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Exercise
 Exercise
 Create a Student class:

 The Student class should have three attributes: id, last_name, and 
first_name.

 Create a constructor to initialize the values
 Implement the __repr__ method and __str__ method

Lecture06COMPSCI 1052

>>> s1 = Student(1, 'Angela', 'Chang')
>>> s1
>>> print(s1) Student(1, Angela, Chang)

1: Angela Chang

Reminder – Fraction class
 Write a class to represent fractions in Python
 create a fraction
 add
 subtract
 multiply
 divide
 text representation
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½numerator
denominator
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Overloading Operators
 Python operators work for built-in classes. 
 But same operator behaves differently with different types.

 E.g. the + operator:
 perform arithmetic addition on two numbers, 
 merge two lists 
 concatenate two strings. 

 Allow same operator to have different meaning according to the 
context is called operator overloading
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Operator Expression Internally

Addition f1 + f2 f1.__add__(f2)

Subtraction f1 - f2 f1.__sub__(f2)

Equality f1 == f2 f1. __eq__(f2)

Fraction.py



__add__
 The __add__ method is called when the + operator is used
 If we implement __add__ then we can use + to add the objects

 f1 + f2 gets translated into f1.__add__(f2)
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x = Fraction(1, 2)
y = Fraction(1, 4)
z = x + y
print(z)

def __add__(self, other):
new_num = self.num * other.den + self.den * other.num
new_den = self.den * other.den
return Fraction(new_num, new_den)

6/8
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__sub__
 The __sub__ method is called when the - operator is used
 If we implement __sub__ then we can use - to do subtraction

 f1 - f2 gets translated into f1.__sub__(f2)
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x = Fraction(1, 2)
y = Fraction(1, 4)
z = x - y
print(z)

def __sub__(self, other):
new_num = self.num * other.den - self.den * other.num
new_den = self.den * other.den
return Fraction(new_num, new_den)

2/8
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__eq__
 The __eq__ method checks equality of the objects
 Default behaviour is to compare the references
 We want to compare the contents
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def __eq__(self, other):
return self.num * other.den == other.num * self.den
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x = Fraction(12,30)
y = Fraction(2, 5)
print (x == y)

True

x = Fraction(1, 2)
y = Fraction(1, 4)
print (x == y)

False

Exercise 1
 What is the output of the following code?
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x = Fraction(2, 3)
y = Fraction(1, 3)
z = y + y
print(x)
print(z)
print(x == z)
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x = Fraction(2, 3)
print (x == 2) AttributeError: 'int' object 

has no attribute 'den'



Improving __eq__
 Check the type of the other operand
 If the type is not a Fraction, then not equal?
 What other decisions could we make for equality?
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def __eq__(self, other):
if not isinstance(other, Fraction):

return False
return self.num * other.den == other.num * self.den
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x = Fraction(2, 3)
print (x == 2) False

Improving your code
 Fractions:
 12/30
 2/5

 The first fraction can be simplified to 2/5
 The Common Factors of 12 and 30 were 1, 2, 3 and 6, 
 The Greatest Common Factor is 6.
 So the largest number we can divide both 12 and 30 evenly by is 6

 And so 12/30 can be simplified to 2/5
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Greatest Common Divisor
 Use Euclid's Algorithm
 Given two numbers, n and m, find the number k, such that k is the 

largest number that evenly divides both n and m.
 Example: Find the GCD of 270 and 192, 
 gcd(270, 192): m=270, n=192 (m≠0, n ≠0)

 Use long division to find that 270/192 = 1 with a remainder of 78. We can write this as: 
gcd(270,192) = gcd(192,78)

 gcd(192, 78) : m=192, n=78 (m≠0, n ≠0)
 192/78 = 2 with a remainder of 36 with a remainder of 78.  We can write this as: 

gcd(192,78) = gcd(78,36)

 gcd(78, 36) : m=78, n=36 (m≠0, n ≠0)
 78/36 = 2 with a remainder of 6
 gcd(78,36) = gcd(36,6)

 gcd(36, 6) : m=36, n=6 (m≠0, n ≠0)
 36/6 = 6 with a remainder of 0
 gcd(36,6) = gcd(6,0) = 6
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def gcd(m, n):
while m % n != 0:

old_m = m
old_n = n
m = old_n
n = old_m % old_n

return n
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Improve the constructor
 We can improve the constructor  so that it always represents 

a fraction using the "lowest terms" form.
 What other things might we want to add to a Fraction?
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class Fraction:
def __init__(self, top, bottom):

common = Fraction.gcd(top, bottom) #get largest common term
self.num = top // common      #numerator
self.den = bottom // common   #denominator

def gcd(m, n):
while m % n != 0:

old_m = m
old_n = n
m = old_n
n = old_m % old_n

return n
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Examples
 Without the GCD 

 Using the GCD:
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x = Fraction(12,30)
y = Fraction(2, 5)
print (x == y)
print(x)
print(y)

x = Fraction(12,30)
y = Fraction(2, 5)
print (x == y)
print(x)
print(y)

