THE UNIVERSITY OF AUCKLAND
| new zeawano |

COMPSCI 105 S1 2017
Principles of Computer Science

Exceptions

- MCQ

THE UNIVERSITY OF AUC!

» The statement causes the str method to be
invoked.

print(objectOfClass).
print("object")
objectOfClass.print().

None of the others.

x = Fraction(2, 3)

2 COMPSCI 105 Lecture07

AR

class A:

¥ MC Q Exericse def __init__(self):

selfx = |
» Consider the following code: self._y = |

def getY (self):
return self.__y

a=A(
print(a.__y)

A. The program has an error because x is private and cannot be
access outside of the class.

B. The program has an error because y is private and cannot be
access outside of the class.

C. The program has an error because you cannot name a variable
using _y.

D. The program runs fine and prints |.

E. The program runs fine and prints 0.

3 COMPSCI 105 LectureQ7

AR

2. Learning outcomes

» Understand the flow of control that occurs with exceptions
try, except, finally

» Use exceptions to handle unexpected runtime errors
gracefully

'catching’ an exception of the appropriate type

» Generate exceptions when appropriate
raise an exception

» Resources:
Errors and Exceptions — Python 3.4.2 documentation

Python3 Tutorial: Exception Handling

4 COMPSCI 105 Lecture07

A2

¥ Introduction

» Errors occur in software programs. However, if you handle
errors properly, you'll greatly improve your program’s
readability, reliability and maintainability.

Python uses exceptions for error handling

» Exception examples:
Attempt to divide by ZERO
Couldn’t find the specific file to read

» The run-time system will attempt to handle the exception
(default exception handler), usually by displaying an error
message and terminating the program.

5 COMPSCI 105 Lecture07

A2

ExampleOl.py
2 Handling unexpected input values

» What if the function is passed a value that causes a divide by

zero!
def divide(a, b):

Error caused at runtime result = a / b
Error occurs within the function B, ZEEELE
Problem is with the input x = divide (5, 0)

» What can we do? print (x)

You can try to check for valid input first

where
D/~
Traceback (most recent call last):
File “...", line 5, in <module> x = divide (5, 0)
File “...", line 2, in divide result = a / b

ZeroDivisionError: division by zero

(:;;son

6 COMPSCI 105 Lecture07

A2

Z_Divide by zero error

» Check for valid input first

Only accept input where the divisor is non-zero

def divide(a, b):
if b ==
result = 'Error: cannot divide by zero'
else:
result = a / b
return result

What if “b”’ is not a number?

def divide(a, b):
if (type(b) is not int and
type (b) is not float):
result = "Error: divisor is not a number"
elif b ==
result = 'Error: cannot divide by zero'

7 COMPSCI 105

LectureQ7

A2

2 Handling input error

» Check for valid input first

What if “a” is not a number?

def divide(a, b):
if (type(b) is not int and
type (b) is not float or
type(a) is not int and
type (a) is not float):
result = ('Error: one or more operands' +
' is not a number')
elif b ==
result = 'Error: cannot divide by zero'
else:
result = a / b
return result

X = divide (5, 'hello')
print (x)

8 COMPSCI 105 Lecture07

A2

2 What is an Exception?

qqqqq

» An exception is an event that occurs during the execution of
a program that disrupts the normal flow of instructions
during the execution of a program.

» When an error occurs within a method, the method creates
an exception object and hands it off to the runtime system.
» The exception object contains

information about the error, including its type and the state of the
program when the error occurred.

» Creating an exception object and handing it to the runtime
system is called throwing an exception.

9 COMPSCI 105 Lecture07

AR

2 Handling exceptions

» Code that might create a runtime error is enclosed in a try
block

Statements are executed sequentially as normal
If an error occurs then the remainder of the code is skipped

The code starts executing again at the except clause

The exception is "caught” try:
statement block
statement block
except:
exception handling statements
exception handling statements

» Advantages of catching exceptions:
It allows you to fix the error
It prevents the program from automatically terminating

10 COMPSCI 105 Lecture07

ExampleO2.py

def divide(a, b):
try:
‘/’;esult =a/ b
| print ("try-block")
except:

result = 'Error in input data'
print ("Error")
return result

» Case |: No error
divide(5,5)

x = divide (5, 5)
%’Aﬁrint ("Program can continue to run...")

int (x)
3 f try-block

Program can continue to run...
1.0

11 COMPSCI 105 Lecture07

def divide(a, b):
try:
result = a / b
print (" try—bl*‘)
except:
esult = 'Error in input data'

| print ("Error")
return result

ExampleO2.py

» Case 2:Invalid input
divide(5,0)
divide(5,‘Hello’)

X = divide (5, 'hello')
print ("Program can continue to run...")
2 rint (x)

3 Error
Program can continue to run...
Error in input data

But what is the error in each situation?

|) 5/0 => ZeroDivisionError: division by zero

2) 5/'hello® =>TypeError: unsupported operand type(s) for /:'int' and 'str’

12 COMPSCI 105 Lecture07

" Exercise 01

» What is the output of the following!?

def divide (dividend, diwvisor):

try:

quotient = dividend / divsor
except:

quotient = 'Error in input data'

return quotient

x = divide (5, 0)

print (x)

X = divide('hello', 'world')
print (x)

x = divide (5, 5)

print (x)

13 COMPSCI 105

LectureQ7

AR

2 Danger in catching all exceptions

» The general except clause catching all runtime errors

Sometimes that can hide problems

» You can put two or more except clauses, each except block
is an exception handler and handles the type of exception
indicated by its argument in a program.

The runtime system invokes the exception handler when the
handler is the FIRST ONE matches the type of the exception
thrown.

