
Equality, references and mutability

COMPSCI 105 S1 2017
Principles of Computer Science

Exercises
 What is the output of the following code fragments?

Lecture 03COMPSCI 1052

def double(x):
return x*2

my_list1 = [double(x) for x in range(5)]
print(my_list1)

my_list2 = [double(x) for x in range(10) if x%2==0]
print(my_list2)

names = ['Angela', 'Ann', 'Adriana']
my_list = [len(x) for x in names]
print (my_list)

Modeling objects in memory
 Value equality

 Reference equality

X

y

[1, 2, 3, 4, 5]

[1, 2, 3, 4, 5]

X

y

[1, 2, 3, 4, 5]

Two different objects that
store the same
information.

Two different references /
names for the same
object.

>>> x = [1,2,3,4,5]
>>> y = [1,2,3,4,5]

>>> x = [1,2,3,4,5]
>>> y = x

Lecture 03COMPSCI 1053

Different ways to compare equality
 ==
 Calls a method of the object
 Programmer who defined the object decides how to determine

equality
 Typically involves checking the contents of the objects
 We should always use this for literals

 is
 Checks the references of the objects
 Evaluates to True if they are the same object
>>> x = [1,2,3,4,5]
>>> y = [1,2,3,4,5]
>>> x == y
>>> x is y

>>> x = [1,2,3,4,5]
>>> y = x
>>> x == y
>>> x is y

True
False

True
True

Lecture 03COMPSCI 1054

String
 Every UNIQUE string you create will have it’s own address

space in memory.

>>> a = 'foo'
>>> b = 'foo'
>>> id(a)
46065568
>>> id(b)
46065568
>>> a is b
True
>>> a == b
True
>>>

Same
memory
location >>> x = [1,2,3]

>>> y = [1,2,3]
>>> id(x)
47912776
>>> id(y)
47812296
>>> x is y
False
>>> x == y
True

id(object) function
Return the “identity” of an
object.

Lecture 03COMPSCI 1055

Mutable and Immutable objects
 An immutable object is an object whose state cannot be

modified after it is created.
 Examples of immutable objects:
 integer, boolean, float, string, tuple

 Examples of mutable objects
 lists, dictionaries, sets, most data structures studied in this course

Lecture 03COMPSCI 1056

Lists are mutable
 Lists are mutable
 i.e. We can change lists in place, such as reassignment of a sequence

slice, which will work for lists, but raise an error for tuples and
strings.

 Example:
 li[0] = 10
 li still points to the same memory when you are done.

li = [1,2,3]
print(li)
print(id(li))
li[0] = 10
print(id(li))
print(li)

[1, 2, 3]
2681992
2681992
[10, 2, 3]

Example01.py

Lecture 03COMPSCI 1057

Tuples are immutable
 Strings and tuples are immutable sequence types: such objects

cannot be modified once created
 i.e. you can’t change a tuple
 Example:

 The immutability of tuples means they are faster than lists.

tu = (1,2,3)
tu[0] = 10

TypeError: 'tuple' object
does not support item
assignment

Example01.py

Lecture 03COMPSCI 1058

Operations on Strings
 Whenever you call a method of an object, make sure you

know if changes the contents of the object or returns a
new object.

 lower(), upper(), lstrip, rstrip…
 Return a copy of s

name = "Angela"
y = name.lower()

name = "Angela"
print(id(name))
name = "Bob"
print(id(name)) a new String object is instantiated and given

the data “Bob" during its construction

Return a new object

4217536
5699680

Example01.py

Lecture 03COMPSCI 1059

Operations on Lists
 append
 Add an item to the end of the list;

 insert
 Insert an item at a given position.

 remove
 Remove the first item from the list whose value is x.

x = [1, 2, 3]
print(id(x))
x.append(4)
print(id(x))
print(x) 4997248

4997248
[1, 2, 3, 4]

x = [1, 2, 3]
print(id(x))
x.insert(0,4)
print(id(x))
print(x)

35668096
35668096
[4, 1, 2, 3]

x = [1, 2, 3]
print(id(x))
x.remove(2)
print(id(x))
print(x)

34422912
34422912
[1, 3]

Example01.py

Lecture 03COMPSCI 10510

append Vs extend
 extend: extend the list by appending all the items in the given

list (i.e. the argument is a list)

 append :- add an item to the end of the list

x = [1, 2, 3]
print(id(x))
x.extend([4,5,6])
print(id(x))
print(x)

5456000
5456000
[1, 2, 3, 4, 5, 6]

x = [1, 2, 3]
x.append([4,5,6]) [1, 2, 3, [4, 5, 6]]

x = [1, 2, 3]
x.extend([4,5,6]) [1, 2, 3, 4, 5, 6]

Example01.py

Lecture 03COMPSCI 10511

Reversing a list
 The function my_list.reverse() alters the content of my_list

 Sort and Reverse
 Sort/reverse the items of the list, in place.

