
Lecture 10 – Algorithm Analysis

Next number is sum of previous two numbers
 1, 1, 2, 3, 5, 8, 13, 21 …

Mathematical definition

2 COMPSCI 107 - Computer Science Fundamentals

Which of the following would you choose?
def fib_a(n):
 if n == 0 or n == 1:
 return n
 if n >= 2:
 return fib_a(n - 1) + fib_a(n - 2)

def fib_b(n):
 if n == 0 or n == 1:
 return n
 prev = 1
 prev_prev = 0
 for i in range(2, n+1):
 temp = prev + prev_prev
 prev_prev = prev
 prev = temp
 return prev

3 COMPSCI 107 - Computer Science Fundamentals

How long will it take for fib_a(100) to execute?

Fibonacci
number

Time taken

fib_a(n) fib_b(n)

10 < 0.001 second < 0.001 second

20 < 0.001 second < 0.001 second

30 1 second < 0.001 second

100 ??? < 0.001 second

4 COMPSCI 107 - Computer Science Fundamentals

354,224,848,179,261,915,075 100

2,880,067,194,370,816,120 90

23,416,728,348,467,685 80

190,392,490,709,135 70

1,548,008,755,920 60

12,586,269,025 50

102,334,155 40

832,040 30

6,765 20

10

9

8

7

6

5

4

3

2

55

34

21

13

8

5

3

2

1

5 COMPSCI 107 - Computer Science Fundamentals

Analyse performance
 How much of a given resource do we use?
 Space (memory)
 Time

We are going to be mainly interested in how long our programs take

to run, as time is generally a more precious resource than space.

6 COMPSCI 107 - Computer Science Fundamentals

Three considerations
 How are the algorithms encoded?
 What computer will they be running on?
 What data will be processed?

Analysis should be independent of specific
 Coding,
 Computers, or
 Data

How do we do it?
 Count the number of basic operations and generalise the count

7 COMPSCI 107 - Computer Science Fundamentals

 Sum the first 10 element of a list

def count_operations1(items):
 sum = 0
 index = 0
 while index < 10:
 sum = sum + items[index]
 index += 1

 return sum

1 assignment
1 assignment
11 comparisons
10 assignments
10 assignments

1 return

Total: 34

8 COMPSCI 107 - Computer Science Fundamentals

 Sum the elements in a list

We express the time as a function of problem size

def count_operations2(items):
 sum = 0
 index = 0
 while index < len(items):
 sum = sum + items[index]
 index += 1

 return sum

1 assignment
1 assignment
N + 1 comparisons
N assignments
N assignments

1 return

Total: 3n + 5

9 COMPSCI 107 - Computer Science Fundamentals

 For each of the following, how many operations are required
(express in terms of N where possible)?
1. Adding an element to the beginning of a list containing n elements
2. Printing each element of a list containing n elements,
3. Adding a single element to a list using the append() function.
4. Performing a nested loop where the outer loop is executed n times and the inner

loop is executed 10 times. For example, printing out the times tables for all integer
values between 1 and n

10 COMPSCI 107 - Computer Science Fundamentals

Assume that we have 5 different algorithms that are functionally
equivalent. The time taken to execute each algorithm is described
by the respective functions below. Which algorithm would you
choose and why?

 (a) T(n) = n3 + 4n + 7
 (b) T(n) = 20n + 2
 (c) T(n) = 3n2 + 2n + 23
 (d) T(n) = 1,345,778
 (e) T(n) = 3log2n + 2n

11 COMPSCI 107 - Computer Science Fundamentals

 For small problem sizes, most code runs extremely fast
 When we do care about small problem sizes, we can do detailed analysis and measure

empirically

However, running well when the problem is small doesn’t mean the

code will run well when the problem gets bigger
 Scalability is critically important
 Interested in the order of magnitude of the running time

Can analyse in different levels of detail
 Crude estimates are good enough

12 COMPSCI 107 - Computer Science Fundamentals

Ru
nn

in
g

 ti
m

e

Problem size

13 COMPSCI 107 - Computer Science Fundamentals

We can describe the running time of an algorithm mathematically
 Simply count the number of instructions executed

def peek(a):
 #return the first item
 return a[0]

def pop(a):
 #remove and return the first item
 firstItem = a[0]
 for i in range(1,len(a)):
 a[i-1] = a[i]
 return firstItem

14 COMPSCI 107 - Computer Science Fundamentals

 Linear time algorithm takes An + B
 Where A and B are implementation-specific constants

When n is large, An is a good approximation

 Since we know the relationship is linear, we can work out A for a

particular implementation if we need it.

