Agenda \& Reading

- Agenda:
- Introduction
, Counting Operations
- Big-O Definition
- Properties of Big-O
- Calculating Big-O
- Growth Rate Examples
, Big-O Performance of Python Lists
, Big-O Performance of Python Dictionaries
- Reading:
- Problem Solving with Algorithms and Data Structures
- Chapter 2

Data Structures:

- A systematic way of organizing and accessing data.
- No single data structure works well for ALL purposes.

Input
Algorithm
Output

- An algorithm is a step-by-step procedure for solving a problem in a finite amount of time.

Program

- is an algorithm that has been encoded into some programming language.
- Program = data structures + algorithms
- When we analyze the performance of an algorithm, we are interested in how much of a given resource the algorithm uses to solve a problem.
- The most common resources are time (how many steps it takes to solve a problem) and space (how much memory it takes).
- We are going to be mainly interested in how long our programs take to run, as time is generally a more precious resource than space.

1 Introduction Running-time of Algorithms

- In order to compare algorithm speeds experimentally
- All other variables must be kept constant, i.e.
- independent of specific implementations,
- independent of computers used, and,
b independent of the data on which the program runs
- Involved a lot of work (better to have some theoretical means of predicting algorithm speed)
preding

1 Introduction

Efficiency of Algorithms

- For example, the following graphs show the execution time, in milliseconds, against sample size, n of a given problem in different computers

The actual running time of a program depends not only on the efficiency of the algorithm, but on many other variables:

- Processor speed \& type
- Operating system

〉 ... etc.

- Complete the sum of_n() function which calculates the sum of the first n natural numbers.
- Arguments: an integer
- Returns: the sum of the first n natural numbers
- Cases:

15

Algorithm 1

1 Introduction
Experimental Result

- Using 4 different values for n : [10000, 100000,1000000 ,

- We shall count the number of basic operations of an algorithm, and generalise the count.
par
Algorithm 2
1 Introduction

```
v sum_of_n_2
Set the_sum = 0
Use the equation (n(n+I))/2, to
calculate the total
Return the_sum
    time_start = time.clock()
    the_sum = 0
    the_sum = (n * (n+1) ) / 2
time_end = time.clock()
time_taken = time_end - time_start)
time_start \(=\) time. time ()
the_sum \(=0\)
for \(i\) in range ( \(1, n+1\) ):
the_sum \(=\) the_sum \(+I\)
time_end \(=\) time. time ()
time_taken \(=\) time_end - time_start
COMPSCI105


\section*{1 Introduction \\ Advantages of Learning Analysis}

Predict the running-time during the design phase
* The running time should be independent of the type of input
, The running time should be independent of the hardware and software environment
- Save your time and effort
- The algorithm does not need to be coded and debugged
- Help you to write more efficient code
- We need to estimate the running time as a function of problem size n .
- A primitive Operation takes a unit of time. The actual length of time will depend on external factors such as the hardware and software environment
- Each of these kinds of operation would take the same amount of time on a given hardware and software environment
- Assigning a value to a variable
- Calling a method.
- Performing an arithmetic operation.
- Comparing two numbers.
- Indexing a list element.
- Returning from a function

2 Counting Operations Example 2B
- Example: Calculating the sum of elements in the list.
```

