COMPSCI 105 S1 2017
Principles of Computer Science

252

¥ L xercise

» Exercise

Create a Student class:

The Student class should have three attributes: id, last_name, and
first_name.

Create a constructor to initialize the values

Implement the __repr__ method and __str___ method

Classes 3 >>> sl = Student(l, 'Angela',6 'Chang')
>>> Sl. Student (1, Angela, Chang)
>>> print(sl) 1: Angela Chang
2 COMPSCI 105 Lecture06
R A

¥ Reminder — Fraction class

» Write a class to represent fractions in Python
create a fraction
add
subtract
multiply
divide

text representation

numerator —— 5 I
Z <« denominator

3 COMPSCI 105 Lecture06

Fraction.py

2. Overloading Operators

» Python operators work for built-in classes.

But same operator behaves differently with different types.

E.g. the + operator:

perform arithmetic addition on two numbers,

merge two lists

concatenate two strings.
Allow same operator to have different meaning according to the
context is called operator overloading

Operator Expression Internally
Addition fl +f2 fl.__add__ (f2)
Subtraction fl -f2 fl.__sub__(f2)
Equality fl == fl.__eq_ (f2)
4 COMPSCI 105 Lecture06




255

add__

» The __add__ method is called when the + operator is used

If we implement __add___ then we can use + to add the objects
fl + f2 gets translated into fl.__add__ (f2)

def _ add_ (self, other):
new_num = self.num * other.den + self.den * other.num
new_den = self.den * other.den
return Fraction(new_num, new_den)

x = Fraction(1l, 2)
y = Fraction(1l, 4)
zZz=x+y
print(z) 6/8
5 COMPSCI 105 Lecture06

» The __sub__ method is called when the - operator is used

If we implement __sub___ then we can use - to do subtraction
fl - f2 gets translated into fl.__sub__(f2)

def _ sub_(self, other):
new_num = self.num * other.den - self.den * other.num
new_den = self.den * other.den
return Fraction(new_num, new_den)

x = Fraction(1l, 2)
y = Fraction(1l, 4)
Z =X -Y
print(z)
2/8
6 COMPSCI 105 Lecture06

D2

= €Q__

» The __eq__ method checks equality of the objects

Default behaviour is to compare the references
We want to compare the contents

def _ eq_ (self, other):
return self.num * other.den == other.num * self.den

- x Fraction(l, 2)
x Fractfon(12,30) y = Fraction(1l, 4)
y = Fraction (2, 5) print (x == y)

L ol L

7 COMPSCI 105 Lecture06

22
¥ Exercise 1

» What is the output of the following code!?

x = Fraction(2, 3)
y = Fraction(1l, 3)
z=y +y

print (x)

print(z)

print(x == z)

x = Fraction (2, 3)

print (x == 2) AttributeError: 'int' object
has no attribute 'den'

8 COMPSCI 105 Lecture06




255

2 Improving __eq__

» Check the type of the other operand
If the type is not a Fraction, then not equal?
What other decisions could we make for equality?
def _ eq_ (self, other):
if not isinstance (other, Fraction):

return False
return self.num * other.den == other.num * self.den

x = Fraction(2, 3)

print (x == 2)

9 COMPSCI 105 Lecture06

252

2. Improving your code

» Fractions:
12/30
2/5
» The first fraction can be simplified to 2/5
» The Common Factors of 12 and 30 were [, 2,3 and 6,

» The Greatest Common Factor is 6.
So the largest number we can divide both 12 and 30 evenly by is 6

» And so 12/30 can be simplified to 2/5

10 COMPSCI 105 Lecture06

D2

¥ Greatest Common Divisor

» Use Euclid's Algorithm

Given two numbers, n and m, find the number k, such that k is the
largest number that evenly divides both n and m.

Example: Find the GCD of 270 and 192,
gcd(270, 192): m=270, n=192 (m#0, n #0)
Use long division to find that 270/192 = | with a remainder of 78. We can write this as:
gcd(270,192) = gcd(192,78)
gcd(192,78) : m=192,n=78 (m#0, n #0)
192/78 = 2 with a remainder of 36 with a remainder of 78. We can write this as:

gcd(192,78) = ged(78,36) def ged(m, n):

gcd(78, 36) : m=78,n=36 (m#0, n #0) whilem % n != 0:
78/36 = 2 with a remainder of 6 oldm=m
gcd(78,36) = gcd(36,6) oldn=n
gcd(36, 6) :m=36,n=6 (m#0, n #0) m =_old_n
36/6 = 6 with a remainder of 0 n =o0ldm % old n
gcd(36,6) = gcd(6,0) = 6 return n

11 COMPSCI 105 Lecture06

A
Z_Improve the constructor

» We can improve the constructor so that it always represents
a fraction using the "lowest terms" form.
What other things might we want to add to a Fraction?

class Fraction:
def _ init (self, top, bottom):
common = Fraction.gcd(top, bottom) #get largest common term
self.num = top // common #numerator
self.den = bottom // common #denominator

def gcd(m, n):
while m %
old m
old n
m = old :
n =o0ldm % old n

return n

non s
0
o

[ I= -]

12 COMPSCI 105 Lecture06




AR
2. Examples
» Without the GCD

x = Fraction(12,30)

y = Fraction(2, 5)

print (x == y) True
print (x) 12/30
print(y) 2/5

» Using the GCD:

b3 Fraction(12,30)
y = Fraction(2, 5)
print (x == y)

