
Classes 1

COMPSCI 105 S1 2017
Principles of Computer Science

Exercise
 What is the output of the following code fragment?

Lecture04COMPSCI 1052

x = ['a', 'b', 'c']
y = x
z = ['a', 'b', 'c']
print (x is y)
print (x == y)
print (x is z)
print (x == z)

Lecture04COMPSCI 105

Object Oriented Programming
 An object represents an entity in the real world that can

be distinctly identified, e.g., students, dogs, cars, cats,
books.

 Object Oriented Programming (OOP) involves the use of
objects to create programs.

3

Objects

Lecture04COMPSCI 105

 Cars may have:
 information: colour, current

speed, current gear, etc.
 function: accelerate, brake,

change gear, reverse, etc.

color: red
speed: 50
gear: 4th

color: white
speed: 5
gear: 1st

Car A

Car B

Car B – accelerate
color: white
speed: 10
gear: 1st

Car B

4

Lecture04COMPSCI 105

State and Behaviour
 Every real world object has:
 State – information that the object stores.
 Behavior – functionality of the object, i.e., what the object

can do.

 Example:
 Consider a system managing university students.
 A student object has:
 State – id, name, age, contact number, address, stage,

completed courses, current courses, faculty, …
 Behavior – enroll in a new course, change contact number,

change enrolment, choose degree, …

5

Lecture04COMPSCI 105

Object is state + behaviour
 A software object’s state is represented by its variables,

called data fields.
 A software object implements its behavior with methods.
 Every object is a bundle of variables and related methods.
 We make an object perform actions by invoking the

methods on that object.
 Example:

my_list = [1, 2, 3]
my_list.reverse()

6

Lecture04COMPSCI 105

In a Program
 Our program consists of many different objects
 Two objects of the same kind would have the same set of

behaviors, but independent state information
 Two string objects store different words, but can perform

same methods, e.g., lower(), split(), index(), etc.

 For an object in our program
 State – is defined by variables (data fields).
 Behaviors – is defined by methods (actions).

 The definition of a particular kind of objects is called a
class. Once created, an object is an instance of a class.

7

Lecture04COMPSCI 105

Python Class
 A class is the structure we use to define a category of

objects. It defines the state and behaviour of a category
of objects.

 A class is a template or blueprint defining the date fields
and actions (methods) that any instance (object) of that
class can have.

 Analogies for class and object:
 Cookie cutter and cookies.
 Factory mold and products produced

from that mold.

8

Classes
 Python has a number of classes built-in
 lists, dictionaries, sets, int, float, boolean, strings

 We can define our own classes
 creates a new type of object in Python

 Classes consist of:
 state variables (sometimes called instance variables)
 methods (functions that are linked to a particular instance of the

class)

class name_of_the_class:
definition of the class goes here
initializer
methods

Lecture04COMPSCI 1059

Example
 An example:

 Instantiating Classes
 A class is instantiated by calling the class object:

class foo:
a, b, c = 0, "bar", (1,2)

i = foo()
print (i.a)
print (i.b)
print (i.c)

0
bar
(1, 2)

Lecture04COMPSCI 10510

Example01.py

The simplest class possible
 Note: “Pass” is a statement that does nothing

 It is often used as a placeholder when developing code

class Point:
pass

>>> p = Point()
>>> p
<__main__.Point object at 0x02702570>
>>> p.x
AttributeError: 'Point' object has no attribute 'x'
>>> p.x = 2
>>> p.y = 4
>>> p.x
2
>>> p.y
4

Lecture04COMPSCI 10511

Example02.py

You must run the Example02.py
module in Python IDLE before
executing the following code

fragment

Simplest class, but no
attribute has been defined.

Set x and y
coordinates

Saving the class
 Classes are designed to help build modular code
 Can be defined within a module that also contains application code
 Multiple classes can be defined in the same file

 In this course, we will typically store each class in their own
module
 To use the class in another module, you will need to import the

module
class Point:

...

from Geometry import Point

p = Point(5,7)
p

x: 5

y: 7

The
object in
memory

Lecture04COMPSCI 10512

Geometry.py

Saved in a file called Geometry.py

Setting the initial state of the object
 We want to define the Point class so we can write code that

sets the initial values of some variables

 First, we need to define a special method of the Point class
called a constructor
 The constructor is called whenever you create an object of the

Point class.

from Geometry import Point

p = Point(5, 7)

Lecture04COMPSCI 10513

Constructors
 Each class should contain a constructor method
 Name of the method is __init__
 The method always has at least one parameter, called self
 Self is a reference to the object that we are creating
 The constructor can have other parameters

class Point:
def __init__(self, loc_x, loc_y):

self.x = loc_x
self.y = loc_y

from Geometry import Point

p = Point(5, 7)

Lecture04COMPSCI 10514

Saved in a file called Geometry.py

It creates an
object in the
memory for

the class.

