
COMPSCI 105 S1 2017

Principles of Computer Science

22-Recursion(3)

Agenda & Readings

 Agenda

 Radix Conversion

 The Fibonacci Sequence

 The Towers of Hanoi

 Binary Search

 Reference:

 Textbook:

 Problem Solving with Algorithms and Data Structures

 Chapter 4 – Recursion

COMPSCI1052 Lecture 22

Radix Conversion

 Radix is the base of number representation

 Examples:

 Decimal, 10

 Binary, 2

 Octal, 8

 Hexadecimal, 16

Lecture 22COMPSCI1053

22.1 Radix Conversion

Decimal Binary Octal Hexadecimal

20 101002 248 1416

7 1112 78 716

32 1000002 408 2016

Radix Conversion

 Conversion by division from larger base to a smaller base

 Examples: Decimal to Octal

 735 / 8 = 91 … 7

 91 / 8 = 11 … 3

 11 / 8 = 1 … 3

 735 = 13378

Lecture 22COMPSCI1054

22.1 Radix Conversion

def Dec_to_Oct(n):

a = n // 8

b = n % 8

if (a > 0):

result = b + 10 * Oct_to_Dec(a)

else:

result = b

return result

The Fibonacci Sequence

 Describes the growth of an idealized (biologically unrealistic)

rabbit population, assuming that:

 Rabbits never die

 A rabbit reaches sexual maturity exactly two months after birth,

that is, at the beginning of its third month of life

 Rabbits are always born in male-female pairs

 At the beginning of every month, each sexually mature male-

female pair gives birth to exactly one male-female pair

Lecture 22COMPSCI1055

22.2 The Fibonacci Sequence

The Fibonacci Sequence

 Problem:

 How many pairs of rabbits are alive in month n?

 Example:

 rabbit(5) = 5

 Recurrence relation
 rabbit(n) = rabbit(n-1) + rabbit(n-2)

Lecture 22COMPSCI1056

22.2 The Fibonacci Sequence

1

2

3

4

5

Month

Recursive Definition

 Base cases

 rabbit(2), rabbit(1)

 Recursive case

 rabbit(n) = 1 if n is 1 or 2

rabbit(n-1) + rabbit(n-2) if n > 2

 Fibonacci sequence

 The series of numbers rabbit(1), rabbit(2), rabbit(3), and so on

Lecture 22COMPSCI1057

22.2 The Fibonacci Sequence

def rabbit(n):

if n <=2:

return 1

return rabbit(n-1) + rabbit(n-2)

The sequence of numbers

rabbit(n) for all n is called

Fibonacci Sequence or

Fibonacci numbers

Examples

 rabbit(6) = 8

Lecture 22COMPSCI1058

22.2 The Fibonacci Sequence

rabbit(5)

return rabbit(4)+rabbit(3)

rabbit(4)

return rabbit(3)+rabbit(2)

rabbit(3)

return rabbit(2)+rabbit(1)

rabbit(3)

return rabbit(2)+rabbit(1)
rabbit(2)

return 1

rabbit(2)

return 1

rabbit(1)

return 1

rabbit(1)

return 1
rabbit(2)

return 1

rabbit(6)

return rabbit(5)+rabbit(4)

rabbit(4)

return rabbit(3)+rabbit(2)

rabbit(3)

return rabbit(2)+rabbit(1)

rabbit(2)

return 1

rabbit(1)

return 1
rabbit(2)

return 1

1 1

2 1

3

1 1

2

5

1 1

2 1

3

8

Examples

 Fibonacci Tiling

Lecture 22COMPSCI1059

22.2 The Fibonacci Sequence

Examples

 Fibonacci Spiral

Lecture 22COMPSCI10510

22.2 The Fibonacci Sequence

The Towers of Hanoi

 Puzzle consists of n disks and three poles

 The disks are of different size and have holes to fit themselves on

the poles

 Initially all the disks were on one pole, e.g., pole A

 The task was to move the disks, one by one, from pole A to

another pole B, with the help of a spare pole C

 Due to its weight, a disks could be placed only on top of another

disk larger than itself

Lecture 22COMPSCI10511

22.3 The Towers of Hanoi

The Towers of Hanoi

 Example:

 https://www.youtube.com/watch?v=5QuiCcZKyYU

Lecture 22COMPSCI10512

22.3 The Towers of Hanoi

The Towers of Hanoi

 Solution for moving n disks from A to B

 If you have only one disk (i.e., n=1)