252

Z_ Other standard Python operators

» Many standard operators and funtions:
https://docs.python.org/3.4/library/operator.html

» Common Arithmetic operators
object.__add__ (self, other)
object.__sub__ (self, other)
object.__mul__ (self, other)
object.__truediv__ (self, other)

» Common Relational operators
object.__It__(self, other)
object.__le__(self, other)
object.__eq__(self, other)
object.__ne__(self, other)
object.__gt  (self, other)

Inplace arithmetic operators
* object.__iadd__(self, other)
* object.__isub__(self, other)
* object.__imul__(self, other)
* object.__itruediv__(self, other)

Reversed versions:
* object.__radd__(self, other)
* object._ rsub__(self, other)
* object.__rmul__(self, other)

i True
pziﬁt Ex; 2/5 object.__ge_ (self, other) * object.__rdiv__(self, other)
ke 2/5 .
13 COMPSCI 105 Lecture06 14 COMPSCI 105 Lecture06
A SIS

¥ Exercise 2

» Implement the __truediv__ of the Fraction class:

a = Fraction(l, 3)
b = Fraction(4, 5)
d=a/b
print (d)

15 COMPSCI 105 Lecture06

¥ Exercise 3

» Implement the __ It method to compare two Fraction

objects:
a = Fraction(1l, 3)
b = Fraction(4, 5)

if a < b:
print("a<b")
else:
print("a>=b")

16

a<b

COMPSCI 105 Lecture06




255

Z_Forward, Reverse and In-Place

» Every arithmetic operator is transformed into a method call.
By defining the numeric special methods, your class will work
with the built-in arithmetic operators.

First, there are as many as three variant methods required to
implement each operation.

For example, * is implemented by __ mul__, __rmul__and __imul__
There are forward and reverse special methods so that you can assure that your
operator is properly commutative.
You don't need to implement all three versions.
The reverse name is used for special situations that involve objects of
multiple classes.

252

_mul Vs rmul

» Locating an appropriate method for an operator

First, it tries a class based on the left-hand operand using the
"forward" name. If no suitable special method is found, it tries the
right-hand operand, using the "reverse" name.

Version |: class Fraction:

x Fraction (2, 3) def _ mul_ (self, other):
vy Fraction(1,3) new_num = self.num * other.num
_ v new_den = self.den * other.den

P=x*y :
return Fraction(new_num, new_den)

print (p)
2/9 ﬁ Invoke x.__mul__(y)

P=x%*2
AttributeError: 'int' object
has no attribute 'num'
17 COMPSCI 105 Lecture06 18 COMPSCI 105 Lecture06
AR A
. Version 2 2 Version 3

Check the type of the right operand:
class Fraction:
def _ mul_ (self, other):
if isinstance (other,Fraction):
new_num = self.num * other.num

i Fract::l.on (2,3) new_den = self.den * other.den
y = Fraction(1,3) return Fraction(new_num, new_den)
P=x*y else:
print (p) 2/9 new_num = self.num * other

return Fraction(new_num, self.den)
P=x%*2 4/3 .
print (p) If the right operand

is not a Fraction

P=2 *x TypeError: unsupported operand

type(s) for *: 'int' and
'Fraction'’

19 COMPSCI 105 Lecture06

If the left operand of * is a primitive type and the right operand is a
Fraction, Python invokes __ rmul__

class Fraction:

def mul_ (self, other):

x = Fraction(2,3) if isinstance (other,Fraction):
y = Fraction(1l,3)
P=x*y def _ rmul (self, other):
print(p) 2/9 new_num = self.num * other
return Fraction(new_num, self.den)
P=x%*2 4/3
print(p)
P=2*x
Invoke x.__rmul__(2)
4/3
20 COMPSCI 105 Lecture06




2 SR
w In-Place Operators 2 Exercise 4
) +=,-= *= = etc » Overload the following operators in the Point class:
+:return a new Point that contains the sum of the x coordinates
clas e and the sum of the y coordinates.
def _ iadd__(self, other): *: computes the dot product of the two points, defined according

new_num = self.num * other.den + self.den * other.num
new_den = self.den * other.den

common = Fraction.gcd(new_num, new_den)

self.num = new_num // common

self.den = new_den // common

to the rules of linear algebra

return self pl = Point (3, 4)
P2 = Point(5, 7)
x = Fraction(2,3) Do the calculation in-place p3 = pl + p2 <" 0D
y = Fraction(1,3) print (p3) !
print (id(x)) Invoke x.__iadd__(y)
%k k =
x =y 6422096 p4 = pl * p2 3 5+4_Z3 >+ 28
print(id(x)) 6422096 print(p4) -
print (x) 9/9
21 COMPSCI 105 Lecture06 22 COMPSCI 105 Lecture06
D 29
¥ Exercise 5 2. Summary
» If the left operand of * is a primitive type and the right » A class is a template, a blueprint and a data type for
operand is a Point, Python invokes __rmul__, which performs objects.
scalar multiplication: » A class defines the data fields of objects, and provides an
pl = Point(3, 4) initializer for initializing objects and other methods for
P2 = Point(5, 7) manipulating the data.

p5 = 2 * p2 » The initializer always named __init__.The first parameter
print (p5) !

in each method including the initializer in the class refers
pé = p2 * 2 < @ 1 D to the object that calls the methods, i.e., self.

print (p6)
» Data fields in classes should be hidden to prevent data
tampering and to make class easy to maintain.

» We can overwrite the default methods in a class definition.

23 COMPSCI 105 Lecture06 24 COMPSCI 105 Lecture06




