Computer Science Fundamentals 107
Lecture 23 Contents

Shell Sort — another n? sorting algorithm
Merge Sort — an n log(n) sorting algorithm

Textbook: Chapter 5

Note: we do not study quicksort in CompSci 107

Shell Sort or diminishing increment sort 2

Remember:

insertion sort does fewer comparisons than selection sort but it
does more moves.

insertion sort is very efficient if the elements to be sorted have
runs of sorted elements.

Shell sort
On average shell sort minimises moves and comparisons.

Shell sort is based on the insertion sort algorithm,

BUT: it makes comparisons and moves between

elements which are not contiguous (instead of
many small one step comparisons and moves)

Shell Sort or diminishing increment sort 3

Shell sort divides the list into lots of small lists, and does
an insertion sort on those elements e.g., for the following
list, say the gap (increment) used is 3

0 1 2 3 4 5 6

[19, 53, 22,47, 38, 21, 3]

Insertion Sort 19, 47, 3 ONE
Insertion Sort 53, 38 PASS
Insertion Sort 22, 21

0 1 2 3 4 5 6

[3, 38, 21, 19, 53, 22, 47]

Then keep reducing the gap (increment) until the gap
is 1.

The normal insertion sort algorithm uses a gap of 1.

Shell Sort or diminishing increment sort 4

Example from book (page 182). Start with a gap of 3.
Below shows the first pass (just one pass):

o | 1|23 |e|s|e|7]|sl|-

ital| L 54 |26|93|17|77 (3144|5520

start 0| by3 17 44 54 ONE
- 26 55 77 | pass
Start 2| by3 20 31 93

End of pass 1 17 |26 (20|44 55|31 (54|77 (93| |

Shell Sort or diminishing increment sort 5

Now using a gap of 1 (i.e., an ordinary insertion sort).
Below is the second (and last) pass:

End of pass 2 1720|2631 (44(54(55)77|93

—— e e

Notice: for this last pass, there were only four swaps
required (one move inserting 20, two moves inserting 31
and one move inserting 54).

o | 1| 2|3 |al|s|6]| 7] s
17126|20(44|55|31|54|77|93
L | ONE
Start 0| by1 17120|26(31|44|54|55|77|93 PASS

Customarily the gap size is halved (floor division - //) after each pass.

Shell Sort algorithm

Choose a gap size, do an insertion sort on all the sublists
using this chosen gap size (this is a total of one pass of
the collection), repeat using smaller gap sizes until finally
the gap size is one.

Generally, we choose a starting gap size of half the length
of the list and halve this gap size (floor division - //) after
each pass.

In practice, it turns out that only occasionally there are
small values on the right hand side. Therefore the final full
insertion sort needs to move very few elements on
average.

Shell Sort - Exercise

Start with a gap size of half the length of the list, halve
the gap size after each pass. Show the elements at the
end of each pass.

0 1 2 3 4 5 6 7 8

54 31 93 55 77 26 44 17 20 List to sort

PASS 1 —gap size 4

PASS 2 — gap size 2

PASS 3 —gap size 1

Shell sort — uses next slide code

def shell_sort(a_list):

def gap_insertion_sort(a_list, start, gap): #see next slide

def mainQ):
a_list = [54, 26, 93, 17, 77, 31, 44, 55, 20]
print("before: ", a_list)
shell_sortCa_list)
print("after: ", a_list)

main() before: [54, 26, 93, 17, 77, 31, 44, 55, 20]
after: [17, 20, 26, 31, 44, 54, 55, 77, 93]

Shell sort code continued

def gap_insertion_sort(a_list, start, gap):

def shell_sort(a_list): #see previous slide

def mainQ):
a_list = [54, 26, 93, 17, 77, 31, 44, 55, 20]
print("before: ", a_list)
shell_sort(a_list)

print("after: ",a_list)

main()

before: [54, 26, 93, 17, 77, 31, 44, 55, 20]
after: [17, 20, 26, 31, 44, 54, 55, 77, 93]

. 10
Shell Sort — Big O

This is an improvement on all the previous h? sorting

algorithms.

The Big O for shell sort can be shown to be between O(n)
and O(n?)

Choosing good values for the gaps can make the shell sort
performance noticeably better than O(n?).

Remember that insertion sort is quite good for sorting
small lists. Therefore making the sublists small and using
insertion sort for the small sublists makes this sort more
efficient.

Merge Sort

This is a divide and conquer algorithm.