 For large n, the difference between different order of magnitude is

huge – the other factors are insignificant

Therefore, we don’t need fine distinctions, only crude order of

magnitude
 15 COMPSCI 107 - Computer Science Fundamentals

We use Big O notation (capital letter O) to specify the complexity of
an algorithm e.g., O(n2) , O(n3) , O(n).

 If a problem of size n requires time that is directly proportional to N,

the problem is O(n)

 If the time requirement is directly proportional to n2, the problem is

O(n2)

16 COMPSCI 107 - Computer Science Fundamentals

f(n) Name
O(1) Constant
O(logn) Logarithmic
O(n) Linear
O(nlogn) Log Linear
O(n2) Quadratic
O(n3) Cubic
O(2n) Exponential

17 COMPSCI 107 - Computer Science Fundamentals

 Problem size

N
u
m
b
e
r

O
f

O
p
e
r
a
t
i
o
n
s

18 COMPSCI 107 - Computer Science Fundamentals



19 COMPSCI 107 - Computer Science Fundamentals

When considering the Big O for an algorithm, the Big O's can be
combined e.g.

O(n2) + O(n) = O(n2 + n)

O(n2) + O(n4) = O(n2 + n4)

20 COMPSCI 107 - Computer Science Fundamentals

When considering the Big O for an algorithm, any lower order terms
in the growth function can be ignored e.g.

O(n3 + n2 + n + 5000)

O(n + n2 + 5000)

O(1500000 + n)

= O(n3)

= O(n2)

= O(n)

21 COMPSCI 107 - Computer Science Fundamentals

O(254 * n2 + n)

O(546 * n)

= O(n2)

= O(n)

O(n / 456) = O((1/456) * n) = O(n)

When considering the Big O for an algorithm, any constant
multiplications in the growth function can be ignored e.g.

22 COMPSCI 107 - Computer Science Fundamentals

b) T(n) = n4 + n*log(n) + 3000n3

c) T(n) = 300n + 60 * n * log(n) + 342

a) T(n) = n + log(n)

What is the Big O of the following growth functions?

23 COMPSCI 107 - Computer Science Fundamentals

An algorithm can require different times to solve different problems
of the same size. For example, search for a particular element in an
array.

Average-case analysis: the average amount of time that an
algorithm requires to solve problems of size n

Worst-case analysis: the maximum amount of time that an
algorithm requires to solve problems of size n

Average performance and worst-case performance are the most
commonly used in algorithm analysis.

Best-case analysis: the minimum amount of time that an
algorithm requires to solve problems of size n

24 COMPSCI 107 - Computer Science Fundamentals

What is the big-O running time for the code:

 (a) O(1)
 (b) O(logn)
 (c) O(n)
 (d) O(n2)
 (e) None of the above

def question(n):
 count = 0
 for i in range(n):
 count += 1
 for j in range(n):
 count += 1
 return count

25 COMPSCI 107 - Computer Science Fundamentals

What is the big-O running time for the code:

 (a) O(1)
 (b) O(logn)
 (c) O(n)
 (d) O(n2)
 (e) None of the above

def question(n):
 count = 0
 for i in range(n):
 count += 1
 for j in range(n):
 count += 1
 return count

26 COMPSCI 107 - Computer Science Fundamentals

What is the big-O running time for the code:

 (a) O(1)
 (b) O(logn)
 (c) O(n)
 (d) O(n2)
 (e) None of the above

def question(n):
 count = 0
 for i in range(n):
 count += 1
 for j in range(10):
 count += 1
 return count

27 COMPSCI 107 - Computer Science Fundamentals

What is the big-O running time for the code:

