

- Radix is the base of number representation
 - Examples:
 - Decimal, 10
 - Binary, 2
 - Octal, 8
 - Hexadecimal, 16

Decimal	Binary	Octal	Hexadecimal
20	101002	24 ₈	14 ₁₆
7	1112	7 ₈	7 ₁₆
32	1000002	40 ₈	2016

3

COMPSCI105

Lecture 22

- Agenda
 - Radix Conversion
 - The Fibonacci Sequence
 - The Towers of Hanoi Δ.
 - **Binary Search**
- Reference:
 - Textbook:
 - Problem Solving with Algorithms and Data Structures
 - □ Chapter 4 Recursion

22.1 Radix Conversion Radix Conversion

- Conversion by division from larger base to a smaller base
 - Examples: Decimal to Octal
 - ▶ 735 / 8 = 91 ... 7
 - ▶ 9|/8 = 11 ... 3
 - ▶ ||/8 = |...3
 - $ightarrow 735 = 1337_8$

COMPSCI 105 S1 2017

22-Recursion(3)

Principles of Computer Science

4

- Describes the growth of an idealized (biologically unrealistic) rabbit population, assuming that:
 - Rabbits never die
 - A rabbit reaches sexual maturity exactly two months after birth, that is, at the beginning of its third month of life
 - Rabbits are always born in male-female pairs
 - At the **beginning** of every month, each sexually mature malefemale pair gives **birth** to exactly one male-female pair

COMPSCI105

- Base cases

 rabbit(2), rabbit(1)

 Recursive case

 rabbit(n) =
 I if n is I or 2
 - └ rabbit(n-1) + rabbit(n-2) if n > 2

Fibonacci sequence

The series of numbers rabbit(1), rabbit(2), rabbit(3), and so on

Problem:

5

How many pairs of rabbits are alive in month n?

Lecture 22

8

Fibonacci Tiling

COMPSCI105

10

22.2 The Fibonacci Sequence Examples

Fibonacci Spiral

> Puzzle consists of n disks and three poles

- The disks are of different size and have holes to fit themselves on the poles
- > Initially all the disks were on one pole, e.g., pole A
- The task was to move the disks, one by one, from pole A to another pole B, with the help of a spare pole C
- Due to its weight, a disks could be placed only on top of another disk larger than itself

COMPSCI105

Lecture 22

- Example:
 - https://www.youtube.com/watch?v=5QuiCcZKyYU

Lecture 22

12

- Solution for moving n disks from A to B
 - If you have only one disk (i.e., n=1)
 - Move it from pole A to pole B
 - If you have more than one disk,
 - Simply ignore the bottom disk and solve the problem for n-1 disk, with pole C is the destination and pole B is the spare
 - Then move the largest disk from pole A to B; then move the n-1 disks from the pole C back to pole B
 - We can use a recursion with the arguments:
 - Number of disks, source pole, destination pole, spare pole

Satisfies the four criteria of a recursive solution

- Recursive method calls itself
- Each recursive call solves an identical, but smaller problem
- Stops at base case

15

Base case is reached in finite time

COMPSCI105

22.3 The Towers of Hanoi The Towers of Hanoi

Lecture 22

22.3 The Towers of Hanoi The Towers of Hanoi

22.3 The Towers of Hanoi The Towers of Hanoi

22.4 Binary Search 🜌 Binary Search

- Problem: look for an element (key) in an ordered collection (e.g. find a word in a dictionary)
- Sequential search
 - > Starts at the beginning of the collection Looks at every item in the collection in order until the item being searched for is found
- Binary search

Cost?

Repeatedly halves the collection and determines which half could contain the item Uses a divide and conquer strategy

22.4 Binary Search **Binary** Search

- Implementation issues:
 - How will you pass "half of list" to the recursive calls to binary search?
 - How do you determine which half of the list contains value?
 - What should the base case(s) be?
 - How will binary search indicate the result of the search?
- Example: a sorted list

11 13 14 18 6

Base case:

- > If array is empty number is not in the list, or
- > If element is the one we look for return it

Recursive call

- Determine element in the middle
- If the one we look for is smaller than element in the middle then search in the left half
- Otherwise search in the right half of the list

 Understand and learn how to implement the recursive functions for different applications

31

COMPSCI105

Lecture 22