
Classes 2

COMPSCI 105 S1 2017
Principles of Computer Science

Exercise
 Q1: Write a method named slope_from_origin() which

returns the slope of the line joining the origin to the point.
For example, Point(4,10).slop_from_origin() returns 2.5

Lecture04COMPSCI 1052

p = Point(4, 10)
print(p.slop_from_origin()) #2.5

 Write a class to represent fractions in Python
 create a fraction
 add
 subtract
 multiply
 divide
 text representation

Example: Fractions

½numerator
denominator

Lecture04COMPSCI 1053

Model of objects in memory

methods

state

num:

den:

7

8

methods

state

num:

den:

3

4

methods

state

num:

den:

1

2

x
y

z

from Fraction import Fraction

x = Fraction(1,2)
y = Fraction(3,4)
z = Fraction(7,8)

Lecture04COMPSCI 1054

Example05.py

 All classes must have a constructor
 The constructor for a Fraction should store the numerator and the

denominator

Constructor

class Fraction:
def __init__(self, top, bottom):

self.num = top #numerator
self.den = bottom #denominator

Lecture04COMPSCI 1055

 So far, we can create a Fraction

 We can access the state variables directly
 Although not generally good practice to do so

 What else can we do with Fractions?
 Nothing yet. We need to write the functions first!

Using the Fraction class

>>> x.num
3
>>> x.den
4

>>> x = Fraction(3, 4)

Lecture04COMPSCI 1056

Lecture
04

Overriding default behaviour
 All classes get a number of methods provided by default
 Since default behaviour is not very useful, we should write our own

versions of those methods
 __repr__
 __str__

Lecture04COMPSCI 1057

 Often we want to use a string that combines literal text and
information from variables
 Example:

 We can use string formatting to perform this task
 Use curly braces within the string to signify a variable to be

replaced

 We can put the argument position in the curly braces

Aside: Use of string formatting syntax

name = 'Andrew'
greeting = 'Hello ' + name + '. How are you?'

my_name = 'Andrew'
greeting = 'Hello {name}. How are you?'.format(name=my_name)

first = 'Andrew'
second = 'Luxton-Reilly'
greeting = 'Hello {0} {1}'.format(first, second)

Lecture04COMPSCI 1058

 The __repr__ method produces a string that unambiguously
describes the object
 All classes should have a __repr__ function implemented
 Ideally, the representation could be used to create the object

 For example, a fraction created using Fraction(2, 3) should have a __repr__
method that returned 'Fraction(2, 3)'

 Using the object

__repr__

class Fraction:
def __init__(self, top, bottom):

self.num = top
self.den = bottom

def __repr__(self):
return 'Fraction({0}, {1})'.format(self.num, self.den)

>>> x = Fraction(2, 3)
>>> x

Fraction(2, 3)

Lecture04COMPSCI 1059

Fraction.py

Without the __repr__ method

>>> x = Fraction(2, 3)
>>> x

class Fraction:
def __init__(self, top, bottom):

self.num = top
self.den = bottom

<__main__.Fraction object
at 0x02762290>)

Lecture04COMPSCI 10510

 The __str__ method returns a string representing the object
 By default, it calls the __repr__ method
 The __str__ method should focus on being human readable
 We should implement a version with a natural representation:

 After we have implemented the method, we can use the print
function to print the object

__str__

def __str__(self):
return str(self.num) + '/' + str(self.den)

>>> x = Fraction(3, 4)
>>> print(x)
3/4

Lecture04COMPSCI 10511

Without the __str__ method

>>> x = Fraction(2, 3)
>>> print(x)

class Fraction:
def __init__(self, top, bottom):

self.num = top
self.den = bottom

<__main__.Fraction object
at 0x02714290>

Lecture04COMPSCI 10512

Exercise 1
 Write the __repr__ method for the Square class created

earlier.

 Would it be useful to implement a __str__ method?

 What would you choose to produce as output from a
__str__ method?

Lecture04COMPSCI 10513

str and repr
 What is the difference between the __str__ and __repr__

methods of a Python object?
 In short __repr__ goal is to be unambigous and __str__ is to be

readable.
 The official Python documentation says:

 __repr__ is used to compute the “official” string representation of an object and
 __str__ is used to compute the “informal” string representation of an object.

 The print statement and str() built-in function uses __str__
 The repr() built-in function uses __repr__ to display the object.

Lecture04COMPSCI 10514

>>> s1 = Square(10)

>>> str(s1)
'10 x 10 Square'

>>> repr(s1)
'Square(10)'

>>> print(s1)
10 x 10 Square

>>> s1
Square(10)

Exercise 2
 Consider the Circle class which we developed previously:
 Modify the constructor with default values of 0 for the radius
 Write the __repr__ method

 Write the __str__ method

 Write a method named get_diameter() which returns the diameter
of the circle.

Lecture05COMPSCI 10515

>>> c1 = Circle(10)

>>> str(s1)
'A circle with a radius of 10cm'

>>> repr(s1)
'Circle(10)'

