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MCQ
 The ________statement causes the __str__ method to be 

invoked.
A. print(objectOfClass).
B. print("object“)
C. objectOfClass.print().
D. None of the others.
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x = Fraction(2, 3)



MCQ Exericse
 Consider the following code:

A. The program has an error because x is private and cannot be 
access outside of the class.

B. The program has an error because y is private and cannot be 
access outside of the class.

C. The program has an error because you cannot name a variable 
using __y.

D. The program runs fine and prints 1.
E. The program runs fine and prints 0.
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class A:
def __init__(self):

self.x = 1
self.__y = 1

def getY(self):
return self.__y

a = A()
print(a.__y)



Learning outcomes
 Understand the flow of control that occurs with exceptions
 try, except, finally

 Use exceptions to handle unexpected runtime errors 
gracefully
 'catching' an exception of the appropriate type

 Generate exceptions when appropriate
 raise an exception

 Resources:
 Errors and Exceptions — Python 3.4.2 documentation

 https://docs.python.org/3/tutorial/errors.html
 Python3 Tutorial: Exception Handling

 http://www.python-course.eu/python3_exception_handling.php
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Introduction
 Errors occur in software programs. However, if you handle 

errors properly, you'll greatly improve your program’s 
readability, reliability and maintainability. 
 Python uses exceptions for error handling

 Exception examples: 
 Attempt to divide by ZERO 
 Couldn’t find the specific file to read

 The run-time system will attempt to handle the exception 
(default exception handler), usually by displaying an error 
message and terminating the program.
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Handling unexpected input values
 What if the function is passed a value that causes a divide by 

zero?
 Error caused at runtime
 Error occurs within the function
 Problem is with the input

 What can we do? 
 You can try to check for valid input first
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def divide(a, b):
result = a / b 
return result

x = divide(5, 0)
print(x)

Traceback (most recent call last):
File “...", line 5, in <module> x = divide(5, 0)
File “...", line 2, in divide  result = a / b 

ZeroDivisionError: division by zero

where

reason
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Divide by zero error
 Check for valid input first
 Only accept input where the divisor is non-zero

 What if “b” is not a number?
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def divide(a, b):
if b == 0:

result = 'Error: cannot divide by zero'
else:

result = a / b
return result

def divide(a, b):
if (type(b) is not int and

type(b) is not float):
result = "Error: divisor is not a number"

elif b == 0:
result = 'Error: cannot divide by zero'

...
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Handling input error
 Check for valid input first
 What if “a” is not a number?
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def divide(a, b):
if (type(b) is not int and

type(b) is not float or
type(a) is not int and
type (a) is not float):

result = ('Error: one or more operands' + 
' is not a number') 

elif b == 0:
result = 'Error: cannot divide by zero'

else:
result = a / b

return result

x = divide(5, 'hello')
print(x)
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What is an Exception?
 An exception is an event that occurs during the execution of 

a program that disrupts the normal flow of instructions 
during the execution of a program. 

 When an error occurs within a method, the method creates 
an exception object and hands it off to the runtime system. 

 The exception object contains 
 information about the error, including its type and the state of the 

program when the error occurred.

 Creating an exception object and handing it to the runtime 
system is called throwing an exception. 

COMPSCI 1059 Lecture07



Handling exceptions 
 Code that might create a runtime error is enclosed in a try 

block
 Statements are executed sequentially as normal
 If an error occurs then the remainder of the code is skipped
 The code starts executing again at the except clause

 The exception is "caught“

 Advantages of catching exceptions:
 It allows you to fix the error
 It prevents the program from automatically terminating
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try:
statement block
statement block

except:
exception handling statements
exception handling statements
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Case 1

 Case 1:  No error
 divide(5,5)
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def divide(a, b):
try:

result = a / b
print ("try-block")

except:
result = 'Error in input data'
print ("Error")

return result
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Example02.py

x = divide(5, 5)
print ("Program can continue to run...")
print(x)

try-block
Program can continue to run...
1.0

1

2

3



Case 2

 Case 2: Invalid input
 divide(5,0)
 divide(5, ‘Hello’)

 But what is the error in each situation? 
 1) 5/0 => ZeroDivisionError: division by zero
 2) 5/'hello‘ =>TypeError: unsupported operand type(s) for /: 'int' and 'str'
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def divide(a, b):
try:

result = a / b
print ("try-block")

except:
result = 'Error in input data'
print ("Error")

return result
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Example02.py

x = divide(5, 'hello')
print ("Program can continue to run...")
print (x)

Error
Program can continue to run...
Error in input data

1

2
3



Exercise 01
 What is the output of the following?
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def divide(dividend, divisor):
try:

quotient = dividend / divsor
except:

quotient = 'Error in input data'
return quotient

x = divide(5, 0)
print(x)
x = divide('hello', 'world')
print(x)
x = divide(5, 5)
print(x)
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Danger in catching all exceptions
 The general except clause catching all runtime errors
 Sometimes that can hide problems

 You can put two or more except clauses, each except block 
is an exception handler and handles the type of exception 
indicated by its argument in a program.
 The runtime system invokes the exception handler when the 

handler is the FIRST ONE matches the type of the exception 
thrown.
 It executes the statement inside the matched except block, the other 

except blocks are bypassed and continues after the try-except block.
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Specifying the exceptions