True
2/5
2/5

True
12/30
2/5

Other standard Python operators
 Many standard operators and funtions:

https://docs.python.org/3.4/library/operator.html

 Common Arithmetic operators
 object.__add__(self, other)
 object.__sub__(self, other) 
 object.__mul__(self, other) 
 object.__truediv__(self, other) 

 Common Relational operators
 object.__lt__(self, other) 
 object.__le__(self, other) 
 object.__eq__(self, other) 
 object.__ne__(self, other) 
 object.__gt__(self, other) 
 object.__ge__(self, other) 
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Inplace arithmetic operators
• object.__iadd__(self, other)
• object.__isub__(self, other) 
• object.__imul__(self, other) 
• object.__itruediv__(self, other) 
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+=
-=
…

Reversed versions:
• object.__radd__(self, other)
• object.__rsub__(self, other) 
• object.__rmul__(self, other) 
• object.__rdiv__(self, other) 
• …

Exercise 2
 Implement the __truediv__ of the Fraction class:
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a = Fraction(1, 3)
b = Fraction(4, 5)
d = a / b
print (d)

5/12

Exercise 3
 Implement the __lt__ method to compare two Fraction 

objects:
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a = Fraction(1, 3)
b = Fraction(4, 5)
if a < b:

print("a<b")
else:

print("a>=b") a<b



Forward, Reverse and In-Place
 Every arithmetic operator is transformed into a method call. 

By defining the numeric special methods, your class will work 
with the built-in arithmetic operators. 
 First, there are as many as three variant methods required to 

implement each operation. 
 For example, * is implemented by __mul__, __rmul__ and __imul__
 There are forward and reverse special methods so that you can assure that your 

operator is properly commutative. 

 You don't need to implement all three versions.
 The reverse name is used for special situations that involve objects of 

multiple classes.
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class Fraction:
...
def __mul__(self, other):

new_num = self.num * other.num
new_den = self.den * other.den
return Fraction(new_num, new_den)

mul Vs rmul
 Locating an appropriate method for an operator
 First, it tries a class based on the left-hand operand using the 

"forward" name. If no suitable special method is found, it tries the 
right-hand operand, using the "reverse" name.

 Version 1: 
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x = Fraction(2,3)
y = Fraction(1,3)
p = x * y
print(p)

P = x * 2

2/9

AttributeError: 'int' object 
has no attribute 'num'

Invoke x.__mul__(y)

class Fraction:
...
def __mul__(self, other):

if isinstance(other,Fraction):
new_num = self.num * other.num
new_den = self.den * other.den
return Fraction(new_num, new_den)

else: 
new_num = self.num *  other
return Fraction(new_num, self.den)

Version 2
 Check the type of the right operand:
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x = Fraction(2,3)
y = Fraction(1,3)
p = x * y
print(p)

P = x * 2
print(p)

P = 2 * x

2/9

If the right operand 
is not a Fraction

4/3

TypeError: unsupported operand 
type(s) for *: 'int' and 
'Fraction'

class Fraction:
...
def __mul__(self, other):

if isinstance(other,Fraction):
...

def __rmul__(self, other):
new_num = self.num *  other
return Fraction(new_num, self.den)

Version 3
 If the left operand of * is a primitive type and the right operand is a 

Fraction, Python invokes __rmul__
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x = Fraction(2,3)
y = Fraction(1,3)
p = x * y
print(p)

P = x * 2
print(p)

P = 2 * x

2/9

4/3

4/3 Invoke x.__rmul__(2)



In-Place Operators
 +=, -=, *=, /= etc
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class Fraction:
...
def __iadd__(self, other):

new_num = self.num * other.den + self.den * other.num
new_den = self.den * other.den
common = Fraction.gcd(new_num, new_den)
self.num = new_num // common
self.den = new_den // common
return self

x = Fraction(2,3)
y = Fraction(1,3)
print(id(x))
x += y
print(id(x))
print(x)

6422096
6422096
9/9

Invoke x.__iadd__(y)

Do the calculation in-place

Exercise 4
 Overload the following operators in the Point class:
 +: return a new Point that contains the sum of the x coordinates 

and the sum of the y coordinates.
 *: computes the dot product of the two points, defined according 

to the rules of linear algebra
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p1 = Point(3, 4)
p2 = Point(5, 7)
p3 = p1 + p2
print(p3)
p4 = p1 * p2
print(p4)

(8, 11)

43
3 * 5 + 4 * 7 = 15 + 28 

= 43

Exercise 5
 If the left operand of * is a primitive type and the right 

operand is a Point, Python invokes __rmul__, which performs 
scalar multiplication:
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p1 = Point(3, 4)
p2 = Point(5, 7)
p5 = 2 * p2
print(p5)
p6 = p2 * 2
print(p6)

(10, 14)

(10, 14)

Summary
 A class is a template, a blueprint and a data type for 

objects.
 A class defines the data fields of objects, and provides an 

initializer for initializing objects and other methods for 
manipulating the data.

 The initializer always named __init__. The first parameter 
in each method including the initializer in the class refers 
to the object that calls the methods, i.e., self.

 Data fields in classes should be hidden to prevent data 
tampering and to make class easy to maintain.

 We can overwrite the default methods in a class definition.
COMPSCI 10524 Lecture06


