
Exceptions

COMPSCI 105 S1 2017
Principles of Computer Science

MCQ
 The ________statement causes the __str__ method to be

invoked.
A. print(objectOfClass).
B. print("object“)
C. objectOfClass.print().
D. None of the others.

Lecture07COMPSCI 1052

x = Fraction(2, 3)

MCQ Exericse
 Consider the following code:

A. The program has an error because x is private and cannot be
access outside of the class.

B. The program has an error because y is private and cannot be
access outside of the class.

C. The program has an error because you cannot name a variable
using __y.

D. The program runs fine and prints 1.
E. The program runs fine and prints 0.

Lecture07COMPSCI 1053

class A:
def __init__(self):

self.x = 1
self.__y = 1

def getY(self):
return self.__y

a = A()
print(a.__y)

Learning outcomes
 Understand the flow of control that occurs with exceptions
 try, except, finally

 Use exceptions to handle unexpected runtime errors
gracefully
 'catching' an exception of the appropriate type

 Generate exceptions when appropriate
 raise an exception

 Resources:
 Errors and Exceptions — Python 3.4.2 documentation

 https://docs.python.org/3/tutorial/errors.html
 Python3 Tutorial: Exception Handling

 http://www.python-course.eu/python3_exception_handling.php

COMPSCI 1054 Lecture07

Introduction
 Errors occur in software programs. However, if you handle

errors properly, you'll greatly improve your program’s
readability, reliability and maintainability.
 Python uses exceptions for error handling

 Exception examples:
 Attempt to divide by ZERO
 Couldn’t find the specific file to read

 The run-time system will attempt to handle the exception
(default exception handler), usually by displaying an error
message and terminating the program.

COMPSCI 1055 Lecture07

Handling unexpected input values
 What if the function is passed a value that causes a divide by

zero?
 Error caused at runtime
 Error occurs within the function
 Problem is with the input

 What can we do?
 You can try to check for valid input first

COMPSCI 1056

def divide(a, b):
result = a / b
return result

x = divide(5, 0)
print(x)

Traceback (most recent call last):
File “...", line 5, in <module> x = divide(5, 0)
File “...", line 2, in divide result = a / b

ZeroDivisionError: division by zero

where

reason

Lecture07

Example01.py

Divide by zero error
 Check for valid input first
 Only accept input where the divisor is non-zero

 What if “b” is not a number?

COMPSCI 1057

def divide(a, b):
if b == 0:

result = 'Error: cannot divide by zero'
else:

result = a / b
return result

def divide(a, b):
if (type(b) is not int and

type(b) is not float):
result = "Error: divisor is not a number"

elif b == 0:
result = 'Error: cannot divide by zero'

...

Lecture07

Handling input error
 Check for valid input first
 What if “a” is not a number?

COMPSCI 1058

def divide(a, b):
if (type(b) is not int and

type(b) is not float or
type(a) is not int and
type (a) is not float):

result = ('Error: one or more operands' +
' is not a number')

elif b == 0:
result = 'Error: cannot divide by zero'

else:
result = a / b

return result

x = divide(5, 'hello')
print(x)

Lecture07

What is an Exception?
 An exception is an event that occurs during the execution of

a program that disrupts the normal flow of instructions
during the execution of a program.

 When an error occurs within a method, the method creates
an exception object and hands it off to the runtime system.

 The exception object contains
 information about the error, including its type and the state of the

program when the error occurred.

 Creating an exception object and handing it to the runtime
system is called throwing an exception.

COMPSCI 1059 Lecture07

Handling exceptions
 Code that might create a runtime error is enclosed in a try

block
 Statements are executed sequentially as normal
 If an error occurs then the remainder of the code is skipped
 The code starts executing again at the except clause

 The exception is "caught“

 Advantages of catching exceptions:
 It allows you to fix the error
 It prevents the program from automatically terminating

COMPSCI 10510

try:
statement block
statement block

except:
exception handling statements
exception handling statements

Lecture07

Case 1

 Case 1: No error
 divide(5,5)

COMPSCI 10511

def divide(a, b):
try:

result = a / b
print ("try-block")

except:
result = 'Error in input data'
print ("Error")

return result

Lecture07

Example02.py

x = divide(5, 5)
print ("Program can continue to run...")
print(x)

try-block
Program can continue to run...
1.0

1

2

3

Case 2

 Case 2: Invalid input
 divide(5,0)
 divide(5, ‘Hello’)

 But what is the error in each situation?
 1) 5/0 => ZeroDivisionError: division by zero
 2) 5/'hello‘ =>TypeError: unsupported operand type(s) for /: 'int' and 'str'

COMPSCI 10512

def divide(a, b):
try:

result = a / b
print ("try-block")

except:
result = 'Error in input data'
print ("Error")

return result

Lecture07

Example02.py

x = divide(5, 'hello')
print ("Program can continue to run...")
print (x)

Error
Program can continue to run...
Error in input data

1

2
3

Exercise 01
 What is the output of the following?

COMPSCI 10513

def divide(dividend, divisor):
try:

quotient = dividend / divsor
except:

quotient = 'Error in input data'
return quotient

x = divide(5, 0)
print(x)
x = divide('hello', 'world')
print(x)
x = divide(5, 5)
print(x)

Lecture07

Danger in catching all exceptions
 The general except clause catching all runtime errors
 Sometimes that can hide problems

 You can put two or more except clauses, each except block
is an exception handler and handles the type of exception
indicated by its argument in a program.
 The runtime system invokes the exception handler when the

handler is the FIRST ONE matches the type of the exception
thrown.
 It executes the statement inside the matched except block, the other

except blocks are bypassed and continues after the try-except block.