def count2 (numbers):
n = len(numbers)
the_sum = 0
index = 0
while index < n:
the_sum = the_sum + numbers[index]
index += 1
return the_sum

```
- Total \(=3 n+5\) operations
- We need to measure an algorithm's time requirement as a function of the problem size, e.g. in the example above the problem size is the number of elements in the list.
- How many operations are required to do the following tasks?
a) Adding an element to the end of a list \(\square\)
b) Printing each element of a list containing \(n\) elements
```?
```

- Consider the following two algorithms:
- Algorithm A:
- Outer Loop: n operations
- Inner Loop: $\frac{n}{5}$ operations

> for i in range $(0, n):$ for $j$ in range $(0, n, 5)$ : print $(i, j)$

- Total $=\left(n * \frac{n}{5}\right)=\left(\frac{n^{2}}{5}\right)$ operations
- Algorithm B:
| Outer Loop: n operations
- Inner Loop: 5 operations
- Total $=n * 5=5 * n$ operations
for $i$ in range ( $0, \mathrm{n}$ ): for $j$ in range $(0,5)$ : print (i,j)


## 2 Counting Operations

Growth Rate Function - A or B?
For smaller values of $n$, the differences between algorithm $A$ $\left(n^{2} / 5\right)$ and algorithm B ( $5 n$ ) are not very big. But the differences are very evident for larger problem sizes such as for $\mathrm{n}>\mathrm{I}, 000,000$

$$
2 * 10^{11} \text { Vs } 5 * 10^{6}
$$

- Bigger problem size, produces bigger differences
- Algorithm efficiency is a concern for large problem sizes
- Let $f(n)$ and $g(n)$ be functions that map nonnegative integers to real numbers. We say that $f(n)$ is $\mathrm{O}(g(n))$ if there is a real constant, c , where $\mathrm{c}>0$ and an integer constant $\mathrm{n}_{0}$, where $\mathrm{n}_{0} \geq \mathrm{I}$ such that $f(n) \leq \mathrm{c} * g(n)$ for every integer $\mathrm{n} \geq \mathrm{n}_{0}$.
- $f(n)$ describe the actual time of the program
- $g(n)$ is a much simpler function than $f(n)$
- With assumptions and approximations, we can use $g(n)$ to describe the complexity i.e. $\mathrm{O}(g(n))$


3 Big-O
Big-Oh Notation (Formal Definition)

- Given functions $f(n)$ and $g(n)$, we say that $f(n)$ is $\mathrm{O}(g(n))$ if there are positive constants, c and $\mathrm{n}_{0}$, such that $f(n) \leq \mathrm{c} * g(n)$ for every integer $\mathrm{n} \geq \mathrm{n}_{0}$.
- Example: $2 \mathrm{n}+10$ is $\mathrm{O}(\mathrm{n})$
- $2 \mathrm{n}+10 \leq \mathrm{cn}$
- $(c-2) n \geq 10$
- $\mathrm{n} \geq 10 /(\mathrm{c}-2)$
- Pick $\mathrm{c}=3$ and $\mathrm{n}_{0}=10$

- We use Big-O notation (capital letter O) to specify the order of complexity of an algorithm
b.g., $O\left(n^{2}\right), O\left(n^{3}\right), O(n)$.
