COMPSCI 105 S1 2017 Principles of Computer Science

- Agenda
- Radix Conversion
- The Fibonacci Sequence
- The Towers of Hanoi
- Binary Search
- Reference:
, Textbook:
- Problem Solving with Algorithms and Data Structures
\square Chapter 4 - Recursion

Radix Conversion

- Radix is the base of number representation
- Examples:
- Decimal, 10
- Binary, 2
- Octal, 8
- Hexadecimal, I6

Decimal	Binary	Octal	Hexadecimal
20	10100_{2}	24_{8}	14_{16}
7	$1 \mathrm{II}_{2}$	7_{8}	7_{16}
32	$10000 \mathrm{O}_{2}$	40_{8}	20_{16}

Radix Conversion

- Conversion by division from larger base to a smaller base

Examples: Decimal to Octal

- 735 / $8=91$... 7
- $91 / 8=11 . . .3$
- $11 / 8=1 \ldots 3$
- $735=1337_{8}$
def Dec_to_Oct(n):
$\mathrm{a}=\mathrm{n} / / 8$
$\mathrm{b}=\mathrm{n} \% 8$
if $(a>0)$:
result $=\mathrm{b}+10$ * Oct_to_Dec(a)
else:
result $=\mathrm{b}$
return result

The Fibonacci Sequence

- Describes the growth of an idealized (biologically unrealistic) rabbit population, assuming that:
- Rabbits never die
- A rabbit reaches sexual maturity exactly two months after birth, that is, at the beginning of its third month of life
- Rabbits are always born in male-female pairs
- At the beginning of every month, each sexually mature malefemale pair gives birth to exactly one male-female pair

The Fibonacci Sequence

- Problem:
- How many pairs of rabbits are alive in month n ?
- Example:
- $\operatorname{rabbit}(5)=5$
- Recurrence relation

$\square \operatorname{rabbit}(\mathrm{n})=\operatorname{rabbit}(\mathrm{n}-\mathrm{I})+\operatorname{rabbit}(\mathrm{n}-2)$

Recursive Definition

- Base cases

- rabbit(2), rabbit(I)

Recursive case

($\operatorname{rabbit}(\mathrm{n})=\int 1 \quad$ if n is 1 or 2 $\operatorname{rabbit}(\mathrm{n}-\mathrm{I})+\operatorname{rabbit}(\mathrm{n}-2) \quad$ if $\mathrm{n}>2$

- Fibonacci sequence

- The series of numbers rabbit(I), rabbit(2), rabbit(3), and so on

22.2 The Fibonacci Sequence Examples

rabbit(6) $=8$

- Fibonacci Tiling

22.2 The Fibonacci Sequence Examples

Fibonacci Spiral

The Towers of Hanoi

- Puzzle consists of n disks and three poles
- The disks are of different size and have holes to fit themselves on the poles
- Initially all the disks were on one pole, e.g., pole A
- The task was to move the disks, one by one, from pole A to another pole B, with the help of a spare pole C
- Due to its weight, a disks could be placed only on top of another disk larger than itself

The Towers of Hanoi

- Example:
b https://www.youtube.com/watch?v=5QuiCcZKyYU

Moves

The Towers of Hanoi

- Solution for moving n disks from A to B
- If you have only one disk (i.e., $\mathrm{n}=\mathrm{I}$)
- Move it from pole A to pole B
- If you have more than one disk,
- Simply ignore the bottom disk and solve the problem for n-I disk, with pole C is the destination and pole B is the spare
- Then move the largest disk from pole A to B; then move the n-I disks from the pole C back to pole B
- We can use a recursion with the arguments:
- Number of disks, source pole, destination pole, spare pole

The Towers of Hanoi

- Examples:
def hanoi(count,source,destination,spare): if count is I :

Move a disk directly from source to destination
Move count-I disks from source to spare Move I disk from source to destination Move count-I disk from spare to destination

The Towers of Hanoi

- Satisfies the four criteria of a recursive solution
- Recursive method calls itself
- Each recursive call solves an identical, but smaller problem
- Stops at base case
- Base case is reached in finite time

```
def hanoi(count, source, destination, spare):
    if count <= |:
        print ("base case: move disk from", source, "to", destination)
    else:
        hanoi(count - I, source, spare, destination)
        print ("step2: move disk from", source, "to", destination)
        hanoi(count - I, spare, destination, source)
```


22.3 The Towers of Hanoi

The Towers of Hanoi

Examples:

Case 3
hanoi($3, A, B, C$)
Count: 3
Source: A
Spare: B
Dest: C
def hanoi(count, source, destination, spare): if count <= I: print ("base case: move disk from", source, "to", destination) else:
hanoi(count - I, source, spare, destination) print ("step2: move disk from", source, "to", destination) hanoi(count-I, spare, destination, source)

The Towers of Hanoi

Examples:

Case 3. 2
hanoi $(2, A, C, B)$
Count: 2
Source:A
Spare: C
Dest: B
def hanoi(count, source, destination, spare): if count <= I: print ("base case: move disk from", source, "to", destination) else:
hanoi(count - I, source, spare, destination) print ("step2: move disk from", source, "to", destination) hanoi(count - I, spare, destination, source)

22.3 The Towers of Hanoi

The Towers of Hanoi

Examples:

