
Lecture 12 – ADTs and Stacks

Modularity
 Divide the program into smaller parts

Advantages
 Keeps the complexity managable
 Isolates errors (parts can be tested independently)
 Can replace parts easily
 Eliminates redundancies (each part takes care of own data)

Easier to write, Easier to read, Easier to test, easier to modify

2 COMPSCI 107 - Computer Science Fundamentals

3 COMPSCI 107 - Computer Science Fundamentals

Task that requires module A

Interface for module A

Implementation X Implementation Y

function calls

 Separates the purpose from the implementation

Procedural abstraction
 Specification (function header and return type) separate from implementation
 Can replace implementation if required

Data Abstraction
 Think about what can be done with the data, separate from how it is done

Example:
 Mapping of keys to values
 Use two parallel lists
 Use a dictionary

4 COMPSCI 107 - Computer Science Fundamentals

A collection of data and a set of operations on that data
 Specifications of an ADT focus on what the operations are
 Implementation is not specified

ADT is not a data structure
 Data structure is a construct within a programming language
 List, tuple, dictionary

5 COMPSCI 107 - Computer Science Fundamentals

6 COMPSCI 107 - Computer Science Fundamentals

 An interface which is visible
to the user of the ADT (the
client)

 ADT Data structure

A wall of ADT operations isolates
the data structure and the

implementation
from the program that uses it.

A data structure
used to implement
the ADT

ADT

Data
 […, -3, -2, -1, 0, 1, 2, 3, …]

Operations
 Addition
 Subtraction
 …
 Equality
 Ordering
 Representation for printing

7 COMPSCI 107 - Computer Science Fundamentals

Data
 An unordered collection of unique elements

Operations
 Add
 Remove
 Union
 Intersection
 Complement

8 COMPSCI 107 - Computer Science Fundamentals

Data collection
 Position of the elements matters and is stable
 Two ends to the structure (front and back, first and last)

Different structures has different ways to add and remove elements

9 COMPSCI 107 - Computer Science Fundamentals

Ordered collection of data
 Addition of items and removal of items happens at the same end
 Top of the stack

Remove data in reverse order of data added
 Last in first out (LIFO)

Operations
 Push
 Pop
 Peek
 Is_empty
 Size

10 COMPSCI 107 - Computer Science Fundamentals

 Implementation using Python
list

What is the big-O of push()?

What is the big-O of pop()?

11 COMPSCI 107 - Computer Science Fundamentals

class StackV1:
 def __init__(self):
 self.items = []

 def is_empty(self):
 return self.items == []

 def push(self, item):
 self.items.insert(0,item)

 def pop(self):
 return self.items.pop(0)

 def size(self):
 return len(self.items)

 Implementation using Python
list

What is the big-O of push()?

What is the big-O of pop()?

12 COMPSCI 107 - Computer Science Fundamentals

class StackV2:
 def __init__(self):
 self.items = []

 def is_empty(self):
 return self.items == []

 def push(self, item):
 self.items.append(item)

 def pop(self):
 return self.items.pop()

 def size(self):
 return len(self.items)

Many computer languages use braces to signify start and end
 They need to be matched to be correct
 They need to be nested correctly

 Stacks can be used to determine correct use of braces

Algorithm:
 Add each open brace to the stack
 When a closing brace is encountered, check to see if a matching brace is on the top of

the stack
 When the last token is checked, the stack should be empty

13 COMPSCI 107 - Computer Science Fundamentals

Use a stack to check if the braces are used correctly in the following
strings. Show the state of the stack after each stack operation.

(())
(() (
[() { }]
[[()] [{ }])

14 COMPSCI 107 - Computer Science Fundamentals

To be done after class: Write a program that uses a Stack to check if
an input string has correctly matching braces

 check_braces(‘(this) [is] {best} ([done] {with} (stacks))’)

15 COMPSCI 107 - Computer Science Fundamentals

 Standard mathematics represents expressions using infix notation
 Operators appear between the operands

Postfix notation puts the operator after the operands
 No brackets are needed to specify order of precedence

16 COMPSCI 107 - Computer Science Fundamentals

4 + 5
operand operand

operator

4 5 +

Convert the following infix expressions into postfix notation

4 * 5 – 2 * 8 – 1

1 – 4 + 2 * 3 * 5

9 – 6 / 4 + 2 * (2 + 3)

2 * ((4 + 2) * 3 + 2) – 1

17 COMPSCI 107 - Computer Science Fundamentals

A stack can be used in the algorithm to convert infix to postfix
 Divide expression into tokens
 Operators: +. -, *, /
 Operands: single digits
 Other tokens: brackets

18 COMPSCI 107 - Computer Science Fundamentals

Create a stack to store operators and a list for the output tokens
 Scan the tokens from left to right
 If the token is an operand, add it to the output list
 If the token is a left parenthesis, push it to the operator stack
 If the token is a right parenthesis, pop the operator stack until the

left parenthesis is removed. Append each operator to the output
list
 If the token is an operator, push it onto the operator stack. But first,

remove any operators that have higher or equal precedence and
append them to the output list
When there are no more tokens, remove operators on the stack and

append to the output list

19 COMPSCI 107 - Computer Science Fundamentals

 Show the operator stack and the output list at every step as the
following infix expression is converted to postfix

20 COMPSCI 107 - Computer Science Fundamentals

12 / (3 + 4) * 2 + 4

Create an empty stack
 Scan the list of tokens from left to right
 If the token is an operand, push it to the operand stack
 If the token is an operator, pop the stack twice
 The first element popped is the right operand
 The second element popped is the left operand

Apply the operator to the operands and push the result onto the
stack
When there are no more tokens, the stack should contain the result.

21 COMPSCI 107 - Computer Science Fundamentals

22 COMPSCI 107 - Computer Science Fundamentals

 Following the algorithm to evaluate postfix expressions, show the
operand stack, and the token being processed (at each step) as the
following postfix expression is evaluated:

7 12 8 9 - * 3 / +

	COMPSCI 107�Computer Science Fundamentals
	Software Engineering Design Principle
	Hide implementation within the module
	Abstraction
	Abstract Data Type (ADT)
	ADT
	ADT - Integers
	ADT - Set
	Linear Structure
	ADT - Stack
	Stack Implementation
	Stack Implementation
	Checking braces
	Exercise
	Exercise
	Postfix expressions
	Exercise
	Converting from infix to postfix
	Algorithm for converting infix to postfix
	Exercise
	Evaluating postfix expressions
	Exercise

