	Why Trees?
	Different Types of Trees
	What is Special?
	Example - 20 questions
	Example - file systems
	Subtrees
	XML and HTML
	More Terminology
	Tree definition 1
	Tree definition 2
	Binary Trees
	But we can simply use lists
	[data, left, right]
	Binary Tree ADT
	My Version
See binaryTreeLists.py and compare with the textbooks 6.4.1
	Inserting
	The other functions are straightforward
	Printing using str()
	Output
	K.I.S.S.
	Nodes and References
	More implementation

