
Equality, references and mutability

COMPSCI 105 S1 2017
Principles of Computer Science

Exercises
 What is the output of the following code fragments?

Lecture 03COMPSCI 1052

def double(x):
return x*2

my_list1 = [double(x) for x in range(5)]
print(my_list1)

my_list2 = [double(x) for x in range(10) if x%2==0]
print(my_list2)

names = ['Angela', 'Ann', 'Adriana']
my_list = [len(x) for x in names]
print (my_list)

Modeling objects in memory
 Value equality

 Reference equality

X

y

[1, 2, 3, 4, 5]

[1, 2, 3, 4, 5]

X

y

[1, 2, 3, 4, 5]

Two different objects that
store the same
information.

Two different references /
names for the same
object.

>>> x = [1,2,3,4,5]
>>> y = [1,2,3,4,5]

>>> x = [1,2,3,4,5]
>>> y = x

Lecture 03COMPSCI 1053

Different ways to compare equality
 ==
 Calls a method of the object
 Programmer who defined the object decides how to determine

equality
 Typically involves checking the contents of the objects
 We should always use this for literals

 is
 Checks the references of the objects
 Evaluates to True if they are the same object
>>> x = [1,2,3,4,5]
>>> y = [1,2,3,4,5]
>>> x == y
>>> x is y

>>> x = [1,2,3,4,5]
>>> y = x
>>> x == y
>>> x is y

True
False

True
True

Lecture 03COMPSCI 1054

String
 Every UNIQUE string you create will have it’s own address

space in memory.

>>> a = 'foo'
>>> b = 'foo'
>>> id(a)
46065568
>>> id(b)
46065568
>>> a is b
True
>>> a == b
True
>>>

Same
memory
location >>> x = [1,2,3]

>>> y = [1,2,3]
>>> id(x)
47912776
>>> id(y)
47812296
>>> x is y
False
>>> x == y
True

id(object) function
Return the “identity” of an
object.

Lecture 03COMPSCI 1055

Mutable and Immutable objects
 An immutable object is an object whose state cannot be

modified after it is created.
 Examples of immutable objects:
 integer, boolean, float, string, tuple

 Examples of mutable objects
 lists, dictionaries, sets, most data structures studied in this course

Lecture 03COMPSCI 1056

Lists are mutable
 Lists are mutable
 i.e. We can change lists in place, such as reassignment of a sequence

slice, which will work for lists, but raise an error for tuples and
strings.

 Example:
 li[0] = 10
 li still points to the same memory when you are done.

li = [1,2,3]
print(li)
print(id(li))
li[0] = 10
print(id(li))
print(li)

[1, 2, 3]
2681992
2681992
[10, 2, 3]

Example01.py

Lecture 03COMPSCI 1057

Tuples are immutable
 Strings and tuples are immutable sequence types: such objects

cannot be modified once created
 i.e. you can’t change a tuple
 Example:

 The immutability of tuples means they are faster than lists.

tu = (1,2,3)
tu[0] = 10

TypeError: 'tuple' object
does not support item
assignment

Example01.py

Lecture 03COMPSCI 1058

Operations on Strings
 Whenever you call a method of an object, make sure you

know if changes the contents of the object or returns a
new object.

 lower(), upper(), lstrip, rstrip…
 Return a copy of s

name = "Angela"
y = name.lower()

name = "Angela"
print(id(name))
name = "Bob"
print(id(name)) a new String object is instantiated and given

the data “Bob" during its construction

Return a new object

4217536
5699680

Example01.py

Lecture 03COMPSCI 1059

Operations on Lists
 append
 Add an item to the end of the list;

 insert
 Insert an item at a given position.

 remove
 Remove the first item from the list whose value is x.

x = [1, 2, 3]
print(id(x))
x.append(4)
print(id(x))
print(x) 4997248

4997248
[1, 2, 3, 4]

x = [1, 2, 3]
print(id(x))
x.insert(0,4)
print(id(x))
print(x)

35668096
35668096
[4, 1, 2, 3]

x = [1, 2, 3]
print(id(x))
x.remove(2)
print(id(x))
print(x)

34422912
34422912
[1, 3]

Example01.py

Lecture 03COMPSCI 10510

append Vs extend
 extend: extend the list by appending all the items in the given

list (i.e. the argument is a list)

 append :- add an item to the end of the list

x = [1, 2, 3]
print(id(x))
x.extend([4,5,6])
print(id(x))
print(x)

5456000
5456000
[1, 2, 3, 4, 5, 6]

x = [1, 2, 3]
x.append([4,5,6]) [1, 2, 3, [4, 5, 6]]

x = [1, 2, 3]
x.extend([4,5,6]) [1, 2, 3, 4, 5, 6]

Example01.py

Lecture 03COMPSCI 10511

Reversing a list
 The function my_list.reverse() alters the content of my_list

 Sort and Reverse
 Sort/reverse the items of the list, in place.