 Move it from pole A to pole B

 If you have more than one disk,

 Simply ignore the bottom disk and solve the problem for n-1 disk, with

pole C is the destination and pole B is the spare

 Then move the largest disk from pole A to B; then move the n-1 disks from

the pole C back to pole B

 We can use a recursion with the arguments:

 Number of disks, source pole, destination pole, spare pole

Lecture 22COMPSCI10513

22.3 The Towers of Hanoi

The Towers of Hanoi

 Examples:

Lecture 22COMPSCI10514

22.3 The Towers of Hanoi

def hanoi(count,source,destination,spare):

if count is 1:

Move a disk directly from source to destination

Move count-1 disks from source to spare

Move 1 disk from source to destination

Move count-1 disk from spare to destination

The Towers of Hanoi

 Satisfies the four criteria of a recursive solution

 Recursive method calls itself

 Each recursive call solves an identical, but smaller problem

 Stops at base case

 Base case is reached in finite time

Lecture 22COMPSCI10515

22.3 The Towers of Hanoi

def hanoi(count, source, destination, spare):

if count <= 1:

print ("base case: move disk from", source, "to", destination)

else:

hanoi(count - 1, source, spare, destination)

print ("step2: move disk from", source, "to", destination)

hanoi(count - 1, spare, destination, source)

The Towers of Hanoi

 Examples:

Lecture 22COMPSCI10516

22.3 The Towers of Hanoi

Case 3

hanoi(3, A, B, C)

Count: 3

Source: A

Spare: B

Dest: C

A B C

def hanoi(count, source, destination, spare):

if count <= 1:

print ("base case: move disk from", source, "to", destination)

else:

hanoi(count - 1, source, spare, destination)

print ("step2: move disk from", source, "to", destination)

hanoi(count - 1, spare, destination, source)

The Towers of Hanoi

 Examples:

Lecture 22COMPSCI10517

22.3 The Towers of Hanoi

A B C

def hanoi(count, source, destination, spare):

if count <= 1:

print ("base case: move disk from", source, "to", destination)

else:

hanoi(count - 1, source, spare, destination)

print ("step2: move disk from", source, "to", destination)

hanoi(count - 1, spare, destination, source)

Case 31.2

hanoi(2, A, C, B)

Count: 2

Source: A

Spare: C

Dest: B

 Examples:

A

The Towers of Hanoi

Lecture 22COMPSCI10518

22.3 The Towers of Hanoi

B C

def hanoi(count, source, destination, spare):

if count <= 1:

print ("base case: move disk from", source, "to", destination)

else:

hanoi(count - 1, source, spare, destination)

print ("step2: move disk from", source, "to", destination)

hanoi(count - 1, spare, destination, source)

Case 31.21.1

hanoi(1, A, B, C)

Count: 1

Source: A

Spare: B

Dest: C

base case: move disk

from A to B

The Towers of Hanoi

 Examples:

Lecture 22COMPSCI10519

22.3 The Towers of Hanoi

A B C

def hanoi(count, source, destination, spare):

if count <= 1:

print ("base case: move disk from", source, "to", destination)

else:

hanoi(count - 1, source, spare, destination)

print ("step2: move disk from", source, "to", destination)

hanoi(count - 1, spare, destination, source)

Case 31.2

hanoi(2, A, C, B)

Count: 2

Source: A

Spare: C

Dest: B

base case: move disk

from A to C

 Examples:

A

The Towers of Hanoi

Lecture 22COMPSCI10520

22.3 The Towers of Hanoi

B C

def hanoi(count, source, destination, spare):

if count <= 1:

print ("base case: move disk from", source, "to", destination)

else:

hanoi(count - 1, source, spare, destination)

print ("step2: move disk from", source, "to", destination)

hanoi(count - 1, spare, destination, source)

Case 31.22.1

hanoi(1, B, C, A)

Count: 1

Source: B

Spare: C

Dest: A

base case: move disk

from B to C

 Examples:

A

The Towers of Hanoi

Lecture 22COMPSCI10521

22.3 The Towers of Hanoi

B C

def hanoi(count, source, destination, spare):

if count <= 1:

print ("base case: move disk from", source, "to", destination)

else:

hanoi(count - 1, source, spare, destination)

print ("step2: move disk from", source, "to", destination)

hanoi(count - 1, spare, destination, source)

Case 3

hanoi(3, A, B, C)

Count: 3

Source: A

Spare: B

Dest: C

step2: : move disk

from A to B

 Examples:

A

The Towers of Hanoi

Lecture 22COMPSCI10522

22.3 The Towers of Hanoi

B C

def hanoi(count, source, destination, spare):

if count <= 1:

print ("base case: move disk from", source, "to", destination)

else:

hanoi(count - 1, source, spare, destination)

print ("step2: move disk from", source, "to", destination)

hanoi(count - 1, spare, destination, source)

Case 32.2

hanoi(2, C, B, A)

Count: 2

Source: C

Spare: B

Dest: A

 Examples:

A

The Towers of Hanoi

Lecture 22COMPSCI10523

22.3 The Towers of Hanoi

B C

def hanoi(count, source, destination, spare):

if count <= 1:

print ("base case: move disk from", source, "to", destination)

else:

hanoi(count - 1, source, spare, destination)

print ("step2: move disk from", source, "to", destination)

hanoi(count - 1, spare, destination, source)

Case 32.21.1

hanoi(1, C, A, B)

Count: 2

Source: C

Spare: A

Dest: B

base case: move disk

from C to A

 Examples:

A

The Towers of Hanoi

Lecture 22COMPSCI10524

22.3 The Towers of Hanoi

B C

def hanoi(count, source, destination, spare):

if count <= 1:

print ("base case: move disk from", source, "to", destination)

else:

hanoi(count - 1, source, spare, destination)

print ("step2: move disk from", source, "to", destination)

hanoi(count - 1, spare, destination, source)

Case 32.2

hanoi(2, C, B, A)

Count: 2

Source: C

Spare: B

Dest: A

step2: move disk

from C to B

 Examples:

A

The Towers of Hanoi

Lecture 22COMPSCI10525

22.3 The Towers of Hanoi

B C

def hanoi(count, source, destination, spare):

if count <= 1:

print ("base case: move disk from", source, "to", destination)

else:

hanoi(count - 1, source, spare, destination)

print ("step2: move disk from", source, "to", destination)

hanoi(count - 1, spare, destination, source)

Case 32.22.1

hanoi(1, A, B, C)

Count: 1

Source: A

Spare: B

Dest: C

base case: move disk

from A to B

Call Tree

 hanoi(3…) uses 10 calls, a top-level one and 9 recursive calls

Lecture 22COMPSCI10526

22.3 The Towers of Hanoi

hanoi(2, ‘A’, ‘C’, ‘B’)

hanoi(1, ‘A’, ‘B’, ‘C’)

Move A -> C

Move A -> B

hanoi(1, ‘B’, ‘C’, ‘A’)

hanoi(3, ‘A’, ‘B’, ‘C’)

hanoi(2, ‘C’, ‘B’, ‘A’)

hanoi(1 , ‘C’, ‘A’, ‘B’)

Move C -> B

hanoi(1, ‘A’, ‘B’, ‘C’)
A B C

A B C A B C

A B C

A B C

A B C

A B C

Binary Search

 Problem: look for an element (key) in an ordered collection

(e.g. find a word in a dictionary)

 Sequential search

 Starts at the beginning of the collection Looks at every item in the

collection in order until the item being searched for is found

 Binary search

 Repeatedly halves the collection and determines which half could

contain the item Uses a divide and conquer strategy

Lecture 22COMPSCI10527

22.4 Binary Search

Search dictionary

Search first half of dictionary Search first half of dictionary

OR

Cost?

Binary Search

 Implementation issues:

 How will you pass “half of list” to the recursive calls to

binary_search?

 How do you determine which half of the list contains value?

 What should the base case(s) be?

 How will binary_search indicate the result of the search?

 Example: a sorted list

Lecture 22COMPSCI10528

22.4 Binary Search

Binary Search

 Base case:

 If array is empty number is not in the list, or

 If element is the one we look for return it

 Recursive call

 Determine element in the middle

 If the one we look for is smaller than element in the middle then

search in the left half

 Otherwise search in the right half of the list

Lecture 22COMPSCI10529

22.4 Binary Search

0 1 2 3 4 5 6 7 8 9

Left half: [first … mid-1] Right half: [mid+1 … last]

First Last
mid = (first + last)/2

Binary Search

 Code

Lecture 22COMPSCI10530

22.4 Binary Search

def binary_search(num_list, first, last, value):

index = 0

if first > last:

index = -1

else:

mid = (first + last) // 2

if value == num_list[mid]:

index = mid

elif value < num_list[mid]:

index = binary_search(num_list, first, mid-1, value)

else:

index = binary_search(num_list, mid+1, last, value)

return index

Summary

 Understand and learn how to implement the recursive

functions for different applications

COMPSCI10531 Lecture 22