>>> x = [1, 2, 3]
>>> y = x
>>> x.reverse()

x

y

[1, 2, 3]

>>> x

>>> y

[3, 2, 1]

[3, 2, 1]

[3,2,1]

>>> x.reverse()
changes the contents

of the object

Lecture 03COMPSCI 10512

Exercise 1
 What is the output of the following code fragment? Why?

p = [1, 2, 3]
print (p[::-1])
print (p)

Lecture 03COMPSCI 10513

Aliases
 Two references to the same object are known as aliases

 When an assignment is performed, the reference to the
object on the right of the assignment is assigned to the
variable on the left

 When a method of an object is called, it sometimes returns
a value and sometimes it alters the object

x = [1, 2, 3, 4]
y = x
x.append(5)
print(x)
print(y)

[1, 2, 3, 4, 5]
[1, 2, 3, 4, 5]

Alter the
object

Example01.py

Lecture 03COMPSCI 10514

Example
 What happens in the following cases? What is the output?

x = [1, 2, 3, 4]
y = x
x = x + [5]
print(x)
print(y)

x = [1, 2, 3, 4]
y = x
x += [5]
print(x)
print(y)

Alter the
object

Return a new
object

x [1,2,3,4,5]
[1,2,3,4]

y

x

y

[1,2,3,4][1,2,3,4,5]

Example01.py

[1, 2, 3, 4, 5]
[1, 2, 3, 4]

[1, 2, 3, 4, 5]
[1, 2, 3, 4, 5]

But replaced

Lecture 03COMPSCI 10515

Shallow copies
 Lists and dictionaries have a copy method
 data.copy()

x = [1, 2, 3, 4, 5]
y = x.copy()
print (x is y)
print (x == y)

a = [[11], [22], [33]]
b = a.copy()
print(a is b)
print(a[0] is b[0])

False
True

[1,2,3,4, 5]

y

x
[1,2,3,4, 5]

False
True

Example01.py

Lecture 03COMPSCI 10516

Shallow copy
 New object created
 Contents of the original object are copied
 If the contents are references, then the references are copied

b [, ,]

a [, ,]

[11] [22] [33]

print(a is b)
print(a[0] is b[0])

False
True

Lecture 03COMPSCI 10517

Deep copies
 New object created
 Contents of the original object are copied
 If the contents are references, then the copy the objects referred to

a [, ,]

[11] [22] [33]

b [, ,]

[11] [22] [33]

import copy
a = [[11], [22], [33]]
b = copy.deepcopy(a)
print(a is b)
print(a[0] is b[0])

False
False

Example01.py

Lecture 03COMPSCI 10518

Summary
 Variables store references to the objects, not the actual objects
 When you assign a variable, a reference is copied, not the object

 There are two kinds of equality
 Equality of content (value equality) can be tested with ==
 Equality of identity (reference equality) can be tested with is

 When a copy is created, it can be a shallow or deep copy
 A shallow copy copies the references
 A deep copy recursively copies the objects referred to

 Lists slower but more powerful then tuples
 Lists can be modified and have lots of handy operations and methods
 Tuples are immutable and have fewer features

 To convert between tuples and lists use the list() and tuple()
function

Lecture 03COMPSCI 10519

Exercise 2
 What is the output of the following code fragments?

name = 'Angela'
x = name
name = 'Bob'
print(name)
print (x)
print (name is x)
print (name == x)
name = 'Angela'
print(name)
print (x)
print (name is x)
print (name == x)

my_list = [1,2,3]
y = my_list
my_list = [4,5]
print(my_list)
print (y)
print (my_list is y)
print (my_list == y)
my_list = [1,2,3]
print(my_list)
print (y)
print (my_list is y)
print (my_list == y)

Lecture 03COMPSCI 10520

