22.1 Radix Conversion
 Radix Conversion

- Radix is the base of number representation
- Examples:
- Decimal, 10
- Binary, 2
- Octal, 8

Hexadecimal, 16

Decimal	Binary	Octal	Hexadecimal
20	10100_{2}	24_{8}	14_{16}
7	$11 \mathrm{I}_{2}$	7_{8}	7_{16}
32	100000_{2}	40_{8}	20_{16}

- Conversion by division from larger base to a smaller base
- Examples: Decimal to Octal
- 735 / $8=91 . . .7$
- $91 / 8=11$... 3
| $1 / 8=1 . . .3$
$735=1337_{8}$

The Fibonacci Sequence

Describes the growth of an idealized (biologically unrealistic) rabbit population, assuming that:

- Rabbits never die
- A rabbit reaches sexual maturity exactly two months after birth, that is, at the beginning of its third month of life
- Rabbits are always born in male-female pairs
- At the beginning of every month, each sexually mature malefemale pair gives birth to exactly one male-female pair

5

22.2 The Fibonacci Sequence
 The Fibonacci Sequence

- Problem:

- How many pairs of rabbits are alive in month n ?
- Example:
- $\operatorname{rabbit}(5)=5$

Recurrence relation

\square rabbit(n) $=\operatorname{rabbit}(n-1)+\operatorname{rabbit}(n-2)$

Recursive Definition

Base cases

- rabbit(2), rabbit(I)
- Recursive case
($\operatorname{rabbit}(\mathrm{n})=\{1 \quad$ if n is 1 or 2
$\operatorname{rabbit}(\mathrm{n}-\mathrm{I})+\operatorname{rabbit}(\mathrm{n}-2) \quad$ if $\mathrm{n}>2$

Fibonacci sequence

, The series of numbers rabbit(I), rabbit(2), rabbit(3), and so on

($\operatorname{rabbit}(6)=8$

rabbit(2) rabbit(1)
 return

$$
\text { return } 1
$$

- Fibonacci Tiling

9
COMPSCI105

22.2 The Fibonacci Sequence

Examples

- Fibonacci Spiral

wers of Hanoi
The Towers of Hanoi

- Puzzle consists of n disks and three poles

- The disks are of different size and have holes to fit themselves on the poles
- Initially all the disks were on one pole, e.g., pole A
- The task was to move the disks, one by one, from pole A to another pole B, with the help of a spare pole C
- Due to its weight, a disks could be placed only on top of another disk larger than itself

11
COMPSCI105
22.3 The Towers of Hanoi

The Towers of Hanoi

- Example:
b https://www.youtube.com/watch?v=5QuiCcZKyYU

The Towers of Hanoi

- Solution for moving n disks from A to B

- If you have only one disk (i.e., $n=1$)
- Move it from pole A to pole B
- If you have more than one disk,
- Simply ignore the bottom disk and solve the problem for n -I disk, with pole C is the destination and pole B is the spare
- Then move the largest disk from pole A to B; then move the n-I disks from the pole C back to pole B
- We can use a recursion with the arguments:
- Number of disks, source pole, destination pole, spare pole

22.3 The Towers of Hanoi

 The Towers of Hanoi
22.3 The Towers of Hanoi

The Towers of Hanoi

Satisfies the four criteria of a recursive solution

- Recursive method calls itself
- Each recursive call solves an identical, but smaller problem
- Stops at base case
- Base case is reached in finite time
def hanoi(count, source, destination, spare):
if count <= I:
print ("base case: move disk from", source, "to", destination) else:
hanoi(count - I, source, spare, destination) print ("step2: move disk from", source, "to", destination) hanoi(count - I, spare, destination, source)

The Towers of Hanoi

def hanoi(count, source, destination, spare):
if count <= I:
print ("base case: move disk from", source, "to", destination) else:
hanoi(count - I, source, spare, destination) print ("step2: move disk from", source, "to", destination) hanoi(count - I, spare, destination, source)

The Towers of Hanoi

22.3 The Towers of Hanoi

 The Towers of Hanoi

22.3 The Towers of Hanoi

The Towers of Hanoi

The Towers of Hanoi

22.3 The Towers of Hanoi

 The Towers of Hanoi

22.3 The Towers of Hanoi

The Towers of Hanoi

The Towers of Hanoi

22.3 The Towers of Hanoi

Call Tree

- hanoi(3...) uses 10 calls, a top-level one and 9 recursive calls

26

Binary Search

- Problem: look for an element (key) in an ordered collection (e.g. find a word in a dictionary)
- Sequential search
- Starts at the beginning of the collection Looks at every item in the collection in order until the item being searched for is found
- Binary search

Cost?

- Repeatedly halves the collection and determines which half could contain the item Uses a divide and conquer strategy

22.4 Binary Search

Binary Search

- Implementation issues:
" How will you pass "half of list" to the recursive calls to binary_search?
- How do you determine which half of the list contains value?
- What should the base case(s) be?
- How will binary_search indicate the result of the search?
- Example: a sorted list
22.4 Binary Search

Binary Search

- Base case:

- If array is empty number is not in the list, or
- If element is the one we look for return it
- Recursive call
- Determine element in the middle
- If the one we look for is smaller than element in the middle then search in the left half
Otherwise search in the right half of the list Left half: [first ... mid-I]

mid $=($ first + last $) / 2$
COMPSCI105

22.4 Binary Search
 Binary Search

- Code
def binary_search(num_list, first, last, value):
index $=0$
if first $>$ last:
index $=-1$
else:
mid $=($ first + last $) / / 2$
if value $==$ num_list[mid]
index $=$ mid
elif value < num_list[mid]:
index = binary_search(num_list, first, mid-I, value) else.
index $=$ binary_search(num_list, mid+ I, last, value) return index return index
- Understand and learn how to implement the recursive functions for different applications

