COMPSCI 105 S1 2017
 Principles of Computer Science

Classes 3

Exercise

- Exercise
- Create a Student class:
- The Student class should have three attributes: id, last_name, and first_name.
- Create a constructor to initialize the values
- Implement the __repr__ method and __str__ method

```
>>> s1 = Student(1, 'Angela', 'Chang')
>>> s1
>>> print(s1)
```

Student(1, Angela, Chang)
1: Angela Chang

Reminder - Fraction class

- Write a class to represent fractions in Python
- create a fraction
- add
- subtract
> multiply
- divide
b text representation

Overloading Operators

- Python operators work for built-in classes.
- But same operator behaves differently with different types.
- E.g. the + operator:
- perform arithmetic addition on two numbers,
b merge two lists
b concatenate two strings.
- Allow same operator to have different meaning according to the context is called operator overloading

Operator	Expression	Internally
Addition	$\mathrm{fl}+\mathrm{f} 2$	fl .___add__(f2)
Subtraction	$\mathrm{fl}-\mathrm{f} 2$	fl .__sub__(f2)
Equality	$\mathrm{fl}==\mathrm{f} 2$	fl.__eq__(f2)

- The ___add__ method is called when the + operator is used - If we implement __add__ then we can use + to add the objects
- $\mathrm{fl}+\mathrm{f} 2$ gets translated into fl.__add__(f2)

```
def __add__(self, other):
    new num = self.num * other.den + self.den * other.num
    new_den = self.den * other.den
    return Fraction(new_num, new_den)
```

```
x = Fraction(1, 2)
y = Fraction(1, 4)
z = x + y
print(z)
```6/8
- The __sub__ method is called when the - operator is used - If we implement __sub__ then we can use - to do subtraction
- fl-f2 gets translated into fl.__sub__(f2)
```

def __sub__(self, other):
new_num = self.num * other.den - self.den * other.num
new_den = self.den * other.den
return Fraction(new_num, new_den)

```
```

x = Fraction(1, 2)
y = Fraction(1, 4)
z = x - y
print(z)

```
- The __eq__ method checks equality of the objects
- Default behaviour is to compare the references
- We want to compare the contents
```

def ___eq__(self, other):
return self.num * other.den == other.num * self.den

```
```

x = Fraction (12,30)
y = Fraction(2, 5)
print (x == y)

```
```

x = Fraction(1, 2)
y = Fraction(1, 4)
print (x == y)

```

\section*{Exercise 1}
- What is the output of the following code?
```

x = Fraction(2, 3)
y = Fraction(1, 3)
z = y + y
print(x)
print(z)
print(x == z)

```
\(\mathbf{x}=\) Fraction (2, 3)
print (x == 2)
AttributeError: 'int' object
has no attribute 'den'

\section*{Improving eq}
- Check the type of the other operand
- If the type is not a Fraction, then not equal?
- What other decisions could we make for equality?
```

def __eq__(self, other):
if not isinstance(other, Fraction):
return False
return self.num * other.den == other.num * self.den

```
```

x = Fraction(2, 3)
print (x == 2)

```
 False

\section*{Improving your code}
- Fractions:
- I2/30
- \(2 / 5\)
- The first fraction can be simplified to \(2 / 5\)
- The Common Factors of 12 and 30 were I, 2, 3 and 6,
p The Greatest Common Factor is 6.
- So the largest number we can divide both 12 and 30 evenly by is 6
- And so \(12 / 30\) can be simplified to \(2 / 5\)

\section*{Greatest Common Divisor}

\section*{- Use Euclid's Algorithm}
* Given two numbers, \(n\) and \(m\), find the number \(k\), such that \(k\) is the largest number that evenly divides both n and m .
- Example: Find the GCD of 270 and 192,
\(\square \operatorname{gcd}(270,192): m=270, \mathrm{n}=192(\mathrm{~m} \neq 0, \mathrm{n} \neq 0)\)
\(\square\) Use long division to find that 270/I92 = I with a remainder of 78. We can write this as: \(\operatorname{gcd}(270,192)=\operatorname{gcd}(192,78)\)
\(\operatorname{gcd}(192,78): m=192, n=78(m \neq 0, n \neq 0)\)
\(\square\) 192/78 = 2 with a remainder of 36 with a remainder of 78 . We can write this as: \(\operatorname{gcd}(192,78)=\operatorname{gcd}(78,36)\)
\(\operatorname{gcd}(78,36): m=78, n=36(m \neq 0, n \neq 0)\)
\(\square 78 / 36=2\) with a remainder of 6
\(\square \operatorname{gcd}(78,36)=\operatorname{gcd}(36,6)\)
\(\operatorname{gcd}(36,6): m=36, n=6(m \neq 0, n \neq 0)\)
\(\square 36 / 6=6\) with a remainder of 0
\(\square \operatorname{gcd}(36,6)=\operatorname{gcd}(6,0)=6\)
```

def gcd(m, n):
while m % n != 0:
old_m = m
old_n = n
m = old_n
n = old_m % old_n
return n