- If a problem of size $n$ requires time that is directly proportional to $n$, the problem is $O(n)$ - that is, order $n$.
- If the time requirement is directly proportional to $n^{2}$, the problem is $\mathrm{O}\left(\mathrm{n}^{2}\right)$, etc.

3 Big-O
Examples


Suppose an algorithm requires

- $7 n-2$ operations to solve a problem of size $n$

- $n^{2}-3 * n+10$ operations to solve a problem of size $n$
i.e. $c=3, n_{0}=2$
- $3 n^{3}+20 n^{2}+5$ operations to solve a problem of size $n$
$3 n^{3}+20 n^{2}+5<4 * n^{3}$ for all $n_{0} \geq 21$
i.e. $c=4, n_{0}=21$
- There are three properties of Big-O
- Ignore low order terms in the function (smaller terms)
- $\mathrm{O}(\mathrm{f}(\mathrm{n}))+\mathrm{O}(\mathrm{g}(\mathrm{n}))=\mathrm{O}(\max$ of $\mathrm{f}(\mathrm{n})$ and $\mathrm{g}(\mathrm{n}))$
- Ignore any constants in the high-order term of the function
- $\mathrm{C}^{*} \mathrm{O}(\mathrm{f}(\mathrm{n}))=\mathrm{O}(\mathrm{f}(\mathrm{n}))$
- Combine growth-rate functions
- $O(f(n)) * O(g(n))=O(f(n) * g(n))$
, $\mathrm{O}(\mathrm{f}(\mathrm{n}))+\mathrm{O}(\mathrm{g}(\mathrm{n}))=\mathrm{O}(\mathrm{f}(\mathrm{n})+\mathrm{g}(\mathrm{n}))$

4 Properties of Big-O Ignore any Constant Multiplications

- Consider the function:

$$
\begin{aligned}
& \quad \mathrm{f(n)}=254 * \mathrm{n}^{2}+\mathrm{n} \\
& \text { Big-O is } \mathrm{O}\left(\mathrm{n}^{2}\right) \\
& \text { Consider another function: }
\end{aligned}
$$



- Big-O is $\mathrm{O}(\mathrm{n})$
- And consider another function:

$$
f(n)=3 n+1000
$$

- $\mathrm{Big}-\mathrm{O}$ is $\mathrm{O}(\mathrm{n})$


## 4 Properties of Big-O

Ignore low order terms

- Consider the function: $\quad f(n)=n^{2}+100 n+\log 10 n+1000$
bor small values of $n$ the last term, 1000 , dominates.
- When n is around 10 , the terms $100 \mathrm{n}+1000$ dominate.
, When n is around 100 , the terms $\mathrm{n}^{2}$ and 100 n dominate
When n gets much larger than 100 , the $\mathrm{n}^{2}$ dominates all others.
, So it would be safe to say that this function is $O\left(n^{2}\right)$ for values of $n>100$
- Consider another function:

$$
f(n)=n^{3}+n^{2}+n+5000
$$

- Big-O is $O\left(n^{3}\right)$
- And consider another function:

$$
f(n)=n+n^{2}+5000
$$

- Big-O is $\mathrm{O}\left(\mathrm{n}^{2}\right)$


## 4 Properties of Big-O <br> Combine growth-rate functions

- Consider the function:

$$
f(n)=n * \log n
$$

## - Big- O is $\mathrm{O}(\mathrm{n} \log \mathrm{n})$

- Consider another function:
$\mathrm{f}(\mathrm{n})=\mathrm{n}^{2} * \mathrm{n}$
- $\mathrm{Big}-\mathrm{O}$ is $\mathrm{O}\left(\mathrm{n}^{3}\right)$

4 Properties of Big-O
Exercise 2

- What is the Big-O performance of the following growth functions?
- $T(n)=n+\log (n)$