Case 3. 2_{1}. 1 hanoi(I, A, B, C) Count: I Source:A Spare: B Dest: C
def hanoi(count, source, dest base case: move disk if count <= I: from A to B print ("base case: move disk from", source, "to", destination) else:
hanoi(count - I, source, spare, destination) print ("step2: move disk from", source, "to", destination) hanoi(count - I, spare, destination, source)

22.3 The Towers of Hanoi

The Towers of Hanoi

Examples:

Case 3. 2
hanoi($2, A, C, B$)
Count: 2
Source: A
Spare: C
Dest: B
def hanoi(count, source, destination, spare): if count <= I: print ("base case: move dis " " " destination) else: hanoi(count - I, source base case: move disk from A to C print ("step2: move disk from", source, "to", destination) hanoi(count - I, spare, destination, source)

22.3 The Towers of Hanoi

The Towers of Hanoi

Examples:

Case 3. 2 $_{2}$. 1 hanoi(I, B, C, A) Count: I Source: B Spare: C Dest:A
def hanoi(count, source, dest base case: move disk if count <= I: from B to C print ("base case: move disk from", source, "to", destination) else:
hanoi(count - I, source, spare, destination) print ("step2: move disk from", source, "to", destination) hanoi(count - I, spare, destination, source)

22.3 The Towers of Hanoi

The Towers of Hanoi

Examples:

Case 3
hanoi ($3, \mathrm{~A}, \mathrm{~B}, \mathrm{C}$)
Count: 3
Source:A
Spare: B
Dest: C
def hanoi(count, source, destination, spare): if count <= I: print ("base case: move dis " " " destination) else: hanoi(count - I, source step2: : move disk from A to B print ("step2: move disk from", source, "to", destination) hanoi(count - I, spare, destination, source)

22.3 The Towers of Hanoi

The Towers of Hanoi

Examples:

Case $3_{2} .2$
hanoi $(2, C, B, A)$
Count: 2
Source: C
Spare: B
Dest:A
def hanoi(count, source, destination, spare): if count <= I: print ("base case: move disk from", source, "to", destination) else:
hanoi(count - I, source, spare, destination) print ("step2: move disk from", source, "to", destination) hanoi(count-I, spare, destination, source)

22.3 The Towers of Hanoi

The Towers of Hanoi

Examples:

Case 3_{2}.2. 1
hanoi(I, C, A, B)
Count: 2
Source: C Spare:A
Dest: B
def hanoi(count, source, dest base case: move disk if count <= I: from C to A print ("base case: move disk from", source, "to", destination) else:
hanoi(count - I, source, spare, destination) print ("step2: move disk from", source, "to", destination) hanoi(count - I, spare, destination, source)

22.3 The Towers of Hanoi

The Towers of Hanoi

Examples:

Case $3_{2} .2$
hanoi $(2, C, B, A)$
Count: 2
Source: C Spare: B
Dest:A
def hanoi(count, source, destination, spare): if count <= I: print ("base case: move dis " ". " destination) else: hanoi(count - I, source from C to B print ("step2: move disk from", source, "to", destination) hanoi(count-I, spare, destination, source)

22.3 The Towers of Hanoi

The Towers of Hanoi

Examples:

Case 32.2 . 1
hanoi(I, A, B, C)
Count: I
Source:A
Spare: B
Dest: C
def hanoi(count, source, dest base case: move disk if count <= I: from A to B print ("base case: move disk from", source, "to", destination) else:
hanoi(count - I, source, spare, destination) print ("step2: move disk from", source, "to", destination) hanoi(count - I, spare, destination, source)

- hanoi(3...) uses 10 calls, a top-level one and 9 recursive calls hanoi(3, 'A', ‘B', ‘C’)

22.4 Binary Search Binary Search

- Problem: look for an element (key) in an ordered collection (e.g. find a word in a dictionary)
- Sequential search
- Starts at the beginning of the collection Looks at every item in the collection in order until the item being searched for is found
- Binary search

Cost?

- Repeatedly halves the collection and determines which half could contain the item Uses a divide and conquer strategy

- Implementation issues:
" How will you pass "half of list" to the recursive calls to binary_search?
- How do you determine which half of the list contains value?
- What should the base case(s) be?
- How will binary_search indicate the result of the search?
- Example: a sorted list

$$
\begin{array}{|l|l|l|l|l|l|l|l|l|l|}
\hline 1 & 3 & 6 & 7 & 11 & 13 & 14 & 18 & 22 & 25 \\
\hline
\end{array}
$$

- Base case:

- If array is empty number is not in the list, or
- If element is the one we look for return it
- Recursive call
- Determine element in the middle
- If the one we look for is smaller than element in the middle then search in the left half
- Otherwise search in the right half of the list

22.4 Binary Search

Binary Search

- Code

```
def binary_search(num_list, first, last, value):
index \(=0\)
if first > last:
    index \(=-1\)
    else:
        mid \(=(\) first + last \() / / 2\)
        if value \(==\) num_list[mid]:
        index \(=\) mid
        elif value < num_list[mid]:
        index = binary_search(num_list, first, mid-I, value)
        else:
            index = binary_search(num_list, mid+ \(\mid\), last, value)
    return index
```


Summary

- Understand and learn how to implement the recursive functions for different applications

