
COMPSCI 105 S1 2017
Principles of Computer Science

Revision

Today’s lecture
 Topics
 Term Test Overview
 How to prepare for your test
 Revision/Exercises

2

Test Information
 The test is worth 15% of your final mark.
 Date: Monday 3rd April 2017
 Time: 6:15pm - 7:15pm (Please arrive by 6pm as you will be

given 5 minutes' reading time.)
 Read the instructions on filling out a Teleform sheet before

you go to the test
 How to fill out a Teleform sheet

 Please bring your Student Id card, a pencil and an eraser

3

Room Allocations
 You have been allocated one of these rooms in which to sit

the test, based on your surname. Please attend the test in the
room corresponding to your surname:
 PLT1/303-G20: Surname A – K
 HSB1/201N-346: Surname L – Z

4

Test Information
 Time Allowed: 1 hour
 Closed book, no calculator
 Calculators are NOT permitted.
 Please notify Angela if you have a test clash
 You must answer all questions in this exam.
 Answer Section A (Multiple choice questions) on the Teleform

answer sheet provided.
 Answer Section B in the space provided in this booklet.

 All material from the lectures, assignments and labs is relevant
unless specifically

 Both questions and answer choices may contain Python code.

5

Teleforms
 Fill in your Student ID Number in the STUDENT ID# section.
 Also fill in one column for each digit of your Student ID

Number.
 The example below shows a Student ID Number of 8677777

(with 7 digits)

6

Test Overview
 Section A: Multiple choice questions
 25 questions, total = 34 marks
 Topics:

 Python Programming - functions (3 questions)
 Lists (3 questions)
 List comprehensions (3 questions)
 Equality, references and mutability (2 questions)
 Classes (5 questions)
 Exceptions (4 questions)
 JSON (1 question)
 Complexity/Algorithm Analysis (4 questions)

7

Test Overview
 Section B: Short answer questions
 2 questions, total = 16 marks
 Question 26: 10 marks (Write a custom class)
 Question 27: 6 marks

 a) Write a function…
 b) Write a function…

8

Why MCQ
 Because multiple choice exams contain many questions, they

require students to be familiar with a much broader range of
material than open answer exams do

 Multiple choice exams also usually expect students to have a
greater familiarity with details

 Lower risk for students -
since there are more questions, misunderstanding/misreading
a question has less severe results

 Faster to mark (results are out earlier)

9

Test Technique
 Get enough sleep before the test
 Plan your exam – identify easy questions and do them first
 this boosts your confidence and avoids that you loose easy points

because you run out of time

 When reading the question cover up the answer choices
 anticipate answer before seeing the possible answers
 If you see expected answer circle it, but check out other answers if

one of them is better
 If you can’t answer a question (say, 1-2 min) come back to it later

 If you run out of time at the end, do informed guesses
 Don’t panic :
 remember that everyone has to answer the same questions...

10

Summary & Exercises
 Python Programming
 Sequences
 Lists
 List comprehensions
 Equality, references and mutability
 Classes
 Exceptions
 JSON
 Complexity/Algorithm Analysis

11

Python Programming
 Expression

 Arithmetic operators
 Relational operators >, >=, <, <=, ==
 Boolean operators and, or, not

 Conditionals
 Functions: name, arguments, return value

 Arguments: Default values

 Loops
 for, while
 The else clause
 Break, continue
 range

12

Python Operator Precedence

Lecture 01COMPSCI 10513

Operator Description
() Parentheses (grouping)

f(args...) Function call
x[index:index] Slicing

x[index] Subscription
x.attribute Attribute reference

** Exponentiation
~x Bitwise not

+x, -x Positive, negative
*, /, % Multiplication, division, remainder
+, - Addition, subtraction
<<, >> Bitwise shifts

& Bitwise AND
^ Bitwise XOR
| Bitwise OR

in, not in, is, is not,
<, <=, >, >=,

<>, !=, ==
Comparisons, membership, identity

not x Boolean NOT
and Boolean AND
or Boolean OR

lambda Lambda expression

Sequences
 Mutable & Immutable
 An immutable object is an object whose state cannot be modified after it

is created
 Immutable: Tuple, String
 Mutable: List

 Operations:

 Slicing:
 If the step size is negative, it starts at the end and steps backward towards

the start.