```
?
```

- $T(n)=n^{4}+n * \log (n)+300 n^{3}$
- $T(n)=300 n+60 * n * \log (n)+342$

5 Calculating Big-O
Calculating Big-O

- Rules for finding out the time complexity of a piece of code
- Straight-line code
- Loops
- Nested Loops
- Consecutive statements
- If-then-else statements
- Logarithmic complexity

4 Properties of Big-O
Best, average \& worst-case complexity

- In some cases, it may need to consider the best, worst and/or average performance of an algorithm
- For example, if we are required to sort a list of numbers an ascending order
, Worst-case:
- if it is in reverse order
- Best-case:
- if it is already in order
- Average-case
- Determine the average amount of time that an algorithm requires to solve problems of size $n$
More difficult to perform the analysis
- Difficult to determine the relative probabilities of encountering various problems of a given size
- Difficult to determine the distribution of various data values


## 5 Calculating Big-O Rules

Rule I: Straight-line code

- Big-O = Constant time O(I)
- Does not vary with the size of the input
- Example:

Assigning a value to a variable $\quad \begin{aligned} & x=a+b \\ & i=y[2]\end{aligned}$

- Performing an arithmetic operation.
- Indexing a list element.


## Rule 2: Loops

, The running time of the statements inside the loop (including tests) times the number of iterations
, Example:

- Constant time * n
b $\mathrm{c} * \mathrm{n}=\mathrm{O}(\mathrm{n})$



## - Rule 3: Nested Loop

- Analyze inside out. Total running time is the product of the sizes of all the loops.
Example: $\quad \begin{gathered}\text { Outer loop: } \\ \text { Executed } \mathbf{n} \text { times }\end{gathered}$
b constant * (inner loop: $n$ )*(outer loop: $n$ ) for i in range ( $n$ ):
, Total time $=c * n * n=c^{*} n^{2}=O\left(n^{2}\right)$
for $j$ in range $(n)$
$k=i+j$
Executed n times


## - Rule 4: Consecutive statements

## Rule 5: if-else statement

* Worst-case running time: the test, plus either the if part or the else part (whichever is the larger).
- Example:
- $c_{0}+\operatorname{Max}\left(c_{1}, \quad\left(n *\left(c_{2}+c_{3}\right)\right)\right)$
- Total time $=c_{0} * n\left(c_{2}+c_{3}\right)=O(n)$
- Assumption:
- The condition can be evaluated in constant time. If it is not, we need to add the time to evaluate the expression.


34
COMPSCI105
Lecture 10-11


## 5 Calculating Big-O

 Rules (con't)
## - Rule 6: Logarithmic

- An algorithm is $\mathrm{O}(\log n)$ if it takes a constant time to cut the problem size by a fraction (usually by $1 / 2$ )
- Example:
- Finding a word in a dictionary of n pages
$\square$ Look at the centre point in the dictionary
$\square$ Is word to left or right of centre?
$\square$ Repeat process with left or right part of dictionary until the word is found
- Example:


## size $=\mathrm{n}$

while size > 1 :
$/ / O(1)$ stuff
size = size / 2

- Size: $\mathrm{n}, \mathrm{n} / 2, \mathrm{n} / 4, \mathrm{n} / 8, \mathrm{n} / 16, \ldots 2$, I
- If $n=2^{k}$, it would be approximately $k$ steps. The loop will execute $\log k$ in the worst case $\left(\log _{2} n=k\right) . B i g-\mathrm{O}=\mathrm{O}(\log \mathrm{n})$
- Note: we don't need to indicate the base. The logarithms to different bases differ only by a constant factor.


## 6 Growth Rate Examples <br> Hypothetical Running Time

- The running time on a hypothetical computer that computes $10^{6}$ operations per second for varies problem sizes

Notation		$\mathbf{n}$   10	$10^{2}$	$10^{3}$	$10^{4}$	$10^{5}$	$10^{6}$
$\mathrm{O}(1)$	Constant	$1 \mu \mathrm{sec}$					
$\mathrm{O}($ log(n) $)$	Logarithmic	$3 \mu \mathrm{sec}$	$7 \mu \mathrm{sec}$	$10 \mu \mathrm{sec}$	$13 \mu \mathrm{sec}$	$17 \mu \mathrm{sec}$	$20 \mu \mathrm{sec}$
$\mathrm{O}(\mathrm{n})$	Linear	10   $\mu \mathrm{sec}$	$100 \mu \mathrm{sec}$	1 msec	10 msec	100 msec	1 sec
$\mathrm{O}(\mathrm{nlog}(\mathrm{n}))$	N log N	$33 \mu \mathrm{sec}$	$664 \mu \mathrm{sec}$	10 msec	13.3 msec	1.6 sec	20 sec
$\mathrm{O}\left(\mathrm{n}^{2}\right)$	Quadratic	$100 \mu \mathrm{sec}$	10 msec	1 sec	1.7 min	16.7 min	11.6 days
$\mathrm{O}\left(\mathrm{n}^{3}\right)$	Cubic	1 msec	1 sec	16.7 min	11.6 days	31.7 years	31709   years
$\mathrm{O}\left(2^{\mathrm{n}}\right)$	Exponential	10 msec	3 e 17 years				

6 Growth Rate Examples Comparison of Growth Rate


A comparison of growth-rate functions in graphical form
COMPSCI105

6 Growth Rate Examples
Logarithmic Growth Rate - O(log n)

- Increase slowly as the problem size increases
- If you square the problem size, you only double its time requirement
- The base of the log does not affect a log growth rate, so you can omit it.

can omit it.							$t=\log _{2}(n)$
def rat   s =   i $=$   whi	$\begin{aligned} & 2(\mathrm{n} \\ & \mathrm{YE} \\ & 1 \\ & \text { Le i } \\ & \text { prid } \\ & \mathrm{i}= \end{aligned}$	$\begin{aligned} & : \\ & \text { L" } \\ & <n \text { n: } \\ & \text { t ("I } \\ & \text { i * } \end{aligned}$	st				
n	$10^{1}$	$10^{2}$	$10^{3}$	$10^{4}$	$10^{5}$	$10^{6}$	n
$\mathrm{O}\left(\log _{2} \mathrm{n}\right)$	3	6	9	13	16	19	
)					SCI10		Lecture 10-11

- Time requirement is constant and, therefore, independent of the problem's size n .

