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ACM Special Interest Group in Computer Science Education 
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An efficient way to teach – not an effective way to learn 
 
Research on learning: 
 Actively doing something is effective 
 Learning from peers is effective 
 Critically evaluating your own performance is essential 
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What is effective? 
 Actively doing something (bring laptop to class if possible) 
 Critically evaluating yourselves 
 Learning from peers 
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 Laboratories every week (starting week 2)  ……… 25% 
 Exercises during labs 
 Exercises after labs(homework) 

 
Mid-semester Test …………………………………………… 15% 
 1st May 205, in class, during normal lecture time 

 
 Final Exam ……………………………………………………….. 60% 
 Date to be announced 
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Computer feedback 
 Errors, testing, debugging 

 
Automated marking 
 CodeRunner – automated testing 

 
 Laboratory feedback 
 Demonstrators 
 Group code review 
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 Lectures 
 Overheads and recordings 

 

 Forum 
 Question and answers – peers, tutors and lecturers 

 

Textbook 
 Problem Solving with Algorithms and Data Structures 
 Online, free, open source 

 

Additional resources 
 Python.org 
 PythonTutor.com 
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Making informed choices about programming 
 Building mental models of data storage and control flow 
 Understanding the trade-offs 

 
Focus on ways of storing and manipulating data 
 Different ways of structuring data storage 
 Efficiency 
 Searching 
 Sorting 

 
Some new programming ideas 
 Recursion 
 Exceptions 
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Programs consist of one or more instructions 
 
 Instructions are executed in a sequence 
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A simple storage box 
 name of the box is the identifier 
 stores only one thing at a time 

 

 Information in a variable has a type 
 boolean, integer, float, string 
 you can perform different operations on different types of data 

 
Values are stored in variables using an assignment statement 
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25 

age 

name = "Andrew" 
age = 25 



Conditional statements 
 Change the flow of control 
 Conditions must evaluate to true or false (boolean) 
 Execute additional statements if condition is true 

 
Used to make decisions 
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discount = 0.0 
age = int(input("Enter your age: ")) 
 
if age >= 65: 
    discount = 0.10 
    print("You get a discount of {:.0%}".format(discount)) 
 
price = 35 * (1.0 - discount) 
print("Your tickets cost: ${:.2f}".format(price)) 



 Loops 
 Change the flow of control 
 Execute a set of statements multiple times 
 Branch when the condition is false 

 
 Similar to a conditional 
 but repeats the statements 
 Python hides some of the details 
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tables = int(input("Enter the times tables: ")) 
print("===============") 
 
for i in range(1, 11): 
    print("{} x {} = {}".format(i, tables, i * tables)) 
 
print("===============") 



 Functions (procedures, methods, subroutines) are a way to group 
statements together as a unit 
 An identifier is used to label the function (function name) 
 Parameters make the code more general  
 Code can return a value 
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def rectangle_area(width, height): 
    area = width * height 
    return area 

function name function parameters 

return value 



Arrays 
 Python hides these, but they are fundamentally important 
 Single variable name refers to a sequence of variables 
 Integer values used as an "index" to specify which variable in the sequence is required 
 Position of the information in memory can be calculated using formula: 
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location = location_of_position_0 + index * memory_size_of_each_element 

my_list = ["w", "p", "c", "g", "x", "a"] 
print(my_list[0]) 
print(my_list[3]) 



Object oriented programming 
 Defining a class (type) 
 Group data and code operating on that data 
 

Modular, reusable 
 Separate interface from implementation 
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class coordinates: 
    #Note,  coordinates are (x, y) integer values on cartesian plane 
 
    def __init__(self, x, y): 
        self.x = x 
        self.y = y 
 
    def __repr__(self): 
        return "({}, {})".format(self.x, self.y) 



Testing code 
 Use unit tests 
 Check output of functions with a variety of input values 
 Automate the testing process as much as possible 

 
Defensive programming 
 Anticipate incorrect data and handle the problem without causing runtime errors 

 
Runtime errors 
 Exception handling system  
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Used to compare different ways of working with data 
 Interested in scalability – how does time increase with data increase? 
 Write a formula that describes how much time it takes to execute a program in terms of 

the number of data elements 
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 List with constrained access to data  
 Stack adds and removes from the same end of the list 
 Queue adds to one end and removes from the other end 

 

 Stack  
 Last In, First Out 

 
 
 
 

Queue 
 First in, First out 
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Array-based lists 
 

 

 Singly linked lists 
 
 
 
Doubly linked lists 
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Programming technique allowing problem solving 
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def fib(n): 
    if n == 0 or n == 1: 
        return n 
    if n >= 2: 
        return fib(n - 1) + fib(n - 2) 



 Storing (key, value) pairs efficiently 
 Take any key and convert into a number between 0 and N - 1 
 Use an array of size N to store the value 
 Deal with conflicts in a consistent way 
 Very fast storage and access 
 BUT – not appropriate for ordered data 
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Each key converted into an index value  



 Linear search 
 Look at each element 
 Works with any kind of data 

 
Binary search 
 Halve the search space each time 
 Works with ordered data 
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Different sorting algorithms have different trade-offs 
 Overall efficiency 
 Number of comparisons 
 Number of swaps 
 Nature of the data (sorted, unsorted) 
 Stability 
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http://www.sorting-algorithms.com/ 



Recursive data storage 
 Each node has links to other nodes 
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 Storing ordered data 
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Heap 

Binary Search Tree 



Pattern matching text data 
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 Introduction to structured programming using Python 
 
 Focus on ways of storing and manipulating data 
 data structures 
 algorithms 

 

Understanding tradeoffs 
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