
Lecture 12 – ADTs and Stacks

Modularity
 Divide the program into smaller parts

Advantages
 Keeps the complexity managable
 Isolates errors (parts can be tested independently)
 Can replace parts easily
 Eliminates redundancies (each part takes care of own data)

Easier to write, Easier to read, Easier to test, easier to modify

2 COMPSCI 107 - Computer Science Fundamentals

3 COMPSCI 107 - Computer Science Fundamentals

Task that requires module A

Interface for module A

Implementation X Implementation Y

function calls

 Separates the purpose from the implementation

Procedural abstraction
 Specification (function header and return type) separate from implementation
 Can replace implementation if required

Data Abstraction
 Think about what can be done with the data, separate from how it is done

Example:
 Mapping of keys to values
 Use two parallel lists
 Use a dictionary

4 COMPSCI 107 - Computer Science Fundamentals

A collection of data and a set of operations on that data
 Specifications of an ADT focus on what the operations are
 Implementation is not specified

ADT is not a data structure
 Data structure is a construct within a programming language
 List, tuple, dictionary

5 COMPSCI 107 - Computer Science Fundamentals

6 COMPSCI 107 - Computer Science Fundamentals

 An interface which is visible
to the user of the ADT (the
client)

 ADT Data structure

A wall of ADT operations isolates
the data structure and the

implementation
from the program that uses it.

A data structure
used to implement
the ADT

ADT

Data
 […, -3, -2, -1, 0, 1, 2, 3, …]

Operations
 Addition
 Subtraction
 …
 Equality
 Ordering
 Representation for printing

7 COMPSCI 107 - Computer Science Fundamentals

Data
 An unordered collection of unique elements

Operations
 Add
 Remove
 Union
 Intersection
 Complement

8 COMPSCI 107 - Computer Science Fundamentals

Data collection
 Position of the elements matters and is stable
 Two ends to the structure (front and back, first and last)

Different structures has different ways to add and remove elements

9 COMPSCI 107 - Computer Science Fundamentals

Ordered collection of data
 Addition of items and removal of items happens at the same end
 Top of the stack

Remove data in reverse order of data added
 Last in first out (LIFO)

Operations
 Push
 Pop
 Peek
 Is_empty
 Size

10 COMPSCI 107 - Computer Science Fundamentals

 Implementation using Python
list

What is the big-O of push()?

What is the big-O of pop()?

11 COMPSCI 107 - Computer Science Fundamentals

class StackV1:
 def __init__(self):
 self.items = []

 def is_empty(self):
 return self.items == []

 def push(self, item):
 self.items.insert(0,item)

 def pop(self):
 return self.items.pop(0)

 def size(self):
 return len(self.items)

 Implementation using Python
list

What is the big-O of push()?

What is the big-O of pop()?

12 COMPSCI 107 - Computer Science Fundamentals

class StackV2:
 def __init__(self):
 self.items = []

 def is_empty(self):
 return self.items == []

 def push(self, item):
 self.items.append(item)

 def pop(self):
 return self.items.pop()

 def size(self):
 return len(self.items)

Many computer languages use braces to signify start and end
 They need to be matched to be correct
 They need to be nested correctly

 Stacks can be used to determine correct use of braces

Algorithm:
 Add each open brace to the stack
 When a closing brace is encountered, check to see if a matching brace is on the top of

the stack
 When the last token is checked, the stack should be empty

13 COMPSCI 107 - Computer Science Fundamentals

Use a stack to check if the braces are used correctly in the following
strings. Show the state of the stack after each stack operation.

(())
(() (
[() { }]
[[()] [{ }])

14 COMPSCI 107 - Computer Science Fundamentals

To be done after class: Write a program that uses a Stack to check if
an input string has correctly matching braces

 check_braces(‘(this) [is] {best} ([done] {with} (stacks))’)

15 COMPSCI 107 - Computer Science Fundamentals

 Standard mathematics represents expressions using infix notation
 Operators appear between the operands

Postfix notation puts the operator after the operands
 No brackets are needed to specify order of precedence

16 COMPSCI 107 - Computer Science Fundamentals

4 + 5
operand operand

operator

4 5 +

Convert the following infix expressions into postfix notation

4 * 5 – 2 * 8 – 1

1 – 4 + 2 * 3 * 5

9 – 6 / 4 + 2 * (2 + 3)

2 * ((4 + 2) * 3 + 2) – 1

17 COMPSCI 107 - Computer Science Fundamentals

A stack can be used in the algorithm to convert infix to postfix
 Divide expression into tokens
 Operators: +. -, *, /
 Operands: single digits
 Other tokens: brackets

18 COMPSCI 107 - Computer Science Fundamentals

Create a stack to store operators and a list for the output tokens
 Scan the tokens from left to right
 If the token is an operand, add it to the output list
 If the token is a left parenthesis, push it to the operator stack
 If the token is a right parenthesis, pop the operator stack until the

left parenthesis is removed. Append each operator to the output
list
 If the token is an operator, push it onto the operator stack. But first,

remove any operators that have higher or equal precedence and
append them to the output list
When there are no more tokens, remove operators on the stack and

append to the output list

19 COMPSCI 107 - Computer Science Fundamentals

 Show the operator stack and the output list at every step as the
following infix expression is converted to postfix

20 COMPSCI 107 - Computer Science Fundamentals

12 / (3 + 4) * 2 + 4

Create an empty stack
 Scan the list of tokens from left to right
 If the token is an operand, push it to the operand stack
 If the token is an operator, pop the stack twice
 The first element popped is the right operand
 The second element popped is the left operand

Apply the operator to the operands and push the result onto the
stack
When there are no more tokens, the stack should contain the result.

21 COMPSCI 107 - Computer Science Fundamentals

22 COMPSCI 107 - Computer Science Fundamentals

 Following the algorithm to evaluate postfix expressions, show the
operand stack, and the token being processed (at each step) as the
following postfix expression is evaluated:

7 12 8 9 - * 3 / +

	COMPSCI 107�Computer Science Fundamentals
	Software Engineering Design Principle
	Hide implementation within the module
	Abstraction
	Abstract Data Type (ADT)
	ADT
	ADT - Integers
	ADT - Set
	Linear Structure
	ADT - Stack
	Stack Implementation
	Stack Implementation
	Checking braces
	Exercise
	Exercise
	Postfix expressions
	Exercise
	Converting from infix to postfix
	Algorithm for converting infix to postfix
	Exercise
	Evaluating postfix expressions
	Exercise

