
Classes 3

COMPSCI 105 S1 2017
Principles of Computer Science

Exercise
 Exercise
 Create a Student class:

 The Student class should have three attributes: id, last_name, and
first_name.

 Create a constructor to initialize the values
 Implement the __repr__ method and __str__ method

Lecture06COMPSCI 1052

>>> s1 = Student(1, 'Angela', 'Chang')
>>> s1
>>> print(s1) Student(1, Angela, Chang)

1: Angela Chang

Reminder – Fraction class
 Write a class to represent fractions in Python
 create a fraction
 add
 subtract
 multiply
 divide
 text representation

COMPSCI 1053

½numerator
denominator

Lecture06

Overloading Operators
 Python operators work for built-in classes.
 But same operator behaves differently with different types.

 E.g. the + operator:
 perform arithmetic addition on two numbers,
 merge two lists
 concatenate two strings.

 Allow same operator to have different meaning according to the
context is called operator overloading

Lecture06COMPSCI 1054

Operator Expression Internally

Addition f1 + f2 f1.__add__(f2)

Subtraction f1 - f2 f1.__sub__(f2)

Equality f1 == f2 f1. __eq__(f2)

Fraction.py

__add__
 The __add__ method is called when the + operator is used
 If we implement __add__ then we can use + to add the objects

 f1 + f2 gets translated into f1.__add__(f2)

COMPSCI 1055

x = Fraction(1, 2)
y = Fraction(1, 4)
z = x + y
print(z)

def __add__(self, other):
new_num = self.num * other.den + self.den * other.num
new_den = self.den * other.den
return Fraction(new_num, new_den)

6/8

Lecture06

__sub__
 The __sub__ method is called when the - operator is used
 If we implement __sub__ then we can use - to do subtraction

 f1 - f2 gets translated into f1.__sub__(f2)

COMPSCI 1056

x = Fraction(1, 2)
y = Fraction(1, 4)
z = x - y
print(z)

def __sub__(self, other):
new_num = self.num * other.den - self.den * other.num
new_den = self.den * other.den
return Fraction(new_num, new_den)

2/8

Lecture06

__eq__
 The __eq__ method checks equality of the objects
 Default behaviour is to compare the references
 We want to compare the contents

COMPSCI 1057

def __eq__(self, other):
return self.num * other.den == other.num * self.den

Lecture06

x = Fraction(12,30)
y = Fraction(2, 5)
print (x == y)

True

x = Fraction(1, 2)
y = Fraction(1, 4)
print (x == y)

False

Exercise 1
 What is the output of the following code?

COMPSCI 1058

x = Fraction(2, 3)
y = Fraction(1, 3)
z = y + y
print(x)
print(z)
print(x == z)

Lecture06

x = Fraction(2, 3)
print (x == 2) AttributeError: 'int' object

has no attribute 'den'

Improving __eq__
 Check the type of the other operand
 If the type is not a Fraction, then not equal?
 What other decisions could we make for equality?

COMPSCI 1059

def __eq__(self, other):
if not isinstance(other, Fraction):

return False
return self.num * other.den == other.num * self.den

Lecture06

x = Fraction(2, 3)
print (x == 2) False

Improving your code
 Fractions:
 12/30
 2/5

 The first fraction can be simplified to 2/5
 The Common Factors of 12 and 30 were 1, 2, 3 and 6,
 The Greatest Common Factor is 6.
 So the largest number we can divide both 12 and 30 evenly by is 6

 And so 12/30 can be simplified to 2/5

Lecture06COMPSCI 10510

Greatest Common Divisor
 Use Euclid's Algorithm
 Given two numbers, n and m, find the number k, such that k is the

largest number that evenly divides both n and m.
 Example: Find the GCD of 270 and 192,
 gcd(270, 192): m=270, n=192 (m≠0, n ≠0)

 Use long division to find that 270/192 = 1 with a remainder of 78. We can write this as:
gcd(270,192) = gcd(192,78)

 gcd(192, 78) : m=192, n=78 (m≠0, n ≠0)
 192/78 = 2 with a remainder of 36 with a remainder of 78. We can write this as:

gcd(192,78) = gcd(78,36)

 gcd(78, 36) : m=78, n=36 (m≠0, n ≠0)
 78/36 = 2 with a remainder of 6
 gcd(78,36) = gcd(36,6)

 gcd(36, 6) : m=36, n=6 (m≠0, n ≠0)
 36/6 = 6 with a remainder of 0
 gcd(36,6) = gcd(6,0) = 6

COMPSCI 10511

def gcd(m, n):
while m % n != 0:

old_m = m
old_n = n
m = old_n
n = old_m % old_n

return n
Lecture06

Improve the constructor
 We can improve the constructor so that it always represents

a fraction using the "lowest terms" form.
 What other things might we want to add to a Fraction?