Accessing Objects
 After an object is created, you can access its data fields and

invoke its methods using the dot operator (.), also known as
the object member access operator.

 For example, the following code accesses the x, y coordinates

Lecture04COMPSCI 10515

from Geometry import Point

p = Point(5, 7)
print(p.x)
print(p.y)

Example02b.py

Example: the datetime class
 Example:

Lecture04COMPSCI 10516

from datetime import datetime
d = datetime.now()
print("Current year is " + str(d.year))
print("Current month is " + str(d.month))
print("Current day of month is " + str(d.day))
print("Current hour is " + str(d.hour))
print("Current minute is " + str(d.minute))
print("Current second is " + str(d.second))

Current year is 2015
Current month is 12
Current day of month is 16
Current hour is 15
Current minute is 14
Current second is 50

Example03.py

Adding functionality
 Defining more methods
 A method to shift a point by a given amount in horizontal and vertical

directions

 Note: the method is named normally, but has the additional
parameter (self) as the first parameter
 All methods that are called on an instance of an object need the self

parameter

class Point:
def __init__(self, loc_x, loc_y):
self.x = loc_x
self.y = loc_y

def translate(self, dx, dy):
self.x += dx
self.y += dy

Lecture04COMPSCI 10517

Why “self”?
 Note that the first parameter is special. It is used in the

implementation of the method, but not used when the
method is called. So, what is this parameter self for? Why
does Python need it?

 self is a parameter that represents an object.
 Using self, you can access instance variables in an object. Instance

variables are for storing data fields.
 Each object is an instance of a class.
 Instance variables are tied to specific objects.
 Each object has its own instance variables. You can use the syntax

self.x to access the instance variable x for the object self in a
method.

Lecture04COMPSCI 10518

Using the Point class
 Methods are defined to accept self as the first parameter

 We call the method using:
object_name.method(params)

class Point:
def __init__(self, loc_x, loc_y):

self.x = loc_x
self.y = loc_y

def translate(self, dx, dy):
self.x += dx
self.y += dy

from Geometry import Point
p = Point(0,0)
...

Lecture04COMPSCI 10519

Exercise 1
 Write a method named halfway(target) which takes a Point as

an argument and returns the halfway point between itself and
the parameter Point.
 For example:

Lecture04COMPSCI 10520

p = Point(3, 4)
q = Point(5, 12)
r = p.halfway(q)
print(r.x, r.y) #4.0 8.0

Compare …
 Now, compare the midpoint() function and the halfway

method
 Midpoint takes two parameters but halfway takes one

Lecture04COMPSCI 10521

p = Point(3, 4)
q = Point(5, 12)
r = p.halfway(q)
print(r.x, r.y) #4.0 8.0

p = Point(3, 4)
q = Point(5, 12)
r = midpoint(p, q)
print(r.x, r.y)

Exercise 2
 Define a class that will be used to represent a square with a

given side length.
 Your class should include a constructor that will allow the square

to be used as follows:

 Add a method to the class to calculate the perimeter of the square.
The following code shows how the method may be used.

from Geometry import Square
side = 10
s = Square(side)

print (s.perimeter())

Lecture04COMPSCI 10522

40

Data Field Encapsulation
 To protect data.
 To make class easy to maintain.
 To prevent direct modifications of data fields, don’t let the

client directly access data fields.
 This is known as data field encapsulation.
 This can be done by defining private data fields. In Python, the

private data fields are defined with two leading underscores.
 You can also define a private method named with two leading

underscores.

Lecture04COMPSCI 10523

Example: Circle
 __radius : No direct access outside the Circle class

 If a class is designed for other programs to use, to prevent data
from being tampered with and to make the class easy to maintain,
define data fields private.

Lecture04COMPSCI 10524

class Circle:
def __init__(self, r):

self.__radius = r

def get_radius(self):
return self.__radius

...

c = Circle(5)
print(c.__radius)

c = Circle(5)
print(c.get_radius())

AttributeError:
'Circle' object has no
attribute '__radius'

5

Example04.py

Exercise 3
 Q1: Write a method named reflect_x() which returns a new

Point, one which is the reflection of the point about the x-
axis. For example, Point(3, 5).reflect_x() is (3, -5)

Lecture04COMPSCI 10525

