
Lecture 09 – Classes

At the end of this lecture, students should be able to:
 Define a new class
 Store state information about instances of the class
 Define new methods of the class
 Override the default behaviour for standard operations

2 COMPSCI 107 - Computer Science Fundamentals

Python has a number of classes built-in
 lists, dictionaries, sets, int, float, boolean, strings

We can define our own classes
 creates a new type of object in Python

Classes consist of:
 state variables (sometimes called instance variables)
 methods (functions that are linked to a particular instance of the class)

3 COMPSCI 107 - Computer Science Fundamentals

class name_of_the_class:

 definition of the class goes here

Defining and using a simple class

4 COMPSCI 107 - Computer Science Fundamentals

class Point:
 def __init__(self, loc_x, loc_y):
 self.x = loc_x
 self.y = loc_y

>>> origin = Point(0, 0)
>>> destination = Point(34, 65)
>>> destination.x
34
>>> destination.y
65

A class provides the definition for the type of an object
 Classes can store information in variables
 Classes can provide methods that do something with the information

Example: A square class

5 COMPSCI 107 - Computer Science Fundamentals

class Square:

 def __init__(self, s):
 self.size = s

from Geometry import Square

side = 10
s = Square(side)

Task: Add a method to the class to calculate the perimeter of the
square. The following code shows how the method may be used.

6 COMPSCI 107 - Computer Science Fundamentals

from Geometry import Square

side = 10
s = Square(side)
p = s.perimeter()

class Square:
 def __init__(self, s):
 self.size = s

 def perimeter(self):
 return self.size * 4

Add a method to the class to return a square that is bigger by a
scaling factor. For example, if you scale the square by a factor of 2,
then the sides of the square will be twice as long. The following
code shows how the method may be used.

7 COMPSCI 107 - Computer Science Fundamentals

from Geometry import Square

side = 10
s = Square(side)
big_s = s.scaled_square(2)

Write a function that compares the size of two squares given as
parameters. This function should not be part of the Square class.

8 COMPSCI 107 - Computer Science Fundamentals

def is_bigger(a, b):
 #returns true if a is larger than b
 #add your code here

Add a method to the Square class that compares the size of the
square with the size of another square. The method should be
called bigger_than() and should accept a square as a parameter

9 COMPSCI 107 - Computer Science Fundamentals

from Geometry import Square

s = Square(6)
t = Square(7)
if s.bigger_than(t):
 print(“The first square is bigger”)

Write a class to represent fractions in Python
 create a fraction
 add
 subtract
 multiply
 divide
 text representation

10 COMPSCI 107 - Computer Science Fundamentals

½ numerator
denominator

11 COMPSCI 107 - Computer Science Fundamentals

methods

state
num:

den:

7

8

methods

state
num:

den:

3

4
methods

state
num:

den:

1

2

x

y

z

All classes must have a constructor
 The constructor for a Fraction should store the numerator and the denominator

12 COMPSCI 107 - Computer Science Fundamentals

class Fraction:
 def __init__(self, top, bottom):
 self.num = top #numerator
 self.den = bottom #denominator

 So far, we can create a Fraction

We can access the state variables directly
 Although not generally good practice to do so

What else can we do with Fractions?
 Nothing yet. We need to write the functions first!

13 COMPSCI 107 - Computer Science Fundamentals

>>> x.num
3
>>> x.den
4

>>> x = Fraction(3, 4)

All classes get a number of methods provided by default
 Since default behaviour is not very useful, we should write our own versions of those

methods

14 COMPSCI 107 - Computer Science Fundamentals

Often we want to use a string that combines literal text and
information from variables

Example:

We can use string formatting to perform this task
 Use curly braces within the string to signify a variable to be replaced

 We can put the argument position in the curly braces

15 COMPSCI 107 - Computer Science Fundamentals

name = 'Andrew'
greeting = 'Hello ' + name + '. How are you?'

my_name = 'Andrew'
greeting = 'Hello {name}. How are you?'.format(name=my_name)

first = 'Andrew'
second = 'Luxton-Reilly'
greeting = 'Hello {0} {1}'.format(first, second)

What is the output from the following code:

Rewrite the code so that it uses explicit variable names in the string.