```

\section*{Improve the constructor}
- We can improve the constructor so that it always represents a fraction using the "lowest terms" form.
- What other things might we want to add to a Fraction?
```

class Fraction:
def __init__(self, top, bottom):
common = Fraction.gcd(top, bottom) \#get largest common term
self.num = top // common \#numerator
self.den = bottom // common \#denominator
def gcd(m, n):
while m % n != 0:
old_m = m
old_n = n
m = old_n
n = old_m % old_n
return n

```

\section*{Examples}
- Without the GCD
```

x = Fraction (12,30)
y = Fraction (2, 5)
print (x == y)
print(x)
12/30
print(y)
2/5

```
- Using the GCD:
```

x = Fraction (12,30)
y = Fraction(2, 5)
print (x == y)
print(x)
print(y)
True
2/5
2/5

```

\section*{Other standard Python operators}
- Many standard operators and funtions:
https://docs.python.org/3.4/library/operator.html
- Common Arithmetic operators
> object.___add__(self, other)
> object.__sub__(self, other)
- object.__mul__(self, other)
> object.__truediv__(self, other)

- object.__isub__(self, other)
- object.__imul__(self, other)
- object.__itruediv__(self, other)
- Common Relational operators
, object.__It__(self, other)
- object.__le__(self, other)
> object.__eq__(self, other)
> object.___ne__(self, other)
> object.__gt__(self, other)
, object.__ge__(self, other)

Reversed versions:
- object.__radd__(self, other)
- object.__rsub__(self, other)
- object.__rmul__(self, other)
- object.__rdiv__(self, other)
- ...

\section*{Exercise 2}
- Implement the __truediv__ of the Fraction class:
```

a = Fraction(1, 3)
b = Fraction(4, 5)
d = a / b
print (d)

```

5/12

\section*{Exercise 3}
- Implement the __lt __ method to compare two Fraction objects:
```

a = Fraction(1, 3)
b = Fraction(4, 5)
if a < b:
print("a<b")
else:
print("a>=b")
a<b

```

\section*{Forward, Reverse and In-Place}
- Every arithmetic operator is transformed into a method call. By defining the numeric special methods, your class will work with the built-in arithmetic operators.
- First, there are as many as three variant methods required to implement each operation.
- For example, * is implemented by \(\qquad\) mul \(\qquad\) , rmul \(\qquad\) and \(\qquad\) imul \(\qquad\)
\(\square\) There are forward and reverse special methods so that you can assure that your operator is properly commutative.
- You don't need to implement all three versions.
- The reverse name is used for special situations that involve objects of multiple classes.

\section*{mul Vs rmul}
- Locating an appropriate method for an operator
- First, it tries a class based on the left-hand operand using the "forward" name. If no suitable special method is found, it tries the right-hand operand, using the "reverse" name.
- Version I:
class Fraction:
\(\mathbf{x}=\) Fraction \((2,3)\)
\(y=\) Fraction \((1,3)\)
\(p=x * y\)
print(p)
2/9
Invoke x. _mul def __mul__(self, other): new_num \(=\) self.num * other.num new_den \(=\) self.den * other.den return Fraction(new_num, new_den)

Invoke x.__mul__(y)
```

P = x * 2

```
AttributeError: 'int' object
has no attribute 'num'

\section*{Version 2}
- Check the type of the right operand:

\section*{Version 3}
- If the left operand of \(*\) is a primitive type and the right operand is a Fraction, Python invokes \(\qquad\) rmul___
class Fraction:
 def __mul__(self, other):
 if isinstance (other, Fraction) :
 def __rmul__(self, other):
 new_num = self.num * other
 retūn Fraction(new_num, self.den)
```

P = x * 2
4/3

```
print(p)
\(\mathrm{P}=2\) * x

Invoke x. rmul

\section*{In-Place Operators}

р +=, -=, *=, /= etc
```

class Fraction:

```

```

        def __iadd__(self, other):
        new_num = self.num * other.den + self.den * other.num
        new_den = self.den * other.den
        common = Fraction.gcd(new_num, new_den)
        self.num = new_num // common
        self.den = new_den // common
        return self
    ```


\section*{Exercise 4}
- Overload the following operators in the Point class:

। +: return a new Point that contains the sum of the \(x\) coordinates and the sum of the \(y\) coordinates.
* *: computes the dot product of the two points, defined according to the rules of linear algebra
```

p1 = Point(3, 4)
p2 = Point(5, 7)
p3 = p1 + p2
print(p3)
p4=p1 * p2 43 4 < < < < < < 3*5+4*7=15+28
p4=p1 * p2 43 4 < < < < < < 3*5+4*7=15+28
(8, 11)

```

\section*{Exercise 5}
- If the left operand of * is a primitive type and the right operand is a Point, Python invokes __rmul__, which performs scalar multiplication:
```

p1 = Point(3, 4)
p2 = Point(5, 7)
p5 = 2 * p2
print(p5)
p6 = p2 * 2
print(p6)

```
 \((10,14)\)

Summary
- A class is a template, a blueprint and a data type for objects.
- A class defines the data fields of objects, and provides an initializer for initializing objects and other methods for manipulating the data.
- The initializer always named __init__. The first parameter in each method including the initializer in the class refers to the object that calls the methods, i.e., self.
- Data fields in classes should be hidden to prevent data tampering and to make class easy to maintain.
- We can overwrite the default methods in a class definition.```

