
Classes 3

COMPSCI 105 S1 2017
Principles of Computer Science

Exercise
 Exercise
 Create a Student class:

 The Student class should have three attributes: id, last_name, and
first_name.

 Create a constructor to initialize the values
 Implement the __repr__ method and __str__ method

Lecture06COMPSCI 1052

>>> s1 = Student(1, 'Angela', 'Chang')
>>> s1
>>> print(s1) Student(1, Angela, Chang)

1: Angela Chang

Reminder – Fraction class
 Write a class to represent fractions in Python
 create a fraction
 add
 subtract
 multiply
 divide
 text representation

COMPSCI 1053

½numerator
denominator

Lecture06

Overloading Operators
 Python operators work for built-in classes.
 But same operator behaves differently with different types.

 E.g. the + operator:
 perform arithmetic addition on two numbers,
 merge two lists
 concatenate two strings.

 Allow same operator to have different meaning according to the
context is called operator overloading

Lecture06COMPSCI 1054

Operator Expression Internally

Addition f1 + f2 f1.__add__(f2)

Subtraction f1 - f2 f1.__sub__(f2)

Equality f1 == f2 f1. __eq__(f2)

Fraction.py

__add__
 The __add__ method is called when the + operator is used
 If we implement __add__ then we can use + to add the objects

 f1 + f2 gets translated into f1.__add__(f2)

COMPSCI 1055

x = Fraction(1, 2)
y = Fraction(1, 4)
z = x + y
print(z)

def __add__(self, other):
new_num = self.num * other.den + self.den * other.num
new_den = self.den * other.den
return Fraction(new_num, new_den)

6/8

Lecture06

__sub__
 The __sub__ method is called when the - operator is used
 If we implement __sub__ then we can use - to do subtraction

 f1 - f2 gets translated into f1.__sub__(f2)

COMPSCI 1056

x = Fraction(1, 2)
y = Fraction(1, 4)
z = x - y
print(z)

def __sub__(self, other):
new_num = self.num * other.den - self.den * other.num
new_den = self.den * other.den
return Fraction(new_num, new_den)

2/8

Lecture06

__eq__
 The __eq__ method checks equality of the objects
 Default behaviour is to compare the references
 We want to compare the contents

COMPSCI 1057

def __eq__(self, other):
return self.num * other.den == other.num * self.den

Lecture06

x = Fraction(12,30)
y = Fraction(2, 5)
print (x == y)

True

x = Fraction(1, 2)
y = Fraction(1, 4)
print (x == y)

False

Exercise 1
 What is the output of the following code?

COMPSCI 1058

x = Fraction(2, 3)
y = Fraction(1, 3)
z = y + y
print(x)
print(z)
print(x == z)

Lecture06

x = Fraction(2, 3)
print (x == 2) AttributeError: 'int' object

has no attribute 'den'

Improving __eq__
 Check the type of the other operand
 If the type is not a Fraction, then not equal?
 What other decisions could we make for equality?

COMPSCI 1059

def __eq__(self, other):
if not isinstance(other, Fraction):

return False
return self.num * other.den == other.num * self.den

Lecture06

x = Fraction(2, 3)
print (x == 2) False

Improving your code
 Fractions:
 12/30
 2/5

 The first fraction can be simplified to 2/5
 The Common Factors of 12 and 30 were 1, 2, 3 and 6,
 The Greatest Common Factor is 6.
 So the largest number we can divide both 12 and 30 evenly by is 6

 And so 12/30 can be simplified to 2/5

Lecture06COMPSCI 10510

Greatest Common Divisor
 Use Euclid's Algorithm
 Given two numbers, n and m, find the number k, such that k is the

largest number that evenly divides both n and m.
 Example: Find the GCD of 270 and 192,
 gcd(270, 192): m=270, n=192 (m≠0, n ≠0)

 Use long division to find that 270/192 = 1 with a remainder of 78. We can write this as:
gcd(270,192) = gcd(192,78)

 gcd(192, 78) : m=192, n=78 (m≠0, n ≠0)
 192/78 = 2 with a remainder of 36 with a remainder of 78. We can write this as:

gcd(192,78) = gcd(78,36)

 gcd(78, 36) : m=78, n=36 (m≠0, n ≠0)
 78/36 = 2 with a remainder of 6
 gcd(78,36) = gcd(36,6)

 gcd(36, 6) : m=36, n=6 (m≠0, n ≠0)
 36/6 = 6 with a remainder of 0
 gcd(36,6) = gcd(6,0) = 6

COMPSCI 10511

def gcd(m, n):
while m % n != 0:

old_m = m
old_n = n
m = old_n
n = old_m % old_n

return n
Lecture06

Improve the constructor
 We can improve the constructor so that it always represents

a fraction using the "lowest terms" form.
 What other things might we want to add to a Fraction?

