
Lecture 09 – Classes 



At the end of this lecture, students should be able to: 
 Define a new class 
 Store state information about instances of the class 
 Define new methods of the class 
 Override the default behaviour for standard operations 
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Python has a number of classes built-in 
 lists, dictionaries, sets, int, float, boolean, strings 

 
We can define our own classes 
 creates a new type of object in Python 

 
 
 
 

Classes consist of: 
 state variables (sometimes called instance variables) 
 methods (functions that are linked to a particular instance of the class) 
 

 

3 COMPSCI 107 - Computer Science Fundamentals 

class name_of_the_class: 
     
    definition of the class goes here 



Defining and using a simple class 
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class Point: 
    def __init__(self, loc_x, loc_y): 
            self.x = loc_x 
            self.y = loc_y 

>>> origin = Point(0, 0) 
>>> destination = Point(34, 65) 
>>> destination.x 
34 
>>> destination.y 
65 



A class provides the definition for the type of an object 
 Classes can store information in variables 
 Classes can provide methods that do something with the information 

 
Example: A square class 
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class Square: 
 
    def __init__(self, s): 
        self.size = s 

from Geometry import Square 
 
side = 10 
s = Square(side) 



Task:  Add a method to the class to calculate the perimeter of the 
square.  The following code shows how the method may be used. 
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from Geometry import Square 
 
side = 10 
s = Square(side) 
p = s.perimeter() 

class Square: 
    def __init__(self, s): 
        self.size = s 
 
    def perimeter(self): 
        return self.size * 4 



Add a method to the class to return a square that is bigger by a 
scaling factor.  For example, if you scale the square by a factor of 2, 
then the sides of the square will be twice as long. The following 
code shows how the method may be used. 
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from Geometry import Square 
 
side = 10 
s = Square(side) 
big_s = s.scaled_square(2) 



Write a function that compares the size of two squares given as 
parameters.  This function should not be part of the Square class. 
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def is_bigger(a, b): 
    #returns true if a is larger than b 
    #add your code here 



Add a method to the Square class that compares the size of the 
square with the size of another square.  The method should be 
called bigger_than() and should accept a square as a parameter 
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from Geometry import Square 
 
s = Square(6) 
t = Square(7) 
if s.bigger_than(t): 
    print(“The first square is bigger”) 



Write a class to represent fractions in Python 
 create a fraction 
 add 
 subtract 
 multiply 
 divide 
 text representation 
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½ numerator 
denominator 
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methods 
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All classes must have a constructor 
 The constructor for a Fraction should store the numerator and the denominator 
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class Fraction: 
    def __init__(self, top, bottom): 
        self.num = top             #numerator 
        self.den = bottom       #denominator 



 So far, we can create a Fraction 
 
 
We can access the state variables directly 
 Although not generally good practice to do so 

 
 
 
 
 
 

What else can we do with Fractions?   
 Nothing yet.  We need to write the functions first! 
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>>> x.num 
3 
>>> x.den 
4 

>>> x = Fraction(3, 4) 



All classes get a number of methods provided by default 
 Since default behaviour is not very useful, we should write our own versions of those 

methods 

 
 

14 COMPSCI 107 - Computer Science Fundamentals 



Often we want to use a string that combines literal text and 
information from variables 
 
Example: 
 
We can use string formatting to perform this task 
 Use curly braces within the string to signify a variable to be replaced 

 
 
 
 We can put the argument position in the curly braces 
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name = 'Andrew' 
greeting = 'Hello ' +  name + '. How are you?' 

my_name = 'Andrew' 
greeting = 'Hello {name}.  How are you?'.format(name=my_name) 

first = 'Andrew' 
second = 'Luxton-Reilly' 
greeting = 'Hello {0} {1}'.format(first, second) 



What is the output from the following code: 
 
 
 
Rewrite the code so that it uses explicit variable names in the string. 
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sentence = 'Hello {2}.  It is {0} today and it is {1}.'.format('Andrew', 'Wednesday', 'Cold') 



