
Exceptions

COMPSCI 105 S1 2017
Principles of Computer Science

MCQ
 The ________statement causes the __str__ method to be

invoked.
A. print(objectOfClass).
B. print("object“)
C. objectOfClass.print().
D. None of the others.

Lecture07COMPSCI 1052

x = Fraction(2, 3)

MCQ Exericse
 Consider the following code:

A. The program has an error because x is private and cannot be
access outside of the class.

B. The program has an error because y is private and cannot be
access outside of the class.

C. The program has an error because you cannot name a variable
using __y.

D. The program runs fine and prints 1.
E. The program runs fine and prints 0.

Lecture07COMPSCI 1053

class A:
def __init__(self):

self.x = 1
self.__y = 1

def getY(self):
return self.__y

a = A()
print(a.__y)

Learning outcomes
 Understand the flow of control that occurs with exceptions
 try, except, finally

 Use exceptions to handle unexpected runtime errors
gracefully
 'catching' an exception of the appropriate type

 Generate exceptions when appropriate
 raise an exception

 Resources:
 Errors and Exceptions — Python 3.4.2 documentation

 https://docs.python.org/3/tutorial/errors.html
 Python3 Tutorial: Exception Handling

 http://www.python-course.eu/python3_exception_handling.php

COMPSCI 1054 Lecture07

Introduction
 Errors occur in software programs. However, if you handle

errors properly, you'll greatly improve your program’s
readability, reliability and maintainability.
 Python uses exceptions for error handling

 Exception examples:
 Attempt to divide by ZERO
 Couldn’t find the specific file to read

 The run-time system will attempt to handle the exception
(default exception handler), usually by displaying an error
message and terminating the program.

COMPSCI 1055 Lecture07

Handling unexpected input values
 What if the function is passed a value that causes a divide by

zero?
 Error caused at runtime
 Error occurs within the function
 Problem is with the input

 What can we do?
 You can try to check for valid input first

COMPSCI 1056

def divide(a, b):
result = a / b
return result

x = divide(5, 0)
print(x)

Traceback (most recent call last):
File “...", line 5, in <module> x = divide(5, 0)
File “...", line 2, in divide result = a / b

ZeroDivisionError: division by zero

where

reason

Lecture07

Example01.py

Divide by zero error
 Check for valid input first
 Only accept input where the divisor is non-zero

 What if “b” is not a number?

COMPSCI 1057

def divide(a, b):
if b == 0:

result = 'Error: cannot divide by zero'
else:

result = a / b
return result

def divide(a, b):
if (type(b) is not int and

type(b) is not float):
result = "Error: divisor is not a number"

elif b == 0:
result = 'Error: cannot divide by zero'

...

Lecture07

Handling input error
 Check for valid input first
 What if “a” is not a number?

COMPSCI 1058

def divide(a, b):
if (type(b) is not int and

type(b) is not float or
type(a) is not int and
type (a) is not float):

result = ('Error: one or more operands' +
' is not a number')

elif b == 0:
result = 'Error: cannot divide by zero'

else:
result = a / b

return result

x = divide(5, 'hello')
print(x)

Lecture07

What is an Exception?
 An exception is an event that occurs during the execution of

a program that disrupts the normal flow of instructions
during the execution of a program.

 When an error occurs within a method, the method creates
an exception object and hands it off to the runtime system.

 The exception object contains
 information about the error, including its type and the state of the

program when the error occurred.

 Creating an exception object and handing it to the runtime
system is called throwing an exception.

COMPSCI 1059 Lecture07

Handling exceptions
 Code that might create a runtime error is enclosed in a try

block
 Statements are executed sequentially as normal
 If an error occurs then the remainder of the code is skipped
 The code starts executing again at the except clause

 The exception is "caught“

 Advantages of catching exceptions:
 It allows you to fix the error
 It prevents the program from automatically terminating

COMPSCI 10510

try:
statement block
statement block

except:
exception handling statements
exception handling statements

Lecture07

Case 1

 Case 1: No error
 divide(5,5)

COMPSCI 10511

def divide(a, b):
try:

result = a / b
print ("try-block")

except:
result = 'Error in input data'
print ("Error")

return result

Lecture07

Example02.py

x = divide(5, 5)
print ("Program can continue to run...")
print(x)

try-block
Program can continue to run...
1.0

1

2

3

Case 2

 Case 2: Invalid input
 divide(5,0)
 divide(5, ‘Hello’)

 But what is the error in each situation?
 1) 5/0 => ZeroDivisionError: division by zero
 2) 5/'hello‘ =>TypeError: unsupported operand type(s) for /: 'int' and 'str'

COMPSCI 10512

def divide(a, b):
try:

result = a / b
print ("try-block")

except:
result = 'Error in input data'
print ("Error")

return result

Lecture07

Example02.py

x = divide(5, 'hello')
print ("Program can continue to run...")
print (x)

Error
Program can continue to run...
Error in input data

1

2
3

Exercise 01
 What is the output of the following?

COMPSCI 10513

def divide(dividend, divisor):
try:

quotient = dividend / divsor
except:

quotient = 'Error in input data'
return quotient

x = divide(5, 0)
print(x)
x = divide('hello', 'world')
print(x)
x = divide(5, 5)
print(x)

Lecture07

Danger in catching all exceptions
 The general except clause catching all runtime errors
 Sometimes that can hide problems

 You can put two or more except clauses, each except block
is an exception handler and handles the type of exception
indicated by its argument in a program.
 The runtime system invokes the exception handler when the

handler is the FIRST ONE matches the type of the exception
thrown.
 It executes the statement inside the matched except block, the other

except blocks are bypassed and continues after the try-except block.