>>> x = [1, 2, 3]
>>> y = x
>>> x.reverse()

x

y

[1, 2, 3]

>>> x

>>> y

[3, 2, 1]

[3, 2, 1]

[3,2,1]

>>> x.reverse()
changes the contents

of the object

Lecture 03COMPSCI 10512

Exercise 1
 What is the output of the following code fragment? Why?

p = [1, 2, 3]
print (p[::-1])
print (p)

Lecture 03COMPSCI 10513

Aliases
 Two references to the same object are known as aliases

 When an assignment is performed, the reference to the
object on the right of the assignment is assigned to the
variable on the left

 When a method of an object is called, it sometimes returns
a value and sometimes it alters the object

x = [1, 2, 3, 4]
y = x
x.append(5)
print(x)
print(y)

[1, 2, 3, 4, 5]
[1, 2, 3, 4, 5]

Alter the
object

Example01.py

Lecture 03COMPSCI 10514

Example
 What happens in the following cases? What is the output?

x = [1, 2, 3, 4]
y = x
x = x + [5]
print(x)
print(y)

x = [1, 2, 3, 4]
y = x
x += [5]
print(x)
print(y)

Alter the
object

Return a new
object

x [1,2,3,4,5]
[1,2,3,4]

y

x

y

[1,2,3,4][1,2,3,4,5]

Example01.py

[1, 2, 3, 4, 5]
[1, 2, 3, 4]

[1, 2, 3, 4, 5]
[1, 2, 3, 4, 5]

But replaced

Lecture 03COMPSCI 10515

Shallow copies
 Lists and dictionaries have a copy method
 data.copy()

x = [1, 2, 3, 4, 5]
y = x.copy()
print (x is y)
print (x == y)

a = [[11], [22], [33]]
b = a.copy()
print(a is b)
print(a[0] is b[0])

False
True

[1,2,3,4, 5]

y

x
[1,2,3,4, 5]

False
True

Example01.py

Lecture 03COMPSCI 10516

Shallow copy
 New object created
 Contents of the original object are copied
 If the contents are references, then the references are copied

b [, ,]

a [, ,]

[11] [22] [33]

print(a is b)
print(a[0] is b[0])

False
True

Lecture 03COMPSCI 10517

Deep copies
 New object created
 Contents of the original object are copied
 If the contents are references, then the copy the objects referred to

a [, ,]

[11] [22] [33]

b [, ,]

[11] [22] [33]

import copy
a = [[11], [22], [33]]
b = copy.deepcopy(a)
print(a is b)
print(a[0] is b[0])

False
False

Example01.py

Lecture 03COMPSCI 10518

Summary
 Variables store references to the objects, not the actual objects
 When you assign a variable, a reference is copied, not the object

 There are two kinds of equality
 Equality of content (value equality) can be tested with ==
 Equality of identity (reference equality) can be tested with is

 When a copy is created, it can be a shallow or deep copy
 A shallow copy copies the references
 A deep copy recursively copies the objects referred to

 Lists slower but more powerful then tuples
 Lists can be modified and have lots of handy operations and methods
 Tuples are immutable and have fewer features

 To convert between tuples and lists use the list() and tuple()
function

Lecture 03COMPSCI 10519

Exercise 2
 What is the output of the following code fragments?

name = 'Angela'
x = name
name = 'Bob'
print(name)
print (x)
print (name is x)
print (name == x)
name = 'Angela'
print(name)
print (x)
print (name is x)
print (name == x)

my_list = [1,2,3]
y = my_list
my_list = [4,5]
print(my_list)
print (y)
print (my_list is y)
print (my_list == y)
my_list = [1,2,3]
print(my_list)
print (y)
print (my_list is y)
print (my_list == y)

Lecture 03COMPSCI 10520