The __repr__ method produces an string that unambiguously 
describes the object 
 All classes should have a __repr__ function implemented 
 Ideally, the representation could be used to create the object 
 For example, a fraction created using Fraction(2, 3) should have a __repr__ method that 

returned 'Fraction(2, 3)' 
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 def __repr__(self): 
        return 'Fraction({0}, {1})'.format(self.num, self.den) 

>>> x = Fraction(2, 3) 
>>> x 
<__main__.Fraction object at 0x02762290> 

>>> x = Fraction(2, 3) 
>>> x 
Fraction(2, 3) 



The __str__ method returns a string representing the object 
 By default, it calls the __repr__ method 
 The __str__ method should focus on being human readable 

 
 
 
 

We should implement a version with a natural representation: 
 
 
After we have implemented the method, we can use standard 

Python 
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>>> x = Fraction(3, 4) 
>>> print(x) 
<__main__.Fraction object at 0x02714290> 

 def __str__(self): 
        return str(self.num) + '/' + str(self.den) 

>>> x = Fraction(3, 4) 
>>> print(x) 
3/4 



Write the __repr__ method for the Square class created earlier. 
 
Would it be useful to implement a __str__ method? 

 
What would you choose to produce as output from a __str__ 

method? 
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The __add__ method is called when the + operator is used 
 If we implement __add__ then we can use + to add the objects 
 f1 + f2 gets translated into f1.__add__(f2) 
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x = Fraction(1, 2) 
y = Fraction(1, 4) 
z = x + y 
print(z) 
6/8 

 def __add__(self, other): 
        new_num = self.num * other.den + self.den * other.num 
        new_den = self.den * other.den 
        return Fraction(new_num, new_den) 



Use Euclid's Algorithm 
 Given two numbers, n and m, find the number k, such that k is the largest number that 

evenly divides both n and m. 
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def gcd(m, n): 
        while m % n != 0: 
            old_m = m 
            old_n = n 
            m = old_n 
            n = old_m % old_n 
        return n 



We can improve the constructor  so that it always represents a 
fraction using the "lowest terms" form. 
 What other things might we want to add to a Fraction? 

 
 
 
 

22 COMPSCI 107 - Computer Science Fundamentals 

class Fraction: 
    def __init__(self, top, bottom): 
        common = Fraction.gcd(top, bottom)        #get largest common term 
        self.num = top // common            #numerator 
        self.den = bottom // common      #denominator 
 
    def gcd(m, n): 
        while m % n != 0: 
            old_m = m 
            old_n = n 
            m = old_n 
            n = old_m % old_n 
        return n 
 



The __eq__ method checks equality of the objects 
 Default behaviour is to compare the references 
 We want to compare the contents 
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 def __eq__(self, other): 
        return self.num * other.den == other.num * self.den 



What is the output of the following code? 
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x = Fraction(2, 3) 
y = Fraction(1, 3) 
z = y + y 
print(x == z) 
print(x is z) 
w = x + y 
print(w == 1) 



Check the type of the other operand 
 If the type is not a Fraction, then not equal? 
 What other decisions could we make for equality? 
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 def __eq__(self, other): 
        if not isinstance(other, Fraction): 
                return False 
        return self.num * other.den == other.num * self.den 



Check the type of the other operand 
 If the type is an integer, then compare against our Fraction 
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def __eq__(self, other): 
    # Add your code to compare the Fraction with an int 
     
    if not isinstance(other, Fraction): 
        return False 
    return self.num * other.den == other.num * self.den 



Many standard operators and funtions: 
https://docs.python.org/3.4/library/operator.html 

 
 Common Arithmetic operators 
 object.__add__(self, other) 
 object.__sub__(self, other)  
 object.__mul__(self, other)  
 object.__truediv__(self, other)  

 
 Common Relational operators 
 object.__lt__(self, other)  
 object.__le__(self, other)  
 object.__eq__(self, other)  
 object.__ne__(self, other)  
 object.__gt__(self, other)  
 object.__ge__(self, other)  
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Inplace arithmetic operators 
• object.__iadd__(self, other) 
• object.__isub__(self, other)  
• object.__imul__(self, other)  
• object.__itruediv__(self, other)  



All types in Python are defined in a class 
 All operators are translated into a method call 
 All "standard" Python functions are translated into method calls 
 When we write our own classes, we can define behaviour for standard operators 
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