More on Reqular
Expressions

More character classes

- \S matches any whitespace character (space, tab,
newline etc)

- \w matches a word character (letters, numbers,
underscore)

- \b matches an empty string at the beginning or end
of a word

107 - Regular Expressions 2

What would the match be?

- Forthe string "The quick brown fox jumps
over the lazy dog.-"

- \W*

e \s\w*

e \W*zZz\w*

107 - Regular Expressions

Verifying a credit card

. How do we check for a number such as
1234 5678 9012 34577

. Start with
\b\d{4}[-I\d{4}[-T1\d{4}[-1\d{4}\b

- We can group the 3 repeating patterns to
\b(\d{4}[-D{3F\d{4}\b

107 - Regular Expressions 4

Extracting

The regex will accept any 16 digit number which has 4 groups
of 4 digits.

Each of the groups 1s separated by a space or a dash "-".
There can be text before or after the card number.

card = "my card number 1s 1234 5678 9012 3452 don\"t tell anyone.”

pattern = r*\b(\d{4}[-D{3}\d{4}\b"
match = re.search(pattern, card)

1T match:
print(match.group(), "- ", end="")
number = match.group().replace(®™ ","")
luhn(number)

107 - Regular Expressions S

Luhn Algorithm

def add digits(string):
"""Converts the chars of string iInto ints and adds them.

string must only consist of digits

return sum([int(c) for c iIn string])

def luhn(string):
"""Print a result determined by the string and Luhn algorithm.

"possible™ 1f string i1s ok
"tnvalid®™ 1f string i1s not.
total = 0
odd = False
for c i1n reversed(string):
1T odd:
n = 1nt(c) * 2
total += add _digits(str(n))
else:
total += 1nt(c)
odd = not odd
print("possible” i1f total % 10 == 0 else "invalid"™)

107 - Regular Expressions 6

Beginnings and Endings

- | mentioned last time that there are two methods you can
use when comparing regexes with a string, the match and

search methods. search finds matches anywhere in the
string. match finds matches only at the beginning of the

string.

- You can also find matches at the beginning or end of lines.
A string can run over several lines if re MULTILINE is

used.

- ~ matches the beginning of a string (or line If multiline).

- $ matches the end of a string (or line if multiline).

2

107 - Regular Expressions

findall

- search returns one match (the first one) in a string

- findall returns a list of all the matches

Given the string
"k.shan@auckland.ac.nz, pbsord@Im.se,

Ime@123-4.com, one two@three.four.com*

and the pattern [\w. J+@[\w.]+ (special characters, in this case ‘.’,
lose their special meaning inside square brackets)

re.findall(pattern, string) returns

| "k.shan@auckland.ac.nz", "pbsord@Im.se”, "Ime@123",
"one_two@three.four.com”]

107 - Regular Expressions 8

mailto:one_two@three.four.com

findall and files

- When combined with reading data from files
findall is particularly powerful.

. e.g. to find all of the tags In a web page you could

do
file = open("iIndex.html™)

result = re.findall(r"<.*>", file.read())

- This may not give the result you expected

because the star operator Is greedy. Use
<.*?> to get the smallest match.

107 - Regular Expressions 9

Replacement

. Just as you can replace any part of a string with the
replace method you can do the same with regular

expression matches and the sub method.

>>> s = "Replace all of my vowels with underscores.™
>>> re.sub(r"[aerou]”, " ", S)
"R _pl_c Il fmyvwlilswth ndrscrs.”

107 - Regular Expressions 10

	More on Regular Expressions
	More character classes
	What would the match be?
	Verifying a credit card
	Extracting
	Luhn Algorithm
	Beginnings and Endings
	findall
	findall and files
	Replacement

