
Introduction

2 COMPSCI 107 - Computer Science Fundamentals

3 COMPSCI 107 - Computer Science Fundamentals

4 COMPSCI 107 - Computer Science Fundamentals

ACM Special Interest Group in Computer Science Education

5 COMPSCI 107 - Computer Science Fundamentals

6 COMPSCI 107 - Computer Science Fundamentals

An efficient way to teach – not an effective way to learn

Research on learning:
 Actively doing something is effective
 Learning from peers is effective
 Critically evaluating your own performance is essential

8 COMPSCI 107 - Computer Science Fundamentals

What is effective?
 Actively doing something (bring laptop to class if possible)
 Critically evaluating yourselves
 Learning from peers

9 COMPSCI 107 - Computer Science Fundamentals

 Laboratories every week (starting week 2) ……… 25%
 Exercises during labs
 Exercises after labs(homework)

Mid-semester Test …………………………………………… 15%
 1st May 205, in class, during normal lecture time

 Final Exam ……………………………………………………….. 60%
 Date to be announced

10 COMPSCI 107 - Computer Science Fundamentals

Computer feedback
 Errors, testing, debugging

Automated marking
 CodeRunner – automated testing

 Laboratory feedback
 Demonstrators
 Group code review

11 COMPSCI 107 - Computer Science Fundamentals

 Lectures
 Overheads and recordings

 Forum
 Question and answers – peers, tutors and lecturers

Textbook
 Problem Solving with Algorithms and Data Structures
 Online, free, open source

Additional resources
 Python.org
 PythonTutor.com

12 COMPSCI 107 - Computer Science Fundamentals

Making informed choices about programming
 Building mental models of data storage and control flow
 Understanding the trade-offs

Focus on ways of storing and manipulating data
 Different ways of structuring data storage
 Efficiency
 Searching
 Sorting

Some new programming ideas
 Recursion
 Exceptions

13 COMPSCI 107 - Computer Science Fundamentals

Programs consist of one or more instructions

 Instructions are executed in a sequence

14 COMPSCI 107 - Computer Science Fundamentals

A simple storage box
 name of the box is the identifier
 stores only one thing at a time

 Information in a variable has a type
 boolean, integer, float, string
 you can perform different operations on different types of data

Values are stored in variables using an assignment statement

15 COMPSCI 107 - Computer Science Fundamentals

25

age

name = "Andrew"
age = 25

Conditional statements
 Change the flow of control
 Conditions must evaluate to true or false (boolean)
 Execute additional statements if condition is true

Used to make decisions

16 COMPSCI 107 - Computer Science Fundamentals

discount = 0.0
age = int(input("Enter your age: "))

if age >= 65:
 discount = 0.10
 print("You get a discount of {:.0%}".format(discount))

price = 35 * (1.0 - discount)
print("Your tickets cost: ${:.2f}".format(price))

 Loops
 Change the flow of control
 Execute a set of statements multiple times
 Branch when the condition is false

 Similar to a conditional
 but repeats the statements
 Python hides some of the details

17 COMPSCI 107 - Computer Science Fundamentals

tables = int(input("Enter the times tables: "))
print("===============")

for i in range(1, 11):
 print("{} x {} = {}".format(i, tables, i * tables))

print("===============")

 Functions (procedures, methods, subroutines) are a way to group
statements together as a unit
 An identifier is used to label the function (function name)
 Parameters make the code more general
 Code can return a value

18 COMPSCI 107 - Computer Science Fundamentals

def rectangle_area(width, height):
 area = width * height
 return area

function name function parameters

return value

Arrays
 Python hides these, but they are fundamentally important
 Single variable name refers to a sequence of variables
 Integer values used as an "index" to specify which variable in the sequence is required
 Position of the information in memory can be calculated using formula:

19 COMPSCI 107 - Computer Science Fundamentals

location = location_of_position_0 + index * memory_size_of_each_element

my_list = ["w", "p", "c", "g", "x", "a"]
print(my_list[0])
print(my_list[3])

Object oriented programming
 Defining a class (type)
 Group data and code operating on that data

Modular, reusable
 Separate interface from implementation

20 COMPSCI 107 - Computer Science Fundamentals

class coordinates:
 #Note, coordinates are (x, y) integer values on cartesian plane

 def __init__(self, x, y):
 self.x = x
 self.y = y

 def __repr__(self):
 return "({}, {})".format(self.x, self.y)

Testing code
 Use unit tests
 Check output of functions with a variety of input values
 Automate the testing process as much as possible

Defensive programming
 Anticipate incorrect data and handle the problem without causing runtime errors

Runtime errors
 Exception handling system

21 COMPSCI 107 - Computer Science Fundamentals

Used to compare different ways of working with data
 Interested in scalability – how does time increase with data increase?
 Write a formula that describes how much time it takes to execute a program in terms of

the number of data elements

22 COMPSCI 107 - Computer Science Fundamentals

 List with constrained access to data
 Stack adds and removes from the same end of the list
 Queue adds to one end and removes from the other end

 Stack
 Last In, First Out

Queue
 First in, First out

23 COMPSCI 107 - Computer Science Fundamentals

Array-based lists

 Singly linked lists

Doubly linked lists

24 COMPSCI 107 - Computer Science Fundamentals

Programming technique allowing problem solving

25 COMPSCI 107 - Computer Science Fundamentals

def fib(n):
 if n == 0 or n == 1:
 return n
 if n >= 2:
 return fib(n - 1) + fib(n - 2)

 Storing (key, value) pairs efficiently
 Take any key and convert into a number between 0 and N - 1
 Use an array of size N to store the value
 Deal with conflicts in a consistent way
 Very fast storage and access
 BUT – not appropriate for ordered data

26 COMPSCI 107 - Computer Science Fundamentals

Each key converted into an index value

 Linear search
 Look at each element
 Works with any kind of data

Binary search
 Halve the search space each time
 Works with ordered data

27 COMPSCI 107 - Computer Science Fundamentals

Different sorting algorithms have different trade-offs
 Overall efficiency
 Number of comparisons
 Number of swaps
 Nature of the data (sorted, unsorted)
 Stability

28 COMPSCI 107 - Computer Science Fundamentals

http://www.sorting-algorithms.com/

Recursive data storage
 Each node has links to other nodes

29 COMPSCI 107 - Computer Science Fundamentals

 Storing ordered data

30 COMPSCI 107 - Computer Science Fundamentals

Heap

Binary Search Tree

Pattern matching text data

31 COMPSCI 107 - Computer Science Fundamentals

 Introduction to structured programming using Python

 Focus on ways of storing and manipulating data
 data structures
 algorithms

Understanding tradeoffs

32 COMPSCI 107 - Computer Science Fundamentals

	COMPSCI 107�Computer Science Fundamentals
	Waiheke Island
	Philosophy
	Computer Science
	Research Interests
	My kids
	Research on lectures
	Research on learning
	Assessment
	Feedback
	Resources
	COMPSCI 107 Curriculum overview
	Programs
	Variables
	Selection
	Iteration
	Functions
	Structured data - arrays
	Encapsulating data
	Dealing with incorrect data
	Algorithm Analysis
	Stacks and queues
	Lists
	Recursion
	Hash tables
	Searching
	Sorting
	Trees
	Trees with useful properties
	Regular expressions
	Summary