14

>>> name = 'Andrew'
>>> name[::-1]

'werdnA'

Lists & List Comprehension
 Methods:

 append, insert, remove, extend, reverse, sort…

 Operators
 +, += etc

 List Comprehension

15

[expression for variable in sequence if condition]

Try MCQ
exercises from
CodeRunner

Reference: == Vs is
 ==
 Checks if the value of two operands are equal or not, if yes then

condition becomes true

 is
 Evaluates to true if the variables on either side of the operator

point to the same object and false otherwise.

16

Lists
 Part 1:

 Part 2:

17

def q1_1():
list_a = [1, 2, 3]
list_b = list_a
print(list_a == list_b, list_a is list_b)

def q1_2():
list_a = [1, 2, 3]
list_b = list_a
list_b.append(4)
print(list_a)
print(list_b)
print(list_a == list_b, list_a is list_b)

Lists
 Part 3:

18

def q1_3():
list_a = [1, 2, 3]
list_b = list_a

list_b = list_b + [4]
print(list_a)
print(list_b)
print(list_a == list_b, list_a is list_b)

Create a new
list

Lists
 Part 4:

19

def q1_4():
list_a = [1, 2, 3]
list_b = list_a

list_a += [4]
print(list_a)
print(list_b)
print(list_a == list_b, list_a is list_b)

The MobilePhone Class

 Complete the MobilePhone class so that when the following
code fragment is run, it produces the output as above.

20

jonathansPhone = MobilePhone("Apple", "iPhone 4")
alastairsPhone = MobilePhone("Sumsung", "Galaxy")
print("Jonathan has an " + str(jonathansPhone))
print("Alastair has a " + str(alastairsPhone)

Jonathan has an Apple iPhone 4
Alastair has a Sumsung Galaxy

The MobilePhone Class
 Complete the constructor, __repr__, __str__ method

21

class MobilePhone:

def __init__(self, brand, model):

def __repr__(self):
return 'MobilePhone({0}, {1})'.format(,)

def __str__(self):
return

Point class (add, radd, iadd)
No __add__ with __add__

r=p+q
print(r)

TypeError: unsupported …
+: 'Point' and 'Point'

(4, 6)

22

p = Point(1,2)
q = Point(3,4)

with
__add__

with __add__
+ isinstance(other, Point)

r=p+2
print(r)

AttributeError:…no attribute 'x‘
(case 3)

(3, 4)
(case 4)

with __add__
+ isinstance(other, Point)

with __radd__

r=2+p
print(r)

TypeError: unsupported …
+: ‘int' and 'Point‘
(case 5)

(3, 4)
(case 6)

with __add__
+ isinstance(other, Point)

with __iadd__

r = p
p += q
print(r, p, r is p)

(1, 2) (4, 6) False

(case 7)

(4, 6) (4, 6) True #make changes in place

(case 8)

2015 S1 1-8 : Square class

23

class Square:
def __init__(self, s):

self.side = s
def perimeter(self):

return 4*self.side
def area(self):

return self.side * self.side
def scale(self, factor):

self.side *= factor

2015 S1 1-8 : Square class

24

def __le__(self, other):
if not isinstance(other, Square):

return False
return self.area() <= other.area()

def __ne__(self, other):
if not isinstance(other, Square):

return False
return self.area() != other.area()

def __eq__(self, other):
if not isinstance(other, Square):

return False
return self.area() == other.area()

Q1-2
r = Square(5)
s = Square(10)

Which of the following code fragment will have False as output?

(a) print(r == s)
(b) print(r.area())
(c) print(r.perimeter())
(d) print(r <= s)
(e) None of the above

25

r = Square(5)
s = Square(10)
t = Square(2)
u = Square(4)

Which of the following code fragment will cause a TypeError exception?