```
def rate1(n):
 s = "SWEAR"
 for i in range(25):
 print("I must not ", s)
```



n	$10^{1}$	$10^{2}$	$10^{3}$	$10^{4}$	$10^{5}$	$10^{6}$
$\mathrm{O}(\mathrm{I})$	1	1	1	1	1	1

38
COMPSCI105
Lecture 10-11

## 6 Growth Rate Examples <br> Linear Growth Rate - O(n)

- The time increases directly with the sizes of the problem.
- If you square the problem size, you also square its time requirement

```
def rate3(n):
 s = "FIGHT"
 for i in range(n):
 print("I must not ", s)
```



n	$10^{1}$	$10^{2}$	$10^{3}$	$10^{4}$	$10^{5}$	$10^{6}$
$\mathrm{O}(\mathrm{n})$	10	$10^{2}$	$10^{3}$	$10^{4}$	$10^{5}$	$10^{6}$

6 Growth Rate Examples
n* $\log \mathrm{n}$ Growth Rate - O(n $\log (\mathrm{n})$ )

- The time requirement increases more rapidly than a linear algorithm.
- Such algorithms usually divide a problem into smaller problem that are each solved separately.

```
def rate4(n):
 s = "HIT"
 for i in range(n):
 j = n
 while j > 1:
 print("I must not ", s)
 j = j // 2
j \(=\) j // 2
not ", s)
```



n	$10^{1}$	$10^{2}$	$10^{3}$	$10^{4}$	$10^{5}$	$10^{6}$
$\mathrm{O}(\mathrm{n} \log (\mathrm{n}))$	30	664	9965	$10^{5}$	$10^{6}$	$10^{7}$

41
COMPSCI105

- The time requirement increases rapidly with the size of the problem.
- Algorithms that use two nested loops are often quadratic.

```
def rate5(n):
 s = "LIE"
 for i in range(n):
 for j in range(n):
 print("I must not ", s)
```



$n$	$10^{1}$	$10^{2}$	$10^{3}$	$10^{4}$	$10^{5}$	$10^{6}$
$O\left(\mathrm{n}^{2}\right)$	$10^{2}$	$10^{4}$	$10^{6}$	$10^{8}$	$10^{10}$	$10^{12}$

Lecture 10-11


## 6 Growth Rate Examples <br> Cubic Growth Rate - $\mathrm{O}\left(\mathrm{n}^{3}\right)$

- The time requirement increases more rapidly with the size of the problem than the time requirement for a quadratic algorithm
- Algorithms that use three nested loops are often quadratic and


n	$10^{1}$	$10^{2}$	$10^{3}$	$10^{4}$	$10^{5}$	$10^{6}$
$\mathrm{O}\left(\mathrm{n}^{3}\right)$	$10^{3}$	$10^{6}$	$10^{9}$	$10^{12}$	$10^{15}$	$10^{18}$

## 6 Growth Rate Examples Exponential Growth Rate - O(2 $2^{\text {n }}$

- As the size of a problem increases, the time requirement usually increases too rapidly to be practical.

