
Introduction

2 COMPSCI 107 - Computer Science Fundamentals

3 COMPSCI 107 - Computer Science Fundamentals

4 COMPSCI 107 - Computer Science Fundamentals

ACM Special Interest Group in Computer Science Education

5 COMPSCI 107 - Computer Science Fundamentals

6 COMPSCI 107 - Computer Science Fundamentals

An efficient way to teach – not an effective way to learn

Research on learning:
 Actively doing something is effective
 Learning from peers is effective
 Critically evaluating your own performance is essential

8 COMPSCI 107 - Computer Science Fundamentals

What is effective?
 Actively doing something (bring laptop to class if possible)
 Critically evaluating yourselves
 Learning from peers

9 COMPSCI 107 - Computer Science Fundamentals

 Laboratories every week (starting week 2) ……… 25%
 Exercises during labs
 Exercises after labs(homework)

Mid-semester Test …………………………………………… 15%
 1st May 205, in class, during normal lecture time

 Final Exam ……………………………………………………….. 60%
 Date to be announced

10 COMPSCI 107 - Computer Science Fundamentals

Computer feedback
 Errors, testing, debugging

Automated marking
 CodeRunner – automated testing

 Laboratory feedback
 Demonstrators
 Group code review

11 COMPSCI 107 - Computer Science Fundamentals

 Lectures
 Overheads and recordings

 Forum
 Question and answers – peers, tutors and lecturers

Textbook
 Problem Solving with Algorithms and Data Structures
 Online, free, open source

Additional resources
 Python.org
 PythonTutor.com

12 COMPSCI 107 - Computer Science Fundamentals

Making informed choices about programming
 Building mental models of data storage and control flow
 Understanding the trade-offs

Focus on ways of storing and manipulating data
 Different ways of structuring data storage
 Efficiency
 Searching
 Sorting

Some new programming ideas
 Recursion
 Exceptions

13 COMPSCI 107 - Computer Science Fundamentals

Programs consist of one or more instructions

 Instructions are executed in a sequence

14 COMPSCI 107 - Computer Science Fundamentals

A simple storage box
 name of the box is the identifier
 stores only one thing at a time

 Information in a variable has a type
 boolean, integer, float, string
 you can perform different operations on different types of data

Values are stored in variables using an assignment statement

15 COMPSCI 107 - Computer Science Fundamentals

25

age

name = "Andrew"
age = 25

Conditional statements
 Change the flow of control
 Conditions must evaluate to true or false (boolean)
 Execute additional statements if condition is true

Used to make decisions

16 COMPSCI 107 - Computer Science Fundamentals

discount = 0.0
age = int(input("Enter your age: "))

if age >= 65:
 discount = 0.10
 print("You get a discount of {:.0%}".format(discount))

price = 35 * (1.0 - discount)
print("Your tickets cost: ${:.2f}".format(price))

 Loops
 Change the flow of control
 Execute a set of statements multiple times
 Branch when the condition is false

 Similar to a conditional
 but repeats the statements
 Python hides some of the details

17 COMPSCI 107 - Computer Science Fundamentals

tables = int(input("Enter the times tables: "))
print("===============")

for i in range(1, 11):
 print("{} x {} = {}".format(i, tables, i * tables))

print("===============")

 Functions (procedures, methods, subroutines) are a way to group
statements together as a unit
 An identifier is used to label the function (function name)
 Parameters make the code more general
 Code can return a value

18 COMPSCI 107 - Computer Science Fundamentals

def rectangle_area(width, height):
 area = width * height
 return area

function name function parameters

return value

Arrays
 Python hides these, but they are fundamentally important
 Single variable name refers to a sequence of variables
 Integer values used as an "index" to specify which variable in the sequence is required
 Position of the information in memory can be calculated using formula:

19 COMPSCI 107 - Computer Science Fundamentals

location = location_of_position_0 + index * memory_size_of_each_element

my_list = ["w", "p", "c", "g", "x", "a"]
print(my_list[0])
print(my_list[3])

Object oriented programming
 Defining a class (type)
 Group data and code operating on that data

Modular, reusable
 Separate interface from implementation

20 COMPSCI 107 - Computer Science Fundamentals

class coordinates:
 #Note, coordinates are (x, y) integer values on cartesian plane

 def __init__(self, x, y):
 self.x = x
 self.y = y

 def __repr__(self):
 return "({}, {})".format(self.x, self.y)

Testing code
 Use unit tests
 Check output of functions with a variety of input values
 Automate the testing process as much as possible

Defensive programming
 Anticipate incorrect data and handle the problem without causing runtime errors

Runtime errors
 Exception handling system

21 COMPSCI 107 - Computer Science Fundamentals

Used to compare different ways of working with data
 Interested in scalability – how does time increase with data increase?
 Write a formula that describes how much time it takes to execute a program in terms of

the number of data elements

22 COMPSCI 107 - Computer Science Fundamentals

 List with constrained access to data
 Stack adds and removes from the same end of the list
 Queue adds to one end and removes from the other end

 Stack
 Last In, First Out

Queue
 First in, First out

23 COMPSCI 107 - Computer Science Fundamentals

Array-based lists

 Singly linked lists

Doubly linked lists

24 COMPSCI 107 - Computer Science Fundamentals

Programming technique allowing problem solving

25 COMPSCI 107 - Computer Science Fundamentals

def fib(n):
 if n == 0 or n == 1:
 return n
 if n >= 2:
 return fib(n - 1) + fib(n - 2)

 Storing (key, value) pairs efficiently
 Take any key and convert into a number between 0 and N - 1
 Use an array of size N to store the value
 Deal with conflicts in a consistent way
 Very fast storage and access
 BUT – not appropriate for ordered data

26 COMPSCI 107 - Computer Science Fundamentals

Each key converted into an index value

 Linear search
 Look at each element
 Works with any kind of data

Binary search
 Halve the search space each time
 Works with ordered data

27 COMPSCI 107 - Computer Science Fundamentals

Different sorting algorithms have different trade-offs
 Overall efficiency
 Number of comparisons
 Number of swaps
 Nature of the data (sorted, unsorted)
 Stability

28 COMPSCI 107 - Computer Science Fundamentals

http://www.sorting-algorithms.com/

Recursive data storage
 Each node has links to other nodes

29 COMPSCI 107 - Computer Science Fundamentals

 Storing ordered data

30 COMPSCI 107 - Computer Science Fundamentals

Heap

Binary Search Tree

Pattern matching text data

31 COMPSCI 107 - Computer Science Fundamentals

 Introduction to structured programming using Python

 Focus on ways of storing and manipulating data
 data structures
 algorithms

Understanding tradeoffs

32 COMPSCI 107 - Computer Science Fundamentals

	COMPSCI 107�Computer Science Fundamentals
	Waiheke Island
	Philosophy
	Computer Science
	Research Interests
	My kids
	Research on lectures
	Research on learning
	Assessment
	Feedback
	Resources
	COMPSCI 107 Curriculum overview
	Programs
	Variables
	Selection
	Iteration
	Functions
	Structured data - arrays
	Encapsulating data
	Dealing with incorrect data
	Algorithm Analysis
	Stacks and queues
	Lists
	Recursion
	Hash tables
	Searching
	Sorting
	Trees
	Trees with useful properties
	Regular expressions
	Summary