It executes the statement inside the matched except block, the other
except blocks are bypassed and continues after the try-except block.

14 COMPSCI 105 Lecture07

A2

@ ExampleO3.py
Z_ Specitying the exceptions

def divide(a, b):

tr
yresult =a /b

except TypeError:

result = 'Type of operands is incorrect'
except ZeroDivisionError:
2 (:ase |: result = 'Divided by zero'
reparn result
No error f

X = divide (5, 5)

rint(x
R

15 COMPSCI 105 Lecture07

AR

ExampleO3.py
Z_ Specitying the exceptions

def divide(a, b):
try:
result = a / b
exce TypeError:

| ¢fresult = 'Type of operands is incorrect’
except ZeroDivisionError:
result = 'Divided by zero'

return result

» Case 2:

is not a number

X = divide('abc', 5)

y‘nt(x)
2 < Type of operands is incorrect >

16 COMPSCI 105 Lecture07

A2

ExampleO3.py
Z_ Specitying the exceptions

def divide(a, b):

try:
result = a / b*

except TypeError:

result = 'Type of operands is incorrect'
eﬁﬁrﬁt ZeroDivisionError:
| result = 'Divided by zero'

return result

» Case 3:

Division Error

X = divide (5, 0)

‘Vint(x)
2 ~~ Divided by zero -

17 COMPSCI 105 Lecture07

Example0O4.py

. Exception not Matched

» If no matching except block is found, the run-time system will
attempt to handle the exception, by terminating the program.

def divide(a, b):

return result

X = divide (5, 5)

print (x)
Traceback (most recent call last):
File “...", line 11, in <module> x =
divide('abc', 0)File “...", line 3, in divide

result = a / b TypeError: unsupported operand
type(s) for /: 'str' and 'int'

18 COMPSCI 105 Lecture07

A2

ExampleO5.py
2 _Order of except clauses

» Specific exception block must come before any of their

general exception block

def divide(a, b):
try:
result = a / b

*except:
= 'Type of operands is incorrect'
excep eroDivisi

or:
resu = 'Divided by zero'
return riig;::::::

result = a / b
SyntaxError: default 'except:' must be last

try:
except ZeroDivisionError:

except:

19 COMPSCI 105 Lecture07

y. Exceptions

» Any kind of built-in error can be caught

20

Check the Python documentation for the complete list

Some popular errors:
ArithmeticError: various arithmetic errors
ZeroDivisionError
IndexError:a sequence subscript is out of range
TypeError: inappropriate type

ValueError:
has the right type but an inappropriate value

|OError: Raised when an I/O operation
EOFError:

BaseException
+-- SystemExit
+-- KeyboardInterrupt

+-- Gel

neratorExit

+-- Exception

+om
+om

+
¥
¥
¥
¥
¥
+
¥

+

hits an end-of-file condition (EOF) without reading any data--

COMPSCI 105

.
|
|
.
4o
.
|
|
|
|

Stoplteration
ArithmeticError
+-- FloatingPointError
+-- OverflowError
+-- ZeroDivisionError
AssertionError
AttributeError
BufferError
EOFError
ImportError
LookupError
+-- IndexError
+-- KeyError
MemoryError
NameError
+-- UnboundLocalError
OSError
+-- BlockinglOError
-- ChildProcessError
-- ConnectionError
+-- BrokenPipeError
+-- ConnectionAbortedError
+-- ConnectionRefusedError
+-- ConnectionResetError
-- FileExistsError
-- FileNotFoundError
-- InterruptedError
-- IsADirectoryError
- NotADirectoryError
-- PermissionError
-- ProcessLookupError
+-- TimeoutError
ReferenceError
RuntimeError
+-- NotlmplementedError
SyntaxError
+-- IndentationError
+-- TabError
SystemError
TypeError
ValueError
+-- UnicodeError
+-- UnicodeDecodeError
+-- UnicodeEncodeError
+-- UnicodeTranslateError

P S el

+

Lecture07

A2

@ Exercise 2

n
qqqqq ANO

» Consider the following code:

my list = [1, 2, 3]

num = int (input('Enter an index: '))
rint (my list[num
P (my_ [1) Enter an index: 6
< Enter an index: | > IndexError: list index out of range
2

» Rewrite it using try-except block to handle the IndexError

Enter an index: 6
Invalid index!

21 COMPSCI 105 Lecture07

A2

@ Exercise 3

n
qqqqq ANO

» Consider the following code:

my dict = {'testl':1l, 'test2':2}
num = input('Enter a key: ')

print (my dict[num])
— Enter a key: unknown
< Enter a key: testl > KeyError: 'unknown'

» Rewrite it using try-except block to handle the KeyError

Enter a key: test
Invalid Key!

22 COMPSCI 105 Lecture07

% Example06.py
¥. More specific feedback

» If you want to give the user more specific feedback about
which input was wrong

try:

dividend = int(input("Please enter the dividend: "))

divisor = int (input("Please enter the divisor: "))

print("%d / %d = %$f" % (dividend, divisor, dividend/divisor))
except ValueError:

print ("The divisor and dividend have to be numbers!")
except ZeroDivisionError:

print ("The dividend may not be zero!")

try:

dividend = int(input ("Please enter the dividend: "))
except ValueError:

print ("The dividend has to be a number!")

try:

divisor = int(input("Please enter the divisor: "))
except ValueError:

print ("The divisor has to be a number!")

try:

print("%d / %d = %f" % (dividend, divisor, dividend/divisor))
except ZeroDivisionError:

print ("The dividend may not be zero!")

23 COMPSCI 105 Lecture07