```
def rate7(n):
```

s = "POKE OUT MY TONGUE"
for $i$ in range ( 2 ** $n$ ): print("I must not ", s)


$n$	$10^{1}$	$10^{2}$	$10^{3}$	$10^{4}$	$10^{5}$	$10^{6}$
$O\left(2^{n}\right)$	$10^{3}$	$10^{30}$	$10^{301}$	$10^{3010}$	$10^{30103}$	$10^{301030}$
4	-	-				

## Exercise 3

- What is the Big-O of the following statements?

Executed   $n$ times	
	for $i$ in range $(n):$   for j in range $(10):$   print $(i, j)$

* Running time $=n * 10 * 1=10 n$, Big-O $=\sqrt{?}$

What is the Big-O of the following statements?

Executed
n times

$n$ times for $i$ in range ( $n$ ): for $j$ in range ( $n$ ): Executed
n times
print(i,j)
Executed for $k$ in range( $n$ ): print(k)

The first set of nested loops is $\mathrm{O}\left(\mathrm{n}^{2}\right)$ and the second loop is $\mathrm{O}(\mathrm{n})$. This is O(max(n²,n)) Big-O =

## 7 Performance of Python Lists

Performance of Python Data Structures

- We have a general idea of
- Big-O notation and
, the differences between the different functions,
- Now, we will look at the Big-O performance for the operations on Python lists and dictionaries.
- It is important to understand the efficiency of these Python data structures
- In later chapters we will see some possible implementations of both lists and dictionaries and how the performance depends on the implementation.

Exercise 3

- What is the Big-O of the following statements?

```
for i in range(n):
 for j in range(i+1, n):
 print(i,j)
```

*When $i$ is 0 , the inner loop executes ( $n-I$ ) times. When $i$ is $I$, the inner loop executes $n$-2 times. When i is $\mathrm{n}-2$, the inner loop execute once.

- The number of times the inner loop statements execute

$$
(n-I)+(n-2) \ldots+2+I
$$

- Running time $=n^{*}(n-1) / 2$,
- $\mathrm{Big}-\mathrm{O}=$


46
COMPSCI105

## 7 Performance of Python Lists

 ReviewPython lists are ordered sequences of items.
Specific values in the sequence can be referenced using subscripts.

- Python lists are:
- dynamic. They can grow and shrink on demand.
- heterogeneous, a single list can hold arbitrary data types.
- mutable sequences of arbitrary objects.

7 Performance of Python Lists
List Operations

- Using operators:

Operator	Meaning
<seq> + <seq>	Concatenation
<seq $>*$ <int-expr>	Repetition
<seq> $]$ ]	Indexing
len(<seq>)	Length
<seq>[:]	Slicing
for <var> in <seq>:	Iteration
<expr> in <seq>	Membership (Boolean)

```
my_list = [1,2,3,4]
print (2 in my_list)
zeroes = [0] * 20
print (zeroes)

7 Performance of Python Lists List Operations
- Using Methods:
\begin{tabular}{|l|l|}
\hline Method & Meaning \\
\hline <list>.append(\(\mathbf{x}\)) & Add element x to end of list. \\
\hline <list>.sort() & \begin{tabular}{l}
Sort (order) the list. A comparison function may be passed as a \\
parameter.
\end{tabular} \\
\hline <list>.reverse() & Reverse the list. \\
\hline <list>. index(x) & Returns index of first occurrence of x. \\
\hline <list>.insert(i, x) & Insert x into list at index i. \\
\hline <list>.count(x) & Returns the number of occurrences of x in list. \\
\hline <list>.remove(x) & Deletes the first occurrence of x in list. \\
\hline <list>.pop(I\()\) & Deletes the ith element of the list and returns its value. \\
\hline
\end{tabular}