 (a) O(1)
 (b) O(logn)
 (c) O(n)
 (d) O(n2)
 (e) None of the above

def question(n):
 count = 0
 for i in range(n):
 count += 1
 for j in range(i+1):
 count += 1
 return count

28 COMPSCI 107 - Computer Science Fundamentals

What is the big-O running time for the code:

 (a) O(1)
 (b) O(logn)
 (c) O(n)
 (d) O(n2)
 (e) None of the above

def question(n):
 i = 1
 count = 0
 while i < n:
 count += 1
 i = i * 2
 return count

29 COMPSCI 107 - Computer Science Fundamentals

What is the big-O running time for the code:

 (a) O(1)
 (b) O(logn)
 (c) O(n)
 (d) O(n2)
 (e) None of the above

def question(n):
 i = 1
 count = 0
 while i < n:
 count += 1
 i = i + 2
 return count

30 COMPSCI 107 - Computer Science Fundamentals

What is the big-O running time for the code:

 (a) O(1)
 (b) O(logn)
 (c) O(n)
 (d) O(n2)
 (e) None of the above

def question(n):
 count = 0
 for i in range (n):
 j = 0
 while j < n:
 count += 1
 j = j * 2
 return count

31 COMPSCI 107 - Computer Science Fundamentals

def exampleA(n):
 s = "PULL FACES"

 for i in range(n):
 print("I must not ", s)

 for j in range(n, 0, -1):
 print("I must not ", s)

What is the big-O running time for the following function?

32 COMPSCI 107 - Computer Science Fundamentals

def exampleB(n):
 s = "JUMP ON THE BED"

 for i in range(n):
 for j in range(i):
 print("I must not ", s)

What is the big-O running time for the following function?

33 COMPSCI 107 - Computer Science Fundamentals

def exampleC(n):
 s = "WHINGE"
 i = 1
 while i < n:
 for j in range(n):
 print("I must not ", s)

 i = i * 2

What is the big-O running time for the following function?

34 COMPSCI 107 - Computer Science Fundamentals

def exampleD(n):
 s = "PROCRASTINATE"

 for i in range(n):
 for j in range(n, 0, -1):
 outD(s, n / 2)

def outD(s, b):
 number_of_times = int(b % 10)
 for i in range(number_of_times):
 print(i, "I must not ", s)

What is the big-O running time for the following function?

35 COMPSCI 107 - Computer Science Fundamentals

def exampleF(n):
 s = "FORGET MY MOTHER’S BIRTHDAY"
 i = n
 while i > 0:
 outF(s)
 i = i // 2

def outF(s):
 for i in range(25, 0, -1):
 print(i, "I must not ", s)

What is the big-O running time for the following function?

36 COMPSCI 107 - Computer Science Fundamentals

 If a particular quadratic time algorithm uses 300 elementary
operations to process an input of size 10, what is the most likely
number of elementary operations it will use if given an input of size
1000.

 (a) 300 000 000
 (b) 3 000 000
 (c) 300 000
 (d) 30 000
 (e) 3 000

37 COMPSCI 107 - Computer Science Fundamentals

You know that a given algorithm runs in O(2n) time. If your
computer can process input of size 10000 in one year using an
implementation of this algorithm, approximately what size input
could you solve in one year with a computer 1000 times faster?

38 COMPSCI 107 - Computer Science Fundamentals

39 COMPSCI 107 - Computer Science Fundamentals

	COMPSCI 107�Computer Science Fundamentals
	Fibonacci numbers
	Question
	Empirical testing
	Fibonacci numbers
	Comparing Algorithms
	Analysing time to run an algorithm
	Example
	Example
	Exercise
	Exercise
	Efficiency – we care most about scalability
	Growth rates of common time-complexity functions
	Describing time-complexity
	Ignore constant factors
	Big-O
	Common big-O functions
	Comparison of Growth Rates
	Comparison of Growth Rates
	Properties of Big O
	Properties of Big O
	Properties of Big O
	Exercise
	Worst-case and average-case analyses
	Exercise
	Exercise
	Exercise
	Exercise
	Exercise
	Exercise
	Exercise
	Exercise
	Exercise
	Exercise
	Exercise
	Exercise
	Challenge Question
	Challenge Question
	ChallengeQuestion

