
Lecture 09 – Classes

At the end of this lecture, students should be able to:
 Define a new class
 Store state information about instances of the class
 Define new methods of the class
 Override the default behaviour for standard operations

2 COMPSCI 107 - Computer Science Fundamentals

Python has a number of classes built-in
 lists, dictionaries, sets, int, float, boolean, strings

We can define our own classes
 creates a new type of object in Python

Classes consist of:
 state variables (sometimes called instance variables)
 methods (functions that are linked to a particular instance of the class)

3 COMPSCI 107 - Computer Science Fundamentals

class name_of_the_class:

 definition of the class goes here

Defining and using a simple class

4 COMPSCI 107 - Computer Science Fundamentals

class Point:
 def __init__(self, loc_x, loc_y):
 self.x = loc_x
 self.y = loc_y

>>> origin = Point(0, 0)
>>> destination = Point(34, 65)
>>> destination.x
34
>>> destination.y
65

A class provides the definition for the type of an object
 Classes can store information in variables
 Classes can provide methods that do something with the information

Example: A square class

5 COMPSCI 107 - Computer Science Fundamentals

class Square:

 def __init__(self, s):
 self.size = s

from Geometry import Square

side = 10
s = Square(side)

Task: Add a method to the class to calculate the perimeter of the
square. The following code shows how the method may be used.

6 COMPSCI 107 - Computer Science Fundamentals

from Geometry import Square

side = 10
s = Square(side)
p = s.perimeter()

class Square:
 def __init__(self, s):
 self.size = s

 def perimeter(self):
 return self.size * 4

Add a method to the class to return a square that is bigger by a
scaling factor. For example, if you scale the square by a factor of 2,
then the sides of the square will be twice as long. The following
code shows how the method may be used.

7 COMPSCI 107 - Computer Science Fundamentals

from Geometry import Square

side = 10
s = Square(side)
big_s = s.scaled_square(2)

Write a function that compares the size of two squares given as
parameters. This function should not be part of the Square class.

8 COMPSCI 107 - Computer Science Fundamentals

def is_bigger(a, b):
 #returns true if a is larger than b
 #add your code here

Add a method to the Square class that compares the size of the
square with the size of another square. The method should be
called bigger_than() and should accept a square as a parameter

9 COMPSCI 107 - Computer Science Fundamentals

from Geometry import Square

s = Square(6)
t = Square(7)
if s.bigger_than(t):
 print(“The first square is bigger”)

Write a class to represent fractions in Python
 create a fraction
 add
 subtract
 multiply
 divide
 text representation

10 COMPSCI 107 - Computer Science Fundamentals

½ numerator
denominator

11 COMPSCI 107 - Computer Science Fundamentals

methods

state
num:

den:

7

8

methods

state
num:

den:

3

4
methods

state
num:

den:

1

2

x

y

z

All classes must have a constructor
 The constructor for a Fraction should store the numerator and the denominator

12 COMPSCI 107 - Computer Science Fundamentals

class Fraction:
 def __init__(self, top, bottom):
 self.num = top #numerator
 self.den = bottom #denominator

 So far, we can create a Fraction

We can access the state variables directly
 Although not generally good practice to do so

What else can we do with Fractions?
 Nothing yet. We need to write the functions first!

13 COMPSCI 107 - Computer Science Fundamentals

>>> x.num
3
>>> x.den
4

>>> x = Fraction(3, 4)

All classes get a number of methods provided by default
 Since default behaviour is not very useful, we should write our own versions of those

methods

14 COMPSCI 107 - Computer Science Fundamentals

Often we want to use a string that combines literal text and
information from variables

Example:

We can use string formatting to perform this task
 Use curly braces within the string to signify a variable to be replaced

 We can put the argument position in the curly braces

15 COMPSCI 107 - Computer Science Fundamentals

name = 'Andrew'
greeting = 'Hello ' + name + '. How are you?'

my_name = 'Andrew'
greeting = 'Hello {name}. How are you?'.format(name=my_name)

first = 'Andrew'
second = 'Luxton-Reilly'
greeting = 'Hello {0} {1}'.format(first, second)

What is the output from the following code:

Rewrite the code so that it uses explicit variable names in the string.