COMPSCI 10512

class Fraction:
def __init__(self, top, bottom):

common = Fraction.gcd(top, bottom) #get largest common term
self.num = top // common #numerator
self.den = bottom // common #denominator

def gcd(m, n):
while m % n != 0:

old_m = m
old_n = n
m = old_n
n = old_m % old_n

return n

Lecture06

Examples
 Without the GCD

 Using the GCD:

Lecture06COMPSCI 10513

x = Fraction(12,30)
y = Fraction(2, 5)
print (x == y)
print(x)
print(y)

x = Fraction(12,30)
y = Fraction(2, 5)
print (x == y)
print(x)
print(y)

True
2/5
2/5

True
12/30
2/5

Other standard Python operators
 Many standard operators and funtions:

https://docs.python.org/3.4/library/operator.html

 Common Arithmetic operators
 object.__add__(self, other)
 object.__sub__(self, other)
 object.__mul__(self, other)
 object.__truediv__(self, other)

 Common Relational operators
 object.__lt__(self, other)
 object.__le__(self, other)
 object.__eq__(self, other)
 object.__ne__(self, other)
 object.__gt__(self, other)
 object.__ge__(self, other)

COMPSCI 10514

Inplace arithmetic operators
• object.__iadd__(self, other)
• object.__isub__(self, other)
• object.__imul__(self, other)
• object.__itruediv__(self, other)

Lecture06

+=
-=
…

Reversed versions:
• object.__radd__(self, other)
• object.__rsub__(self, other)
• object.__rmul__(self, other)
• object.__rdiv__(self, other)
• …

Exercise 2
 Implement the __truediv__ of the Fraction class:

Lecture06COMPSCI 10515

a = Fraction(1, 3)
b = Fraction(4, 5)
d = a / b
print (d)

5/12

Exercise 3
 Implement the __lt__ method to compare two Fraction

objects:

Lecture06COMPSCI 10516

a = Fraction(1, 3)
b = Fraction(4, 5)
if a < b:

print("a<b")
else:

print("a>=b") a<b

Forward, Reverse and In-Place
 Every arithmetic operator is transformed into a method call.

By defining the numeric special methods, your class will work
with the built-in arithmetic operators.
 First, there are as many as three variant methods required to

implement each operation.
 For example, * is implemented by __mul__, __rmul__ and __imul__
 There are forward and reverse special methods so that you can assure that your

operator is properly commutative.

 You don't need to implement all three versions.
 The reverse name is used for special situations that involve objects of

multiple classes.

Lecture06COMPSCI 10517

class Fraction:
...
def __mul__(self, other):

new_num = self.num * other.num
new_den = self.den * other.den
return Fraction(new_num, new_den)

mul Vs rmul
 Locating an appropriate method for an operator
 First, it tries a class based on the left-hand operand using the

"forward" name. If no suitable special method is found, it tries the
right-hand operand, using the "reverse" name.

 Version 1:

Lecture06COMPSCI 10518

x = Fraction(2,3)
y = Fraction(1,3)
p = x * y
print(p)

P = x * 2

2/9

AttributeError: 'int' object
has no attribute 'num'

Invoke x.__mul__(y)

class Fraction:
...
def __mul__(self, other):

if isinstance(other,Fraction):
new_num = self.num * other.num
new_den = self.den * other.den
return Fraction(new_num, new_den)

else:
new_num = self.num * other
return Fraction(new_num, self.den)

Version 2
 Check the type of the right operand:

Lecture06COMPSCI 10519

x = Fraction(2,3)
y = Fraction(1,3)
p = x * y
print(p)

P = x * 2
print(p)

P = 2 * x

2/9

If the right operand
is not a Fraction

4/3

TypeError: unsupported operand
type(s) for *: 'int' and
'Fraction'

class Fraction:
...
def __mul__(self, other):

if isinstance(other,Fraction):
...

def __rmul__(self, other):
new_num = self.num * other
return Fraction(new_num, self.den)

Version 3
 If the left operand of * is a primitive type and the right operand is a

Fraction, Python invokes __rmul__

Lecture06COMPSCI 10520

x = Fraction(2,3)
y = Fraction(1,3)
p = x * y
print(p)

P = x * 2
print(p)

P = 2 * x

2/9

4/3

4/3 Invoke x.__rmul__(2)

In-Place Operators
 +=, -=, *=, /= etc

Lecture06COMPSCI 10521

class Fraction:
...
def __iadd__(self, other):

new_num = self.num * other.den + self.den * other.num
new_den = self.den * other.den
common = Fraction.gcd(new_num, new_den)
self.num = new_num // common
self.den = new_den // common
return self

x = Fraction(2,3)
y = Fraction(1,3)
print(id(x))
x += y
print(id(x))
print(x)

6422096
6422096
9/9

Invoke x.__iadd__(y)

Do the calculation in-place

Exercise 4
 Overload the following operators in the Point class:
 +: return a new Point that contains the sum of the x coordinates

and the sum of the y coordinates.
 *: computes the dot product of the two points, defined according

to the rules of linear algebra

Lecture06COMPSCI 10522

p1 = Point(3, 4)
p2 = Point(5, 7)
p3 = p1 + p2
print(p3)
p4 = p1 * p2
print(p4)

(8, 11)

43
3 * 5 + 4 * 7 = 15 + 28

= 43

Exercise 5
 If the left operand of * is a primitive type and the right

operand is a Point, Python invokes __rmul__, which performs
scalar multiplication:

Lecture06COMPSCI 10523

p1 = Point(3, 4)
p2 = Point(5, 7)
p5 = 2 * p2
print(p5)
p6 = p2 * 2
print(p6)

(10, 14)

(10, 14)

Summary
 A class is a template, a blueprint and a data type for

objects.
 A class defines the data fields of objects, and provides an

initializer for initializing objects and other methods for
manipulating the data.

 The initializer always named __init__. The first parameter
in each method including the initializer in the class refers
to the object that calls the methods, i.e., self.

 Data fields in classes should be hidden to prevent data
tampering and to make class easy to maintain.

 We can overwrite the default methods in a class definition.
COMPSCI 10524 Lecture06