50

7 Performance of Python Lists
Examples
my_list \(=[3,1,4,1,5,9]\)
my_list.append(2)
my list.sort ()
my_list.reverse(
print (my_list.index(4))
my_list.insert(4, "Hello")
print (my_list)
print (my_list.count (1))
my_list. remove (1)
print (my_list)
print(my_list.pop(3)) print (my_list)
\([3,1,4,1,5,9,2]\)
\([1,1,2,3,4,5,9]\)
\([9,5,4,3,2,1,1]\)

Index of the first occurrence of the parameter
[9, 5, 4, 3, 'Hello', 2, I, I]
2
[9, 5, 4, 3, 'Hello', 2, I]
3
[9, 5, 4, 'Hello', 2, I]

7 Performance of Python Lists List Operations

\section*{The del statement}
- Remove an item from a list given its index instead of its value
- Used to remove slices from a list or clear the entire list
```

>>> a = [-1, 1, 66.25, 333, 333, 1234.5]
>>> del a[0]
>>> a
[1, 66.25, 333, 333, 1234.5]
>>> del a[2:4]
>>> a
[1, 66.25, 1234.5]
>>> del a[:]
>>> a
[]

```
\begin{tabular}{|l|l|}
\hline index[] \\
index assignment \\
append \\
pop() \\
pop(i) \\
insert(i,item) \\
del operator \\
iteration \\
contains (in) \\
get slice [x:y] \\
del slice \\
set slice \\
reverse \\
concatenate \\
sort \\
multiply
\end{tabular}\(\quad\)\begin{tabular}{l}
\(\mathrm{O}(1)\) \\
\(\mathrm{O}(1)\) \\
\(\mathrm{O}(1)\) \\
\(\mathrm{O}(1)\) \\
\(\mathrm{O}(n)\) \\
\(\mathrm{O}(n)\) \\
\(\mathrm{O}(n)\) \\
\(\mathrm{O}(n)\) \\
\(\mathrm{O}(n)\) \\
\(\mathrm{O}(k)\) \\
\(\mathrm{O}(n)\) \\
\(\mathrm{O}(n+k)\) \\
\(\mathrm{O}(n)\) \\
\(\mathrm{O}(k)\) \\
\(\mathrm{O}(n\) log \(n)\) \\
\(\mathrm{O}(n k)\) \\
\hline
\end{tabular}

COMPSCI105

7 Performance of Python Lists
Inserting elements to a List
- There are two ways to create a longer list.
, Use the append method or the concatenation operator
- Big-O for the append method is \(\underline{O(1)}\).
- Big-O for the concatenation operator is \(\underline{O(k)}\) where \(k\) is the size of the list that is being concatenated.

Operations for indexing and assigning to an index position
- Big-O = O(I)
- It takes the same amount of time no matter how large the list becomes.
b i.e. independent of the size of the list

7 Performance of Python Lists
4 Experiments
Four different ways to generate a list of n numbers starting with 0 . for i in range (\(n\)):
- Example I:
\[
\text { my_list }=\text { my_list }+ \text { [i] }
\]
- Using a for loop and create the list by concatenation
- Example 2:
for \(i\) in range (\(n\)):
, Using a for loop and the append method
- Example 3:
- Using list comprehension my_list = [i for i in range(n)]
- Example 4:
- Using the range function wrapped by a call to the list constructor.
\[
\text { my_list }=\text { list (range (n)) }
\]

\section*{- From the results of our experiment:}

- I) Using for loop
- The append operation is much faster than concatenation
2) Two additional methods for creating a list
, Using the list constructor with a call to range is much faster than a list comprehension
- It is interesting to note that the list comprehension is twice as fast as a for loop with an append operation.
\[
\begin{aligned}
& \text { for i in range }(\mathrm{n}): \\
& \text { my list }=\text { my list }
\end{aligned}
\]
\[
\begin{aligned}
& \text { Eor in in range (n): } \\
& \text { my list }=\text { my_list }+ \text { [in }
\end{aligned}
\]
\[
\text { my_list }=[i \text { for i in range }(n)]
\]
\[
\begin{aligned}
& \text { for i in range }(n) \text { : } \\
& \text { my_list.append }(i)
\end{aligned}
\]
my_list.append (i)
\[
\text { my_list }=\text { list (range (} \mathrm{n} \text {)) }
\]

