
Exceptions 2

COMPSCI 105 S1 2017
Principles of Computer Science

The else clause
 Executed only if the try clause completes with no errors
 It is useful for code that must be executed if the try clause does

not raise an exception.

COMPSCI 1052

try:
statement block here

except:
more statements here (undo operations)

else:
more statements here (close operations)

Lecture08

Examples

Lecture08COMPSCI 1053

try:
age = int(input("Please enter your age: "))

except ValueError:
print("Hey, that wasn't a number!")

else:
print("I see that you are %d years old." % age)

Please enter your age: 4
I see that you are 4
years old.

Example07.py

Please enter your age: a
Hey, that wasn't a
number!

Exercise 1
 What is the output of the following code fragment?

 Cases:
 Enter an index: 1
 Enter an index: 6

Lecture08COMPSCI 1054

try:
my_list = [1, 2, 3]
num = int(input('Enter an index: '))
value = my_list[num]

except IndexError:
print("Invalid index!")

else:
print(value)

print("DONE")

The Finally clause
 The finally block is optional, and is not frequently used
 Executed after the try and except blocks, but before the entire try-

except ends
 Code within a finally block is guaranteed to be executed if any

part of the associated try block is executed regardless of an
exception being thrown or not
 It allows for cleanup of actions that occurred in the try block but may

remain undone if an exception is caught
 Often used with files to close the file

COMPSCI 1055

try:
statement block here

except:
more statements here (undo operations)

finally:
more statements here (close operations)

Lecture08

Example

 Case 1:
 No error

COMPSCI 1056

def divide(a, b):
try:

result = a / b
except ZeroDivisionError:

result = 'Divided by zero'
else:

print("result is", result)
finally:

print("finally clause")
return result

Lecture08

x = divide(2, 1)
print(x)

result is 2.0
finally clause
2.0

Example08.py

1

2

3

Example

 Case 2:
 Divided by zero

COMPSCI 1057

def divide(a, b):
try:

result = a / b
except ZeroDivisionError:

result = 'Divided by zero'
else:

print("result is", result)
finally:

print("finally clause")
return result

Lecture08

x = divide(2, 0)
print(x)

finally clause
Divided by zero

Example08.py

1

2

Example

 Case 3:
 Other error

COMPSCI 1058

def divide(a, b):
try:

result = a / b
except ZeroDivisionError:

result = 'Divided by zero'
else:

print("result is", result)
finally:

print("finally clause")
return result

Lecture08

x = divide('2', '1')
print(x)

finally clause
Traceback (most ...
TypeError: unsupported operand type(s) ...

Example08.py

1

Exercise 2
 What is the output of the following code fragment?

 Cases:
 Please enter your age: a
 Please enter your age: -1
 Please enter your age: 4

Lecture08COMPSCI 1059

try:
age = int(input("Please enter your age: "))

except ValueError:
print("Hey, that wasn't a number!")

else:
print("I see that you are %d years old." % age)

finally:
print("It was really nice talking to you. Goodbye!")

FileNotFoundError & IOError
 Raised when an input/ output operation fails, such as the print

statement or the open function when trying to open a file
that does not exist.

 Example:

 FileNotFoundError: ..No such file or directory: 'numbers1.txt''

Lecture08COMPSCI 10510

input_file = open ("numbers1.txt", "r")

print ("Reading from file numbers.txt")

one_line = input_file.readline()
print(one_line)

print ("Completed reading of file input.txt")
input_file.close()

Handling With Exceptions for FileIO
 Basic structure of handling exceptions

try:
Attempt something where exception error may happen
(i.e. open a file and read the content)

except IOERROR
React to the error

else:
What to do if no error is encountered
(i.e. close the file)

finally:
Actions that must always be performed

Lecture08COMPSCI 10511

Exceptions: File Example
 Consider the following code:

 Case 1:
 Case 2:

try:
inputFileName = input("Enter name of input file: ")
input_file = open (inputFileName, "r")
one_line = input_file.readline()

except IOError:
print("File", inputFileName, "could not be opened")

else:
print(one_line)
input_file.close()
print ("Closed file", inputFileName)

Enter name of input file: numbers.txt
43 34

Closed file numbers.txt

Enter name of input file: test.txt
File test.txt could not be opened

Lecture08COMPSCI 10512

Raising an exception:
 You can create an exception by using the raise statement

 The program stops immediately after the raise statement; and any
subsequent statements are not executed.

 It is normally used in testing and debugging purpose

 Example:

COMPSCI 10513

def checkLevel(level):
if level < 1:

raise ValueError('Invalid level!')
else:

print (level)

raise Error('Error message goes here')

Lecture08

Traceback (most recent call last):
...
raise ValueError('Invalid level!')

ValueError: Invalid level!

Handling Exceptions
 Put code that might create a runtime error is enclosed in a

try block

COMPSCI 10514

def checkLevel(level):
try:

if level < 1:
raise ValueError('Invalid level!')

else:
print (level)

print ('This print statement will not be reached.')
except ValueError as x:

print ('Problem: {0}'.format(x))

Lecture08

def checkLevel(level):
try:

if level < 1:
raise ValueError('Invalid level!')

...
except ValueError as x:

pass

Example09.py

Problem: Invalid level!

 When to use try catch blocks?
 If you are executing statements that you know are unsafe and you

want the code to continue running anyway.

 When to raise an exception?
 When there is a problem that you can't deal with at that point in

the code, and you want to "pass the buck" so the problem can be
dealt with elsewhere.

Using Exceptions

15COMPSCI 105
Lecture08

Exercise 3
 Modify the following function that calculates the mean value

of a list of numbers to ensure that the function generates an
informative exception when input is unexpected

COMPSCI 10516

def mean(data):
sum = 0
for element in data:

sum += element
mean = sum / len(data)
return mean

Lecture08

Summary
 Exceptions alter the flow of control
 When an exception is raised, execution stops
 When the exception is caught, execution starts again

 try… except blocks are used to handle problem code
 Can ensure that code fails gracefully
 Can ensure input is acceptable

 finally
 Executes code after the exception handling code

COMPSCI 10517 Lecture08

Appendix
 TypeErrors are caused by combining the wrong type of

objects, or calling a function with the wrong type of object.
 This happens when someone tries to do an operation with different

kinds of incompatible data types. A common example is to do
addition of Integers and a string.

 print (1 + "a")

 A ValueError is used when a function receives a value that has
the right type but an invalid value
 value = int('a')
 value = float ('a')

Lecture08COMPSCI 10518