(a) print(s.area())
(b) print(u < s)
(c) print(t.perimeter())
(d) print(r == u)

Different area()
25 Vs 100

__lt__ method?

Q3-5
r = Square(5)
s = Square(10)
r.scale(2)
print(r != s, r.area())

26

r = Square(5)
s = Square(10)
t = Square(4)
u = Square(6)
print(r != s, s <= r, u <= t)

r = Square(5)
s = Square(10)
u = r
print(r != s, r is not s, s is u, s != u)

r.Side = 10
s.Side = 10
Same area
False 100

r.area() = 25
s.area() = 100
t.area() = 16
u.area() = 36

True False False

r.area() = 25
s.area() = 100

u and r = same memory location

r != s (25 Vs 100) -> True
r is not s (two objects) -> True

s is u (two objects) -> False
S != u (area: 100 Vs 25) True

Q6-8

27

r = Square(5)
s = Square(10)
a = [r, s]
b = a.copy()
print(a != b, a is b, a[0] != b[0], a[0] is not b[1])

from copy import deepcopy
r = Square(10)
s = Square(5)
a = [r, s]
b = deepcopy(a)
print(a == b, a is not b, a[0] != b[1], a[0] is b[0])

r = Square(5)
print(r != 5)

a, b (two objects)
a[0] and b[0] refer

to the same
location

A & b (two objects)
a[0] &b[0] (two objects)

__ne__
isinstance(other, Square) ->

method return false

a != b (value of two lists are the
same): False

a is b (two objects): False
a[0] != b[0]: (same object, content

must be the same: False
a[0] is not b[1] (two objects): True

a == b (value of two lists are the
same): True

a is not b: two objects: True
a[0] != b[1] : different area() : True

a[0] is b[0]: (two objects): False

Exceptions
 What is the output of the following code fragment?

28

result = ''
try:

num = 100 / 0
result += 'a'

except ZeroDivisionError:
result += 'b'

except:
result += 'c'

finally:
result += 'd'

print(result)

Exceptions
 Given the following code fragment…

 What is the output if …

29

result = ''
try:

num = ...
result += 'a'
try:

num = 200 / 0
result += 'b'

except ValueError:
result += 'c'

except:
result += 'd'

finally:
result += 'e'

except ZeroDivisionError:
result += 'f'

finally:
result += 'g'

print(result)

num = int('Hello')

Traceback (most recent call
last):…..

…
ValueError: invalid literal for

int() with base 10: 'Hello'

Exceptions
 Given the following code fragment…

 What is the output if …

30

result = ''
try:

num = ...
result += 'a'
try:

num = 200 / 0
result += 'b'

except ValueError:
result += 'c'

except:
result += 'd'

finally:
result += 'e'

except ZeroDivisionError:
result += 'f'

finally:
result += 'g'

print(result)

num = 100

Exceptions
 Given the following code fragment…

 What is the output if …

31

result = ''
try:

num = ...
result += 'a'
try:

num = 200 / 0
result += 'b'

except ValueError:
result += 'c'

except:
result += 'd'

finally:
result += 'e'

except ZeroDivisionError:
result += 'f'

finally:
result += 'g'

print(result)

num = 100 / 0

Complexity
 Big O for an algorithm
 Comparison of Growth Rate:

 Calculating Big-O
 Straight line code
 Loops
 Nested Loops
 Consecutive Statements
 If-then-else statement
 Logarithmic

 Best-case, Worst-case, Average-case analysis

2011COMPSCI 105 S1C32

O(1) < O(log2n)< O(n) < O(n * log2n) < O(n2) <
O(n3) < O(2n)

Complexity
 What is the Big-O complexity of the following function?

33

def q6(my_list):
n = len(my_list)
result = 100
i = n -3
while i > 0:

result = result // my_list[i]
i = i // 2

return result

Complexity
 What is the Big-O complexity of the following function?

34

def q7(n):
amount = 0
i = n
while i > 1:

for j in range(1,5):
amount = amount + j * 3

i = i // 2
return amount

O(n)
 If we have an algorithm that is O(n) and it will run for 10

seconds for a problem size 1000
 Now if we have the problem size 2000, what is the

approximate run time in seconds?

 This means that if we were to make a graph showing how the
number of inputs, n, relates to the amount of time required to
perform the task, that we would expect the graph to be linear,
if 1000 inputs take 10 seconds, then 2000 inputs takes 20
seconds

35

O(n^2)
 O(n^2) would be read as "Big-oh of n squared"

 If 1000 inputs takes 30 seconds, then 2000 inputs takes 2
minutes.

 How did we get that? Because n^2 where we are doubling n
 => (2n)^2 => (2^2)(n^2) => 4(n^2)
 And we know that n^2 is 30 seconds, so 4(n^2) must be 4 * 30

seconds which is 2 minutes.

36