COMPSCI 10514 Lecture07

Specifying the exceptions

 Case 1:
 No error

COMPSCI 10515

def divide(a, b):
try:

result = a / b
except TypeError:

result = 'Type of operands is incorrect'
except ZeroDivisionError:

result = 'Divided by zero'
return result

x = divide(5, 5)
print(x)

1.0

Lecture07

Example03.py

Specifying the exceptions

 Case 2:
 is not a number

COMPSCI 10516

def divide(a, b):
try:

result = a / b
except TypeError:

result = 'Type of operands is incorrect'
except ZeroDivisionError:

result = 'Divided by zero'
return result

x = divide('abc', 5)
print(x)

Type of operands is incorrect

Lecture07

Example03.py

1

2

Specifying the exceptions

 Case 3:
 Division Error

COMPSCI 10517

def divide(a, b):
try:

result = a / b
except TypeError:

result = 'Type of operands is incorrect'
except ZeroDivisionError:

result = 'Divided by zero'
return result

x = divide(5, 0)
print(x)

Divided by zero

Lecture07

Example03.py

1

2

Exception not Matched
 If no matching except block is found, the run-time system will

attempt to handle the exception, by terminating the program.

COMPSCI 10518

def divide(a, b):
try:

result = a / b
except IndexError:

result = 'Type of operands is incorrect'
except ZeroDivisionError:

result = 'Divided by zero'
return result

x = divide(5, 5)
print(x)

Traceback (most recent call last):
File “...", line 11, in <module> x =

divide('abc', 0)File “...", line 3, in divide
result = a / b TypeError: unsupported operand
type(s) for /: 'str' and 'int'

Lecture07

Example04.py

Order of except clauses
 Specific exception block must come before any of their

general exception block

COMPSCI 10519

def divide(a, b):
try:

result = a / b
except:

result = 'Type of operands is incorrect'
except ZeroDivisionError:

result = 'Divided by zero'
return result

result = a / b
SyntaxError: default 'except:' must be last

Lecture07

Example05.py

try:
...

except ZeroDivisionError:
...

except:
...

Exceptions
 Any kind of built-in error can be caught
 Check the Python documentation for the complete list
 Some popular errors:

 ArithmeticError: various arithmetic errors
 ZeroDivisionError
 IndexError: a sequence subscript is out of range
 TypeError: inappropriate type
 ValueError:
 has the right type but an inappropriate value

 IOError: Raised when an I/O operation
 EOFError:
 hits an end-of-file condition (EOF) without reading any data

 …

COMPSCI 10520

BaseException
+-- SystemExit
+-- KeyboardInterrupt
+-- GeneratorExit
+-- Exception

+-- StopIteration
+-- ArithmeticError
| +-- FloatingPointError
| +-- OverflowError
| +-- ZeroDivisionError
+-- AssertionError
+-- AttributeError
+-- BufferError
+-- EOFError
+-- ImportError
+-- LookupError
| +-- IndexError
| +-- KeyError
+-- MemoryError
+-- NameError
| +-- UnboundLocalError
+-- OSError
| +-- BlockingIOError
| +-- ChildProcessError
| +-- ConnectionError
| | +-- BrokenPipeError
| | +-- ConnectionAbortedError
| | +-- ConnectionRefusedError
| | +-- ConnectionResetError
| +-- FileExistsError
| +-- FileNotFoundError
| +-- InterruptedError
| +-- IsADirectoryError
| +-- NotADirectoryError
| +-- PermissionError
| +-- ProcessLookupError
| +-- TimeoutError
+-- ReferenceError
+-- RuntimeError
| +-- NotImplementedError
+-- SyntaxError
| +-- IndentationError
| +-- TabError
+-- SystemError
+-- TypeError
+-- ValueError
| +-- UnicodeError
| +-- UnicodeDecodeError
| +-- UnicodeEncodeError
| +-- UnicodeTranslateError

Lecture07

Exercise 2
 Consider the following code:

 Rewrite it using try-except block to handle the IndexError

Lecture07COMPSCI 10521

my_list = [1, 2, 3]
num = int(input('Enter an index: '))
print(my_list[num])

Enter an index: 6
...
IndexError: list index out of rangeEnter an index: 1

2

Enter an index: 6
Invalid index!

Exercise 3
 Consider the following code:

 Rewrite it using try-except block to handle the KeyError

Lecture07COMPSCI 10522

my_dict = {'test1':1,'test2':2}
num = input('Enter a key: ')
print(my_dict[num])

Enter a key: unknown
...
KeyError: 'unknown'Enter a key: test1

1

Enter a key: test
Invalid Key!

More specific feedback
 If you want to give the user more specific feedback about

which input was wrong

Lecture07COMPSCI 10523

try:
dividend = int(input("Please enter the dividend: "))
divisor = int(input("Please enter the divisor: "))
print("%d / %d = %f" % (dividend, divisor, dividend/divisor))

except ValueError:
print("The divisor and dividend have to be numbers!")

except ZeroDivisionError:
print("The dividend may not be zero!")

try:
dividend = int(input("Please enter the dividend: "))

except ValueError:
print("The dividend has to be a number!")

try:
divisor = int(input("Please enter the divisor: "))

except ValueError:
print("The divisor has to be a number!")

try:
print("%d / %d = %f" % (dividend, divisor, dividend/divisor))

except ZeroDivisionError:
print("The dividend may not be zero!")

Example06.py