 Case 1: 
 No error
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def divide(a, b):
try:

result = a / b
except TypeError:

result = 'Type of operands is incorrect'
except ZeroDivisionError:

result = 'Divided by zero'
return result

x = divide(5, 5)
print(x)

1.0
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Specifying the exceptions

 Case 2: 
 is not a number
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def divide(a, b):
try:

result = a / b
except TypeError:

result = 'Type of operands is incorrect'
except ZeroDivisionError:

result = 'Divided by zero'
return result

x = divide('abc', 5)
print(x)

Type of operands is incorrect
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Example03.py

1

2



Specifying the exceptions

 Case 3: 
 Division Error
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def divide(a, b):
try:

result = a / b
except TypeError:

result = 'Type of operands is incorrect'
except ZeroDivisionError:

result = 'Divided by zero'
return result

x = divide(5, 0)
print(x)

Divided by zero
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Example03.py

1

2



Exception not Matched
 If no matching except block is found, the run-time system will 

attempt to handle the exception, by terminating the program.
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def divide(a, b):
try:

result = a / b
except IndexError:

result = 'Type of operands is incorrect'
except ZeroDivisionError:

result = 'Divided by zero'
return result

x = divide(5, 5)
print(x)

Traceback (most recent call last):
File “...", line 11, in <module> x = 

divide('abc', 0)File “...", line 3, in divide 
result = a / b TypeError: unsupported operand 
type(s) for /: 'str' and 'int'
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Order of except clauses
 Specific exception block must come before any of their 

general exception block
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def divide(a, b):
try:

result = a / b
except:

result = 'Type of operands is incorrect'
except ZeroDivisionError:

result = 'Divided by zero'
return result

result = a / b
SyntaxError: default 'except:' must be last
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try:
...

except ZeroDivisionError:
...

except:
...



Exceptions
 Any kind of built-in error can be caught
 Check the Python documentation for the complete list
 Some popular errors:

 ArithmeticError: various arithmetic errors
 ZeroDivisionError
 IndexError: a sequence subscript is out of range
 TypeError: inappropriate type
 ValueError: 
 has the right type but an inappropriate value

 IOError: Raised when an I/O operation 
 EOFError: 
 hits an end-of-file condition (EOF) without reading any data

 …
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BaseException
+-- SystemExit
+-- KeyboardInterrupt
+-- GeneratorExit
+-- Exception

+-- StopIteration
+-- ArithmeticError
|    +-- FloatingPointError
|    +-- OverflowError
|    +-- ZeroDivisionError
+-- AssertionError
+-- AttributeError
+-- BufferError
+-- EOFError
+-- ImportError
+-- LookupError
|    +-- IndexError
|    +-- KeyError
+-- MemoryError
+-- NameError
|    +-- UnboundLocalError
+-- OSError
|    +-- BlockingIOError
|    +-- ChildProcessError
|    +-- ConnectionError
|    |    +-- BrokenPipeError
|    |    +-- ConnectionAbortedError
|    |    +-- ConnectionRefusedError
|    |    +-- ConnectionResetError
|    +-- FileExistsError
|    +-- FileNotFoundError
|    +-- InterruptedError
|    +-- IsADirectoryError
|    +-- NotADirectoryError
|    +-- PermissionError
|    +-- ProcessLookupError
|    +-- TimeoutError
+-- ReferenceError
+-- RuntimeError
|    +-- NotImplementedError
+-- SyntaxError
|    +-- IndentationError
|         +-- TabError
+-- SystemError
+-- TypeError
+-- ValueError
|    +-- UnicodeError
|         +-- UnicodeDecodeError
|         +-- UnicodeEncodeError
|         +-- UnicodeTranslateError
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Exercise 2
 Consider the following code:

 Rewrite it using try-except block to handle the IndexError
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my_list = [1, 2, 3]
num = int(input('Enter an index: '))
print(my_list[num])

Enter an index: 6
...
IndexError: list index out of rangeEnter an index: 1

2

Enter an index: 6
Invalid index!



Exercise 3
 Consider the following code:

 Rewrite it using try-except block to handle the KeyError
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my_dict = {'test1':1,'test2':2}
num = input('Enter a key: ')
print(my_dict[num])

Enter a key: unknown
...
KeyError: 'unknown'Enter a key: test1

1

Enter a key: test
Invalid Key!



More specific feedback
 If you want to give the user more specific feedback about 

which input was wrong
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try:
dividend = int(input("Please enter the dividend: "))
divisor = int(input("Please enter the divisor: "))
print("%d / %d = %f" % (dividend, divisor, dividend/divisor))

except ValueError:
print("The divisor and dividend have to be numbers!")

except ZeroDivisionError:
print("The dividend may not be zero!")

try:
dividend = int(input("Please enter the dividend: "))

except ValueError:
print("The dividend has to be a number!")

try:
divisor = int(input("Please enter the divisor: "))

except ValueError:
print("The divisor has to be a number!")

try:
print("%d / %d = %f" % (dividend, divisor, dividend/divisor))

except ZeroDivisionError:
print("The dividend may not be zero!")

Example06.py


