
Introduction

COMPSCI 105 S1 2017
Principles of Computer Science

Learning outcomes
 A student who successfully completes this course will be able to:
 Define a class to model and represent an object
 Write code which handles important exception types
 Use a standard data interchange format for reading and writing complex

data types
 Write programs that store and manipulate data in standard linear data

structures (arrays, linked lists, stacks, queues) and non-linear data
structures (hash tables, trees)

 Compare the efficiency of algorithms using standard big-O notation
 Implement recursive solutions to simple problems
 Implement recursive data structures such as linked lists and trees
 Explain the basic algorithm for any of the studied sorting methods
 use regular expressions to extract data from a body of text

Lecture 01COMPSCI 1052

Lecturers & Tutors
 Lecturers

 Angela Chang (Course
coordinator)
 Email: angela@cs.auckland.ac.nz
 Phone: 3737599 ext 86620
 Room: 303.414
 Office hours: whenever the office

door is open
 Dr Bruce Sham

 Email: b.sham@auckland.ac.nz
 Phone: 3737599 ext 87387
 Room: 303S-588
 Office hours: TBA

 Dr Burkhard Wuensche
 Email: burkhard@cs.auckland.ac.nz
 Phone: 3737599 ext 83705
 Room: 303-529
 Office hours: TBA

 Tutors
 Lindsay Shaw

 Email:
lsha074@aucklanduni.ac.nz

 Teererai Marange
 Email:

t.marange@auckland.ac.nz

Lecture 01COMPSCI 1053

Assessment
 Note: Students must obtain a pass in both the practical

(assignments) and non-practical work (test + exam) in
order to pass as a whole

 Practical …………………………………. ……….…25%
 10 Laboratories (1% each)
 3 Assignments (5% each)

 Mid-semester Test ……………………………………15%
 Monday 3rd April, 6:15pm-7:15pm
 Email Angela (angela@cs.auckland.ac.nz) if you are unable to attend the

test.
 The test is 60 minutes long plus 5 minutes of reading time.

 Final Exam …………………………………………….60%
 Date to be announced

Lecture 01COMPSCI 1054

Laboratories
 All Laboratories will be started from Monday 13 Mar.
 You must attend an hour tutorial lab sessions each week. You

should attend the same lab times each week.
 There are 10 labs and each lab is worth 1% of your final mark.
 Venue: B75

 Thursday 5:00pm-6:00pm
 Friday 9:00am-10:00am
 Friday10:00am-11:00am
 Friday11:00am-12:00noon
 Friday 5:00pm-6:00pm

 At your lab time you will be given programming problems to solve.

Lecture 01COMPSCI 1055

Code Runner
 The CodeRunner tool is designed to help you practise by

presenting you with a set of coding and other exercises.
Students can work with online exercises using the Moodle
learning system.

 Information about using CodeRunner is available on CompSci
105 assignments web page
 https://www.coderunner.auckland.ac.nz/moodle/

Lecture 01COMPSCI 1056

Assignments
 Assignments
 There are 3 assignments in total worth 15% of your final mark.
 You are required to write and submit one or more programs.
 Assignments are handed in using the Assignment Drop Box

 https://adb.auckland.ac.nz/Home

Lecture 01COMPSCI 1057

Resources
 Lecture slides

 https://www.cs.auckland.ac.nz/courses/compsci105s1c/lectures/
 Lecture Recordings

 Note: All marks, lecture recordings and announcements can be found on the
Canvas system. https://canvas.auckland.ac.nz

 Forum
 Question and answers – peers, tutors and lecturers
 https://forums.cs.auckland.ac.nz/

 Textbook
 Problem Solving with Algorithms and Data Structures using Python
 Online, free, open source

 http://interactivepython.org/runestone/static/pythonds/index.html

 Additional resources
 Python.org
 PythonTutor.com
 https://www.cs.auckland.ac.nz/courses/compsci105s1c/resources/

 For information about resources, textbook, references, assessment, people involved in the
course and lots more

Lecture 01COMPSCI 1058

Class Representative
 Must elect a class rep
 Attends 2 staff student meetings
 Pass on student concerns to lecturers

Lecture 01COMPSCI 1059

Kahoot
 Create, play and share fun learning games for …
 How to play
 On their personal devices, players can then join by going to

kahoot.it in their web browser(on install the kahoot app to your
own device) , and entering the pin displayed on the screen at the
front of the room

 They then enter their nickname, seeing it displayed at the front
 They then use their device to answer each question, with the aim

to get as many points as possible and get to the top of the
leaderboard

 https://www.youtube.com/watch?v=v2JbY979WUg

 Let’s start the first one…

Lecture 01COMPSCI 10510

Revision – Python Programs
 Python is a programming language designed to be easy to read
 Each step in the program is known as a statement
 A program is a sequence of statements