Cut the list in half.
Sort each half.

Merge the two sorted halves.

You have already seen the divide and conquer algorithm using

binary search on a sorted collection of items.

11

12

Merge Sort

Below is the recursive call tree for the merge sort algorithm:

0 1 2 3 4 5 6 7 8

54|26|93|17|77|31|44|55|20

1. Cut the list in half

— — 2. Call mergesort with

sa]26] 93] 17 77]31]44]55] 20 each half
~a

-IN

3. Merge the two
sorted halves

0 2 3 4 5 6 7 8

54|26 93|17 77I31 44|55|20

/N N N

][]][] =] [7 s
Wl G o (] G ([l
4

°

[
B
w

13

Merge Sort

Below is the call tree showing the merged parts (the pink
parts) 'returned' by the mergesort algorithm:

1. Cut the list in half
[17]20]26]31]44]54]55] 77] 3]
54[26]93]17]77]31]44]55]20 2. Call mergesort with
7 ~ each half
Tkl (EEEEE
5426/ 93|17 77 31 44 55 20 3. Merge the two
A A A . sorted halves
[26]54] [17]e3] [31]77]
54|26 |93]17 77|31 44|55 20
A N AKX AN Vd AN
sa| 26| 93| 17| |77 [31] |4a 55| 20
AR
[5s]
55| 20

1

Code used - slicing lists

def slicing_lists_example():
listl = [54, 26, 93, 17, 20]
list2 = listl[:2]
list3 = listl[2:]
print(listl, list2, list3)
print(listl==1ist2, list2==1list3, listl==1list3)

def mainQ):
slicing_lists_example()

main()

[54, 26, 93, 17, 20] [54, 26] [93, 17, 20]
False False False

4

‘ Slicing will be useful when halving the list in the merge sort code.

Code used - initialising variables

def main():
i=j=k=20

main()

Same code.

def main(Q):

~ u. -
nmnu
(SIS S

main()

Merging the two halves of the list

def merge_two_halves(a_list, left_half, right_half):

def mainQ):
a=1[0, 0, 0, 0, 0, @]
merge_two_halvesCa, [54, 76, 93], [24, 98])
printCa)

main()

| [24, 54, 76, 93, 98]

6

7

Merging the two halves of the list

def merge_two_halves(a_list, left_half, right_half):
i=j=k=20
while i < len(left_half) and j < len(right_half):
if left_half[i] < right_half[j]:

18

Merge sort Code

def merge_sort(a_list): Use the
merge_two_halves()

function on slide 17
to merge the two
halves.

def mainQ):
a_list = [54, 26, 93, 17, 77, 31, 44, 55, 20]
print("before: ", a_list)
merge_sort(a_list)
print("after: ", a_list)
main() before: [54, 26, 93, 17, 77, 31, 44, 55, 20]
after: [17, 20, 26, 31, 44, 54, 55, 77, 93]

19

Merge Sort — Big O
In a similar way to the binary search algorithm we halve the
list every time the merge sort method is called (halve the

problem size). This gives us a recursive call tree with height
O(log n), i.e., for 2" elements there are n levels of calls.

At each level of the recursion, we have to merge the
values from the two sorted halves back together. This
moves every element in the list - O(n).

Big 0 is O(n log(n))

But there is a the disadvantage of having using extra space
when halving the list to pass to the recursive calls (if we use
splicing).

Recursive call tree for a

list of size 128 (27) MS(128)

/ \

MS(32) MS(32)
MS(16) | MS(16) Ms(16) [l MS(16) Ms(16) [MS(16) Ms(16) l MS(16)
[ms(e) [[mse) |[ms@) |[msS@) | [Ms@) |[Ms@) | [MsS@) |[MS(E) |

[Ms(e) |[mse) | [Ms(@) |[msS@) | [mS@) |[MSe)]
[Ms@) | [ms@)] [Ms@)] [MS@)] [(Ms()] [Ms@) | [MS@) |

[MS@) | [MS@) | [MS@)]| [MS()] [MS@) | [MS@) | [MS@) |
[Ms@) | [MS@) | [MS@) | [Ms@)] [MS@)] [MS@)] [MS@)] [MS@)]
[Ms@) | [Ms@) | [Ms@) | [Ms@) | [MS@)] [MS@)] [MS@)] [MS()]
[MS(2)] [MS(2)] [MS(2) |

MS(1) 4 128 calls to MS(