COMPSCI 10512

class Fraction:
def __init__(self, top, bottom):

common = Fraction.gcd(top, bottom) #get largest common term
self.num = top // common #numerator
self.den = bottom // common #denominator

def gcd(m, n):
while m % n != 0:

old_m = m
old_n = n
m = old_n
n = old_m % old_n

return n

Lecture06

Examples
 Without the GCD

 Using the GCD:

Lecture06COMPSCI 10513

x = Fraction(12,30)
y = Fraction(2, 5)
print (x == y)
print(x)
print(y)

x = Fraction(12,30)
y = Fraction(2, 5)
print (x == y)
print(x)
print(y)

True
2/5
2/5

True
12/30
2/5

Other standard Python operators
 Many standard operators and funtions:

https://docs.python.org/3.4/library/operator.html

 Common Arithmetic operators
 object.__add__(self, other)
 object.__sub__(self, other)
 object.__mul__(self, other)
 object.__truediv__(self, other)

 Common Relational operators
 object.__lt__(self, other)
 object.__le__(self, other)
 object.__eq__(self, other)
 object.__ne__(self, other)
 object.__gt__(self, other)
 object.__ge__(self, other)

COMPSCI 10514

Inplace arithmetic operators
• object.__iadd__(self, other)
• object.__isub__(self, other)
• object.__imul__(self, other)
• object.__itruediv__(self, other)

Lecture06

+=
-=
…

Reversed versions:
• object.__radd__(self, other)
• object.__rsub__(self, other)
• object.__rmul__(self, other)
• object.__rdiv__(self, other)
• …

Exercise 2
 Implement the __truediv__ of the Fraction class:

Lecture06COMPSCI 10515

a = Fraction(1, 3)
b = Fraction(4, 5)
d = a / b
print (d)

5/12

Exercise 3
 Implement the __lt__ method to compare two Fraction

objects:

Lecture06COMPSCI 10516

a = Fraction(1, 3)
b = Fraction(4, 5)
if a < b:

print("a<b")
else:

print("a>=b") a<b

Forward, Reverse and In-Place
 Every arithmetic operator is transformed into a method call.

By defining the numeric special methods, your class will work
with the built-in arithmetic operators.
 First, there are as many as three variant methods required to

implement each operation.
 For example, * is implemented by __mul__, __rmul__ and __imul__
 There are forward and reverse special methods so that you can assure that your

operator is properly commutative.

 You don't need to implement all three versions.
 The reverse name is used for special situations that involve objects of

multiple classes.

Lecture06COMPSCI 10517

class Fraction:
...
def __mul__(self, other):

new_num = self.num * other.num
new_den = self.den * other.den
return Fraction(new_num, new_den)

mul Vs rmul
 Locating an appropriate method for an operator
 First, it tries a class based on the left-hand operand using the

"forward" name. If no suitable special method is found, it tries the
right-hand operand, using the "reverse" name.

 Version 1:

Lecture06COMPSCI 10518

x = Fraction(2,3)
y = Fraction(1,3)
p = x * y
print(p)

P = x * 2

2/9

AttributeError: 'int' object
has no attribute 'num'

Invoke x.__mul__(y)

class Fraction:
...
def __mul__(self, other):

if isinstance(other,Fraction):
new_num = self.num * other.num
new_den = self.den * other.den
return Fraction(new_num, new_den)

else:
new_num = self.num * other
return Fraction(new_num, self.den)

Version 2
 Check the type of the right operand:

Lecture06COMPSCI 10519

x = Fraction(2,3)
y = Fraction(1,3)
p = x * y
print(p)

P = x * 2
print(p)

P = 2 * x

2/9

If the right operand
is not a Fraction

4/3

TypeError: unsupported operand
type(s) for *: 'int' and
'Fraction'

class Fraction:
...
def __mul__(self, other):

if isinstance(other,Fraction):
...

def __rmul__(self, other):
new_num = self.num * other
return Fraction(new_num, self.den)

Version 3
 If the left operand of * is a primitive type and the right operand is a

Fraction, Python invokes __rmul__

Lecture06COMPSCI 10520

x = Fraction(2,3)
y = Fraction(1,3)
p = x * y
print(p)

P = x * 2
print(p)

P = 2 * x

2/9

4/3

4/3 Invoke x.__rmul__(2)

In-Place Operators
 +=, -=, *=, /= etc

Lecture06COMPSCI 10521

class Fraction:
...
def __iadd__(self, other):

new_num = self.num * other.den + self.den * other.num
new_den = self.den * other.den
common = Fraction.gcd(new_num, new_den)
self.num = new_num // common
self.den = new_den // common
return self

x = Fraction(2,3)
y = Fraction(1,3)
print(id(x))
x += y
print(id(x))
print(x)

6422096
6422096
9/9

Invoke x.__iadd__(y)

Do the calculation in-place

Exercise 4
 Overload the following operators in the Point class:
 +: return a new Point that contains the sum of the x coordinates

and the sum of the y coordinates.
 *: computes the dot product of the two points, defined according

to the rules of linear algebra

Lecture06COMPSCI 10522

p1 = Point(3, 4)
p2 = Point(5, 7)
p3 = p1 + p2
print(p3)
p4 = p1 * p2
print(p4)

(8, 11)

43
3 * 5 + 4 * 7 = 15 + 28

= 43

Exercise 5
 If the left operand of * is a primitive type and the right

operand is a Point, Python invokes __rmul__, which performs
scalar multiplication:

Lecture06COMPSCI 10523

p1 = Point(3, 4)
p2 = Point(5, 7)
p5 = 2 * p2
print(p5)
p6 = p2 * 2
print(p6)

(10, 14)

(10, 14)

Summary
 A class is a template, a blueprint and a data type for

objects.
 A class defines the data fields of objects, and provides an

initializer for initializing objects and other methods for
manipulating the data.

 The initializer always named __init__. The first parameter
in each method including the initializer in the class refers
to the object that calls the methods, i.e., self.

 Data fields in classes should be hidden to prevent data
tampering and to make class easy to maintain.

 We can overwrite the default methods in a class definition.
COMPSCI 10524 Lecture06