\section*{From the results of our experiment:}
- As the list gets longer and longer the time it takes to pop(0) also increases
- the time for pop stays very flat.
, pop(0): \(\mathrm{Big}-\mathrm{O}\) is \(\mathrm{O}(\mathrm{n})\)
p pop(): Big-O is \(\mathrm{O}(1)\)
- Why?

58

7 Performance of Python Lists
Pop() vs Pop(0)
- pop():
- Removes element from the end of the list
- pop(0)
- Removes from the beginning of the list.
- Big-O is \(\mathrm{O}(\mathrm{n})\) as we will need to shift all elements from space to the beginning of the list
\begin{tabular}{|l|l|l|l|l|l|l|}
\hline 12 & 3 & 44 & 100 & 5 & \(\cdots\) & 18 \\
\hline
\end{tabular}

8 Performance of Python Dictionaries
Introduction
- Dictionaries store a mapping between a set of keys and a set of values
- Keys can be any immutable type.
- Values can be any type
- A single dictionary can store values of different types
- You can define, modify, view, lookup or delete the key-value pairs in the dictionary
- Dictionaries are unordered
- Note:
- Dictionaries differ from lists in that you can access items in a dictionary by a key rather than a position.

8 Performance of Python Dictionaries Big-O Efficiency of Operators
- Table 2.3

8 Performance of Python Dictionaries
Examples:
```

capitals = {'Iowa':'DesMoines','Wisconsin':'Madison'}
print(capitals['Iowa'])
capitals['Utah']='SaltLakeCity'
print(capitals)
capitals['California']='Sacramento'
print(len(capitals))
for k in capitals:
print(capitals[k]," is the capital of ", k)

```

\section*{DesMoines}
\{'Wisconsin': 'Madison', 'lowa': 'DesMoines', 'Utah': 'SaltLakeCity'
4
Sacramento is the capital of California Madison is the capital of Wisconsin DesMoines is the capital of lowa

SaltLakeCity is the capital of Utah
\begin{tabular}{ll}
\hline Operation & Big-O Efficiency \\
\hline Copy & \(O(n)\) \\
\hline get item & \(O(1)\) \\
\hline set item & \(O(1)\) \\
\hline delete item & \(O(1)\) \\
\hline contains (in) & \(O(1)\) \\
\hline iteration & \(O(n)\) \\
\hline
\end{tabular}
8 Performance of Python Dictionaries Contains between lists and dictionaries

From the results
- The time it takes for the contains operator on the list grows linearly with the size of the list.
* The time for the contains operator on a dictionary is constant even as the dictionary size grows
- Lists, big-O is \(\mathbf{O}(\mathrm{n})\)

Dictionaries, big-O is \(\mathrm{O}(\mathrm{I})\)

\section*{Quizzes}
- Complete the Big-O performance of the following dictionary operations
1. ' \(x\) ' in my_dict
2. del my_dict[[\(x\) ']

3. my_dict[\(x^{\prime}\) '] \(==10\)
4. my_dict[\(\left.x^{\prime} x^{\prime}\right]=\) my_dict \(\left[x^{\prime}\right]\) +

Summary
- Complexity Analysis measure an algorithm's time requirement as a function of the problem size by using a growth-rate function.
- It is an implementation-independent way of measuring an algorithm

Complexity analysis focuses on large problems
- Worst-case analysis considers the maximum amount of work an algorithm will require on a problem of a given size
- Average-case analysis considers the expected amount of work that it will require.
, Generally we want to know the worst-case running time.
- It provides the upper bound on time requirements
- We may need average or the best case
- Normally we assume worst-case analysis, unless told otherwise.```