COMPSCI 10514 Lecture07

Specifying the exceptions

 Case 1:
 No error

COMPSCI 10515

def divide(a, b):
try:

result = a / b
except TypeError:

result = 'Type of operands is incorrect'
except ZeroDivisionError:

result = 'Divided by zero'
return result

x = divide(5, 5)
print(x)

1.0

Lecture07

Example03.py

Specifying the exceptions

 Case 2:
 is not a number

COMPSCI 10516

def divide(a, b):
try:

result = a / b
except TypeError:

result = 'Type of operands is incorrect'
except ZeroDivisionError:

result = 'Divided by zero'
return result

x = divide('abc', 5)
print(x)

Type of operands is incorrect

Lecture07

Example03.py

1

2

Specifying the exceptions

 Case 3:
 Division Error

COMPSCI 10517

def divide(a, b):
try:

result = a / b
except TypeError:

result = 'Type of operands is incorrect'
except ZeroDivisionError:

result = 'Divided by zero'
return result

x = divide(5, 0)
print(x)

Divided by zero

Lecture07

Example03.py

1

2

Exception not Matched
 If no matching except block is found, the run-time system will

attempt to handle the exception, by terminating the program.

COMPSCI 10518

def divide(a, b):
try:

result = a / b
except IndexError:

result = 'Type of operands is incorrect'
except ZeroDivisionError:

result = 'Divided by zero'
return result

x = divide(5, 5)
print(x)

Traceback (most recent call last):
File “...", line 11, in <module> x =

divide('abc', 0)File “...", line 3, in divide
result = a / b TypeError: unsupported operand
type(s) for /: 'str' and 'int'

Lecture07

Example04.py

Order of except clauses
 Specific exception block must come before any of their

general exception block

COMPSCI 10519

def divide(a, b):
try:

result = a / b
except:

result = 'Type of operands is incorrect'
except ZeroDivisionError:

result = 'Divided by zero'
return result

result = a / b
SyntaxError: default 'except:' must be last

Lecture07

Example05.py

try:
...

except ZeroDivisionError:
...

except:
...

Exceptions
 Any kind of built-in error can be caught
 Check the Python documentation for the complete list
 Some popular errors:

 ArithmeticError: various arithmetic errors
 ZeroDivisionError
 IndexError: a sequence subscript is out of range
 TypeError: inappropriate type
 ValueError:
 has the right type but an inappropriate value

 IOError: Raised when an I/O operation
 EOFError:
 hits an end-of-file condition (EOF) without reading any data

 …

COMPSCI 10520

BaseException
+-- SystemExit
+-- KeyboardInterrupt
+-- GeneratorExit
+-- Exception

+-- StopIteration
+-- ArithmeticError
| +-- FloatingPointError
| +-- OverflowError
| +-- ZeroDivisionError
+-- AssertionError
+-- AttributeError
+-- BufferError
+-- EOFError
+-- ImportError
+-- LookupError
| +-- IndexError
| +-- KeyError
+-- MemoryError
+-- NameError
| +-- UnboundLocalError
+-- OSError
| +-- BlockingIOError
| +-- ChildProcessError
| +-- ConnectionError
| | +-- BrokenPipeError
| | +-- ConnectionAbortedError
| | +-- ConnectionRefusedError
| | +-- ConnectionResetError
| +-- FileExistsError
| +-- FileNotFoundError
| +-- InterruptedError
| +-- IsADirectoryError
| +-- NotADirectoryError
| +-- PermissionError
| +-- ProcessLookupError
| +-- TimeoutError
+-- ReferenceError
+-- RuntimeError
| +-- NotImplementedError
+-- SyntaxError
| +-- IndentationError
| +-- TabError
+-- SystemError
+-- TypeError
+-- ValueError
| +-- UnicodeError
| +-- UnicodeDecodeError
| +-- UnicodeEncodeError
| +-- UnicodeTranslateError

Lecture07

Exercise 2
 Consider the following code:

 Rewrite it using try-except block to handle the IndexError

Lecture07COMPSCI 10521

my_list = [1, 2, 3]
num = int(input('Enter an index: '))
print(my_list[num])

Enter an index: 6
...
IndexError: list index out of rangeEnter an index: 1

2

Enter an index: 6
Invalid index!

Exercise 3
 Consider the following code:

 Rewrite it using try-except block to handle the KeyError

Lecture07COMPSCI 10522

my_dict = {'test1':1,'test2':2}
num = input('Enter a key: ')
print(my_dict[num])

Enter a key: unknown
...
KeyError: 'unknown'Enter a key: test1

1

Enter a key: test
Invalid Key!

More specific feedback
 If you want to give the user more specific feedback about

which input was wrong

Lecture07COMPSCI 10523

try:
dividend = int(input("Please enter the dividend: "))
divisor = int(input("Please enter the divisor: "))
print("%d / %d = %f" % (dividend, divisor, dividend/divisor))

except ValueError:
print("The divisor and dividend have to be numbers!")

except ZeroDivisionError:
print("The dividend may not be zero!")

try:
dividend = int(input("Please enter the dividend: "))

except ValueError:
print("The dividend has to be a number!")

try:
divisor = int(input("Please enter the divisor: "))

except ValueError:
print("The divisor has to be a number!")

try:
print("%d / %d = %f" % (dividend, divisor, dividend/divisor))

except ZeroDivisionError:
print("The dividend may not be zero!")

Example06.py