 Ways of running a program
 Interactive execution – great for learning
 Creating a module (file) and executing the module

 Download from http://python.org/download/
 Python comes with a large library of standard modules
 There are several options for an IDE
 IDLE – works well with Windows
 Emacs with python-mode or your favorite text editor
 Eclipse with Pydev (http://pydev.sourceforge.net/)
 Notepad++

Lecture 01COMPSCI 10511

Variables
 Variables store information
 Information is divided into different types
 Python is dynamically typed
 Variables do not need to be declared before they are used

 Basic types
 Integers
 Floats
 Strings

 Can use “” or ‘’ to specify with “abc” == ‘abc’
 Use triple double-quotes for multi-line strings or strings than contain both ‘

and “ inside of them:

x = 34
x = 34.5
x = True
x = 'Hello'

Lecture 01COMPSCI 10512

z = 5 / 2

x = 3.456

"""a'b"c""" a'b"c

2.5
z = 5 // 2 2

Assignment
 Binding a variable in Python means setting a name to hold a

reference to some object
 Assignment creates references, not copies

 Names in Python do not have an intrinsic type, objects have
types
 Python determines the type of the reference automatically based

on what data is assigned to it

 You can assign to multiple names at the same time
 This makes it easy to swap values
 Assignments can be chained

Lecture 01COMPSCI 10513

x, y = 2, 3
a = b = x = 2

Tracing code
 Keep track of the contents of variables
 Write down the name of each variable
 Change the value when (and only when) an assignment occurs
 When you change a value, cross out the old one and write a new

one

length_in_inches: 50 100
length_in_cms: 254.0

Lecture 01COMPSCI 10514

Example 1
 What is the output of the following code? Perform a code

trace.

a = 7
b = 3
c = 2
d = 4
e = a
a = b
b = e
e = c
c = d
d = e
print(a, b, c, d, e)

a

b

c

d

e

7

3

2

4

7

3

2
2

7

4

Lecture 01COMPSCI 10515

Example01.py
Exercise 1

 Suppose that there are 4 variables names x0, x1, x2 and x3.
Write the code to move the values stored in those variables
to the left, with the leftmost value ending up in the rightmost
variable, as shown in the diagram below.

Lecture 01COMPSCI 10516

0 1 2 3

print (x0, x1, x2, x3)

1 2 3 0

Accessing Non-Existent Name
 Accessing a name before it’s been properly created (by

placing it on the left side of an assignment), raises an error

Lecture 01COMPSCI 10517

>>> y
Traceback (most recent call last):
...

NameError: name ‘y' is not defined
>>> y = 3
>>> y
3

The print function *
 The print statement has been replaced with a print() function
 Elements separated by commas print with a space between them

 You can also customize the separator between item

 By default, a newline ("\n") is written after the last value in
args. You may specify a different line terminator, or no
terminator at all.

Lecture 01COMPSCI 10518

Old: print "The answer is", 2*2
New: print("The answer is", 2*2)

print("There are <", 2**32, "> possibilities!")
print("There are <", 2**32, "> possibilities!", sep="")

print(3, end=' ')
print(4, end=' ')
print('hello')

…are < 4294967296 > poss…
…are <4294967296> poss…

3 4 hello

Example01.py

Exercise 2
 Which of the following will not produce "helloworld" in the

output?

Lecture 01COMPSCI 10519

print("hello", end="")
print("world")

print("hello", "world", sep="")

print("hello", "world")

print("helloworld")

Expression
 An expression is part of the program that can be evaluated

(i.e. when the computer follows the rules that define the
instructions, an expression turns into a value).

 An expression can be used anywhere that a value is used

x = 3 + 4

3 + 4 is an expression

Lecture 01COMPSCI 10520

Example
 Floor division and modulus
 Integer part of a division, and remainder after division

 What do each of the following expressions evaluate to?
 10 + 4
 10 - 4
 10 * 4
 10 / 4
 10 ** 4
 10 // 4
 10 % 4

14

6

40

2.5

10000

2

2

Lecture 01COMPSCI 10521

Example01.py
Boolean values and related operators

 Boolean values
 True
 False

 Relational operators
 >, >=, <, <=, ==

 Boolean operators
 and, or, not

>>> 2 == 3

Lecture 01COMPSCI 10522

False

True>>> 2 == 3 or 4 < 5

Conditionals
 Code is executed if the condition is true

if n < 0:
print("Negative number")

elif n > 0:
print("Positive number")

else:
print("Zero")

if name == "Andrew":
print("Hi Andrew")

if n % 2 == 0:
print("Even number")

else:
print("Odd number")