16 COMPSCI 107 - Computer Science Fundamentals

sentence = 'Hello {2}. It is {0} today and it is {1}.'.format('Andrew', 'Wednesday', 'Cold')

The __repr__ method produces an string that unambiguously
describes the object
 All classes should have a __repr__ function implemented
 Ideally, the representation could be used to create the object
 For example, a fraction created using Fraction(2, 3) should have a __repr__ method that

returned 'Fraction(2, 3)'

17 COMPSCI 107 - Computer Science Fundamentals

 def __repr__(self):
 return 'Fraction({0}, {1})'.format(self.num, self.den)

>>> x = Fraction(2, 3)
>>> x
<__main__.Fraction object at 0x02762290>

>>> x = Fraction(2, 3)
>>> x
Fraction(2, 3)

The __str__ method returns a string representing the object
 By default, it calls the __repr__ method
 The __str__ method should focus on being human readable

We should implement a version with a natural representation:

After we have implemented the method, we can use standard

Python

18 COMPSCI 107 - Computer Science Fundamentals

>>> x = Fraction(3, 4)
>>> print(x)
<__main__.Fraction object at 0x02714290>

 def __str__(self):
 return str(self.num) + '/' + str(self.den)

>>> x = Fraction(3, 4)
>>> print(x)
3/4

Write the __repr__ method for the Square class created earlier.

Would it be useful to implement a __str__ method?

What would you choose to produce as output from a __str__

method?

19 COMPSCI 107 - Computer Science Fundamentals

The __add__ method is called when the + operator is used
 If we implement __add__ then we can use + to add the objects
 f1 + f2 gets translated into f1.__add__(f2)

20 COMPSCI 107 - Computer Science Fundamentals

x = Fraction(1, 2)
y = Fraction(1, 4)
z = x + y
print(z)
6/8

 def __add__(self, other):
 new_num = self.num * other.den + self.den * other.num
 new_den = self.den * other.den
 return Fraction(new_num, new_den)

Use Euclid's Algorithm
 Given two numbers, n and m, find the number k, such that k is the largest number that

evenly divides both n and m.

21 COMPSCI 107 - Computer Science Fundamentals

def gcd(m, n):
 while m % n != 0:
 old_m = m
 old_n = n
 m = old_n
 n = old_m % old_n
 return n

We can improve the constructor so that it always represents a
fraction using the "lowest terms" form.
 What other things might we want to add to a Fraction?

22 COMPSCI 107 - Computer Science Fundamentals

class Fraction:
 def __init__(self, top, bottom):
 common = Fraction.gcd(top, bottom) #get largest common term
 self.num = top // common #numerator
 self.den = bottom // common #denominator

 def gcd(m, n):
 while m % n != 0:
 old_m = m
 old_n = n
 m = old_n
 n = old_m % old_n
 return n

The __eq__ method checks equality of the objects
 Default behaviour is to compare the references
 We want to compare the contents

23 COMPSCI 107 - Computer Science Fundamentals

 def __eq__(self, other):
 return self.num * other.den == other.num * self.den

What is the output of the following code?

24 COMPSCI 107 - Computer Science Fundamentals

x = Fraction(2, 3)
y = Fraction(1, 3)
z = y + y
print(x == z)
print(x is z)
w = x + y
print(w == 1)

Check the type of the other operand
 If the type is not a Fraction, then not equal?
 What other decisions could we make for equality?

25 COMPSCI 107 - Computer Science Fundamentals

 def __eq__(self, other):
 if not isinstance(other, Fraction):
 return False
 return self.num * other.den == other.num * self.den

Check the type of the other operand
 If the type is an integer, then compare against our Fraction

26 COMPSCI 107 - Computer Science Fundamentals

def __eq__(self, other):
 # Add your code to compare the Fraction with an int

 if not isinstance(other, Fraction):
 return False
 return self.num * other.den == other.num * self.den

Many standard operators and funtions:
https://docs.python.org/3.4/library/operator.html

 Common Arithmetic operators
 object.__add__(self, other)
 object.__sub__(self, other)
 object.__mul__(self, other)
 object.__truediv__(self, other)

 Common Relational operators
 object.__lt__(self, other)
 object.__le__(self, other)
 object.__eq__(self, other)
 object.__ne__(self, other)
 object.__gt__(self, other)
 object.__ge__(self, other)

27 COMPSCI 107 - Computer Science Fundamentals

Inplace arithmetic operators
• object.__iadd__(self, other)
• object.__isub__(self, other)
• object.__imul__(self, other)
• object.__itruediv__(self, other)

All types in Python are defined in a class
 All operators are translated into a method call
 All "standard" Python functions are translated into method calls
 When we write our own classes, we can define behaviour for standard operators

28 COMPSCI 107 - Computer Science Fundamentals

	COMPSCI 107�Computer Science Fundamentals
	Learning outcomes
	Classes
	Example: Point class
	Classes
	Example
	Exercise
	Exercise
	Exercise
	Example: Fractions
	Model of objects in memory
	Constructor
	Using the Fraction class
	Overriding default behaviour
	Aside: Use of string formatting syntax
	Exercise
	__repr__
	__str__
	Exercise
	__add__
	Greatest Common Divisor
	Improve the constructor
	__eq__
	Exercise
	Improving __eq__
	Exercise
	Other standard Python operators
	Summary