16 COMPSCI 107 - Computer Science Fundamentals

sentence = 'Hello {2}. It is {0} today and it is {1}.'.format('Andrew', 'Wednesday', 'Cold')

The __repr__ method produces an string that unambiguously
describes the object
 All classes should have a __repr__ function implemented
 Ideally, the representation could be used to create the object
 For example, a fraction created using Fraction(2, 3) should have a __repr__ method that

returned 'Fraction(2, 3)'

17 COMPSCI 107 - Computer Science Fundamentals

 def __repr__(self):
 return 'Fraction({0}, {1})'.format(self.num, self.den)

>>> x = Fraction(2, 3)
>>> x
<__main__.Fraction object at 0x02762290>

>>> x = Fraction(2, 3)
>>> x
Fraction(2, 3)

The __str__ method returns a string representing the object
 By default, it calls the __repr__ method
 The __str__ method should focus on being human readable

We should implement a version with a natural representation:

After we have implemented the method, we can use standard

Python

18 COMPSCI 107 - Computer Science Fundamentals

>>> x = Fraction(3, 4)
>>> print(x)
<__main__.Fraction object at 0x02714290>

 def __str__(self):
 return str(self.num) + '/' + str(self.den)

>>> x = Fraction(3, 4)
>>> print(x)
3/4

Write the __repr__ method for the Square class created earlier.

Would it be useful to implement a __str__ method?

What would you choose to produce as output from a __str__

method?

19 COMPSCI 107 - Computer Science Fundamentals

The __add__ method is called when the + operator is used
 If we implement __add__ then we can use + to add the objects
 f1 + f2 gets translated into f1.__add__(f2)

20 COMPSCI 107 - Computer Science Fundamentals

x = Fraction(1, 2)
y = Fraction(1, 4)
z = x + y
print(z)
6/8

 def __add__(self, other):
 new_num = self.num * other.den + self.den * other.num
 new_den = self.den * other.den
 return Fraction(new_num, new_den)

Use Euclid's Algorithm
 Given two numbers, n and m, find the number k, such that k is the largest number that

evenly divides both n and m.

21 COMPSCI 107 - Computer Science Fundamentals

def gcd(m, n):
 while m % n != 0:
 old_m = m
 old_n = n
 m = old_n
 n = old_m % old_n
 return n

We can improve the constructor so that it always represents a
fraction using the "lowest terms" form.
 What other things might we want to add to a Fraction?

22 COMPSCI 107 - Computer Science Fundamentals

class Fraction:
 def __init__(self, top, bottom):
 common = Fraction.gcd(top, bottom) #get largest common term
 self.num = top // common #numerator
 self.den = bottom // common #denominator

 def gcd(m, n):
 while m % n != 0:
 old_m = m
 old_n = n
 m = old_n
 n = old_m % old_n
 return n

The __eq__ method checks equality of the objects
 Default behaviour is to compare the references
 We want to compare the contents

23 COMPSCI 107 - Computer Science Fundamentals

 def __eq__(self, other):
 return self.num * other.den == other.num * self.den

What is the output of the following code?

24 COMPSCI 107 - Computer Science Fundamentals

x = Fraction(2, 3)
y = Fraction(1, 3)
z = y + y
print(x == z)
print(x is z)
w = x + y
print(w == 1)

Check the type of the other operand
 If the type is not a Fraction, then not equal?
 What other decisions could we make for equality?

25 COMPSCI 107 - Computer Science Fundamentals

 def __eq__(self, other):
 if not isinstance(other, Fraction):
 return False
 return self.num * other.den == other.num * self.den

Check the type of the other operand
 If the type is an integer, then compare against our Fraction

26 COMPSCI 107 - Computer Science Fundamentals

def __eq__(self, other):
 # Add your code to compare the Fraction with an int

 if not isinstance(other, Fraction):
 return False
 return self.num * other.den == other.num * self.den

Many standard operators and funtions:
https://docs.python.org/3.4/library/operator.html

 Common Arithmetic operators
 object.__add__(self, other)
 object.__sub__(self, other)
 object.__mul__(self, other)
 object.__truediv__(self, other)

 Common Relational operators
 object.__lt__(self, other)
 object.__le__(self, other)
 object.__eq__(self, other)
 object.__ne__(self, other)
 object.__gt__(self, other)
 object.__ge__(self, other)

27 COMPSCI 107 - Computer Science Fundamentals

Inplace arithmetic operators
• object.__iadd__(self, other)
• object.__isub__(self, other)
• object.__imul__(self, other)
• object.__itruediv__(self, other)

All types in Python are defined in a class
 All operators are translated into a method call
 All "standard" Python functions are translated into method calls
 When we write our own classes, we can define behaviour for standard operators

28 COMPSCI 107 - Computer Science Fundamentals

	COMPSCI 107�Computer Science Fundamentals
	Learning outcomes
	Classes
	Example: Point class
	Classes
	Example
	Exercise
	Exercise
	Exercise
	Example: Fractions
	Model of objects in memory
	Constructor
	Using the Fraction class
	Overriding default behaviour
	Aside: Use of string formatting syntax
	Exercise
	__repr__
	__str__
	Exercise
	__add__
	Greatest Common Divisor
	Improve the constructor
	__eq__
	Exercise
	Improving __eq__
	Exercise
	Other standard Python operators
	Summary