Lecture 01COMPSCI 10523

name Andrew

n 6

Hi Andrew

Even number

Positive number

Example01.py
Functions

 A function is a sequence of instructions designed to perform
a task, and is packaged as a unit.
 Functions have a name
 Functions accept arguments/parameters
 Functions return values

 Syntax
 Indentation rather than braces are used to signify blocks of code
 Variables defined within the scope of a function are not available

outside the function

def rectangle_area(width, height):
return width * height

Lecture 01COMPSCI 10524

Exercise 3
 Write a function that calculates the area of a circle
 area = π r2

Lecture 01COMPSCI 10525

Arguments: Default values
 Parameters can be assigned with default values
 If the function is called without the argument, the argument gets its

default value.
 They are overridden if a parameter is given for them.
 The type of the default doesn’t limit the type of a parameter.

Lecture 01COMPSCI 10526

foo(10)

def foo(x=3):
print(x)

foo()
3
10
hellofoo('hello')

Example01.py

Arguments: Named
 Arguments can be specified in any order by using named

arguments.
 Note: any positional arguments must be come before named ones

in a call.
 Example:

Lecture 01COMPSCI 10527

def info(value, spacing=10, collapse=1):

info(5)
info(5, 12)
info(5, collapse=0)
info(spacing=15, value=5) 5 10 1

5 12 1
5 10 0
5 15 1

Two optional
arguments

info(spacing=15, 5)
SyntaxError: non-keyword arg

after keyword arg

Example01.py
Input

 The input(string) function returns a line of user input as a
string
 The parameter is used as a prompt
 The string can be converted by using the conversion methods

int(string), float(string), etc.

Lecture 01COMPSCI 10528

x = int(input("Enter an integer: "))
y = int(input("Enter another integer: "))
sum = x+y
print(sum)

Enter an integer: 3
Enter another integer: 2
5

File Input & Output

Lecture 01COMPSCI 10529

inflobj = open(‘data’, ‘r’) Open the file ‘data’ for input
S = inflobj.read() Read whole file into one String
S = inflobj.read(N) Reads N bytes (N >= 1)
L = inflobj.readlines() Returns a list of line strings

outflobj = open(‘data’, ‘w’) Open the file ‘data’ for writing
outflobj.write(S) Writes the string S to file
outflobj.writelines(L) Writes each of the strings in list L to file
outflobj.close() Closes the file

Python Operator Precedence

Lecture 01COMPSCI 10530

Operator Description
() Parentheses (grouping)

f(args...) Function call
x[index:index] Slicing

x[index] Subscription
x.attribute Attribute reference

** Exponentiation
~x Bitwise not

+x, -x Positive, negative
*, /, % Multiplication, division, remainder
+, - Addition, subtraction
<<, >> Bitwise shifts

& Bitwise AND
^ Bitwise XOR
| Bitwise OR

in, not in, is, is not,
<, <=, >, >=,

<>, !=, ==
Comparisons, membership, identity

not x Boolean NOT
and Boolean AND
or Boolean OR

lambda Lambda expression

Sequences
 Sequences allow you to store values in an organized fashion.
 Tuple: (‘john’, 32, [CMSC])

 A simple immutable ordered sequence of items
 Items can be of mixed types, including collection types

 Strings: “John Smith”
 Immutable

 List: [1, 2, ‘john’, (‘up’, ‘down’)]
 Mutable ordered sequence of items of mixed types

Lecture 01COMPSCI 10531

Similarity and Difference
 All three sequence types (tuples, strings, and lists) share much

of the same syntax and functionality.

 Key difference:
 Tuples and strings are immutable
 Lists are mutable

Lecture 01COMPSCI 10532

Strings
 Strings are a sequence of characters

 Strings also have a number of other functions that can be
used
 split() is especially useful

>>> name = 'Andrew'
>>> name[0]

Lecture 01COMPSCI 10533

name Andrew'A'

True

6>>> len(name)

>>> 'd' in name

>>> name + ' ' + 'Luxton-Reilly'
'Andrew Luxton-Reilly'

>>> 'hello' * 3 hellohellohello

Lists
 Lists are a built-in type in Python
 Use square brackets to signify a list
 Lists can contain any type of data, or any mixture of data

my_list1 = [1, 2, 3]
my_list2 = ['Hello', 'Is', 'there', 'anybody', 'out', 'there?']
my_list3 = [1, 5.899, 'Hello']
my_list4 = [4, 2, 6, 9, 3]

my_list 4 2 6 9 3

Lecture 01COMPSCI 10534

List functions
 Numerous list functions are supported
 Use help(list) to find out the functions
 Examples:

>>> x = [1, 2, 3]
>>> len(x)

Lecture 01COMPSCI 10535

3

[1, 2, 3, 4]

[1, 2, 3, 5]>>> x += [5]

>>> x + [4]

>>> 3 in x True

1>>> x[0]

x 1 2 3

x 1 2 3 5

>>> [1, 2, 3] * 2 [1, 2, 3, 1, 2, 3]

Lists of lists
 Since a list can contain anything, it can of course contain a list

 In memory

my_list = [[1, 2, 3], [4, 5, 6], [7], [8, 9]]

my_list
0 1 2 3

1 2 3
0 1 2

4 5 6
0 1 2

7
0

8 9
0 1

Lecture 01COMPSCI 10536

Tuples
 Tuples are immutable
 Define tuples using parentheses and commas
 In order to make a tuple with one element:
 ‘,’ is needed to differentiate from the mathematical expression (2)

 Examples:

Lecture 01COMPSCI 10537

>>> tu = (23, 'abc', 4.5)
>>> len(tu) 3

(23, 'abc', 4.5, 2)

23
True

>>> tu + (2,)

>>> 23 in tu

>>> tu[0]
>>> tu * 2 (23, 'abc', 4.5, 23, 'abc', 4.5)

Slices of sequences
 A piece of a sequence can be obtained using the following

syntax
 sequence_name[x:y]
 where x is the index of the first element and y is the index after the

last element
>>> name = 'Andrew'
>>> name[0:0]

Lecture 01COMPSCI 10538

''

'A'

'ndr'

>>> name[0:1]

>>> name[1:4]

Slice step value
 Actually, the syntax allows for a third value, used to define the step

size between elements included in the slice. If a value if omitted, it
defaults to [start:end:1]

 If the step size is negative, it starts at the end and steps backward
towards the start.

>>> name = 'Andrew'
>>> name[:4:2]

>>> name = 'Andrew'
>>> name[::-1]

name A n d r e w

Positive
Index

0 1 2 3 4 5

Negative
index

-6 -5 -4 -3 -2 -1

Lecture 01COMPSCI 10539

'ad'

'werdnA'

For loops
 Used to iterate through a sequence

numbers = [2, 3, 5, 7, 11]
for i in numbers:

print(i)

name = "Andrew"
for c in name:

print(c)

Lecture 01COMPSCI 10540

2
3
5
7
11

A
n
d
r
e
w

Example01.py

While loops
 Used to execute code when the end condition is unknown

name = "Andrew Luxton-Reilly"
i = 0
while name[i] != ' ':

i += 1
print('Space is at position:', i)

Space is at position: 6

Lecture 01COMPSCI 10541

Example01.py
The Loop Else Clause

 The optional else clause runs only if the loop exits normally
(not by break)

Lecture 01COMPSCI 10542

x = 1
while x < 3 :

print(x)
x = x + 1

else:
print('hello')

1
2
hello

Example01.py

Exercise 4
 What is the output of the following code fragment?

Lecture 01COMPSCI 10543

number = 5
while number > 1:
if number % 2 == 1:
number = number * 3 + 1

else:
number = number // 2

print(number, ",", end=" ")
else:
print("EX3-END")

Loop Control Statements

Lecture 01COMPSCI 10544

break Jumps out of the closest enclosing loop
continue Jumps to the top of the closest enclosing loop
pass Does nothing, empty statement placeholder

for letter in 'Python':
if letter == 'h':

break
print('Current Letter :', letter)

for letter in 'Python':
if letter == 'h':

continue
print('Current Letter :', letter)

Current Letter : P
Current Letter : y
Current Letter : t

Current Letter : P
Current Letter : y
Current Letter : t
Current Letter : o
Current Letter : n

Exercise 5
 What is the output of the following code fragment?

Lecture 01COMPSCI 10545

guess_str = input("Guess a number: ")
guess = int(guess_str)
number = 9
while 0 <= guess <= 100:
if guess > number:
print("Guessed too high!")

elif guess < number:
print("Guessed too low.")

else:
print("Bingo")
break

guess_str = input("Guess a number: ")
guess = int(guess_str)

else:
print("You quit early!")

Range
 Range is a special object in Python
 Used to generate integer numbers within a range of values
 Can iterate through the range

for x in range(0, 5):
print(x)

Lecture 01COMPSCI 10546

0
1
2
3
4

Example01.py

