
COMPSCI 105 S1 2017
Principles of Computer Science

20-Recursion(1)

Agenda & Readings

Agenda
What is recursion?
Recursive solutions, examples:

The Factorial of N
Box Trace Example
Write a String Backward
Tail Recursion

Reference:
Textbook:

Problem Solving with Algorithms and Data Structures
Chapter 4 Recursion

Lecture 20COMPSCI1052

Definitions

Problem Domain:
The space consisting of all elements for which the problem is
solved
Examples: An array of integers, all people in this room, the days of

Problem Size:
The number of elements of the problem domain
Examples: An array with N elements, the number of people in this

Blacks

GOAL: Design algorithms to solve problems!

Lecture 20COMPSCI1053

20.1 Introduction

Iterative Algorithm

Algorithm which solves a problem by applying a function to
each element of the problem domain

Example: Find the tallest person in a group of N>0 students

Lecture 20COMPSCI1054

20.1 Introduction

163 157 155
162

169 Tallest Student?

def Student FindTallestStudent(Group_of_students)
TallestStudent = Take any student from group;
Repeat until nobody left

Take next student from group
If student is taller than TallestStudent then

TallestStudent = student
Return TallestStudent

Recursion

Recursion is a powerful problem solving technique where a
problem is broken into smaller and smaller identical versions
of itself until a smaller version is small enough that it has an
obvious solution

Note:
Complex problems can have simple recursive solutions It is an
alternative to iteration (involves loops)
BUT: Some recursion solutions are inefficient and impractical!

Lecture 20COMPSCI1055

20.1 Introduction

P1P2

PA base case is a special case
whose solution is known

Recursion

Recursion involves a function calling itself
Example: Find the tallest person in a group of N>0 students

Lecture 20COMPSCI1056

20.1 Introduction

FindTallestStudent([162,155,169,157])

FindTallestStudent([155,169,157])

FindTallestStudent([169,157])

FindTallestStudent([157])

([162,155,169,157])unknown

([155,169,157])unknown

([169,157])unknown

taller

taller

taller

157

169

169

169

def FindTallestStudent(Group of students)
If only one student in group

return this student
else

StudentA = Take any student from group
StudentB = FindTallestStudent(Remaining Group)
return the taller person of StudentA and studentB;

Recursive Solutions

Properties of a recursive solution
A recursive method calls itself
Each recursive call solves an identical, but smaller, problem
A test for the base case enables the recursive calls to stop

Base case: a known case in a recursive definition

Eventually, one of the smaller problems must be the base case
(problem not allowed to become smaller than base case)

Lecture 20COMPSCI1057

20.2 Recursion

Recursive Solutions

Four questions for constructing recursive solutions
How can you define the problem in terms of a smaller problem of
the same type?
How does each recursive call diminish the size of the problem?
What instance of the problem can serve as the base case?
As the problem size diminishes, will you reach this base case?

Lecture 20COMPSCI1058

20.2 Recursion

Example Calculate the Sum

Get the sum by:
Taking the first number + the sum of the rest of the list

Lecture 20COMPSCI1059

20.3 Examples

recursive_sum([2, 1, 5, 6])

recursive_sum([1, 5, 6])

recursive_sum([5, 6])

recursive_sum([6])

def recursive_sum(num_list):
if len(num_list) == 0:

return 0
return num_list[0] + recursive_sum(num_list[1:])return num_list[0] + recursive_sum(num_list[1:])

6

11

12

14

5+

1+

2+

recursive_sum(num_list):
if len(num_list) == 0:

return 0

6+

0

Example Bad Recursion 1

Problem:
Compute the sum of all integers from 1 to n

Lecture 20COMPSCI10510

20.3 Examples

def bad_sum(n):
return n + bad_sum(n-1)

No base case!!!

Example Bad Recursion 2

Problem:
If n is odd compute the sum of all odd integers from 1 to n, if it is
even compute sum of all even integers

Lecture 20COMPSCI10511

20.3 Examples

def bad_sum(n):
if (n == 0):

return 0
return n + bad_sum(n-2)

Base case cannot be reached!!!

Definition

Problem
Compute the factorial of an integer n >=0

An iterative definition of factorial(n)
If n = 0, factorial(0) = 1
If n > 0, factorial(n) = n * (n-1) * (n-

Examples:
4! = 4 * 3 * 2 * 1 = 24
7! = 7 * 6 * 5 * 4 * 3 * 2 * 1 = 5040

Lecture 20COMPSCI10512

20.3 The Factorial of n

def factorial(n):
result = 1
for i in range(n, 1, -1):

result = result * i
return result

Definition

A recurrence relation
A mathematical formula that generates the terms in a sequence
from previous terms

factorial(n) = n * [(n-1) * (n-]
factorial(n) = n * factorial(n-1)

A recursive definition of factorial(n)
factorial(n) = 1, if n = 0

n * factorial(n-1), if n > 0

Lecture 20COMPSCI10513

20.3 The Factorial of n

def fact (n):
if n <= 0:

return 1
return n * fact(n-1)

Four Criteria

fact(n) satisfies the four criteria of a recursive solution
fact(n) calls itself
At each recursive call, the integer whose factorial to be computed
is diminished by 1
The methods handles the factorial 0 differently from all other
factorials, where fact(0) is 1

Thus the base case occurs when n is 0

Given that n is non-negative, item 2 of this assures that the
computation will always reach the base case

Lecture 20COMPSCI10514

20.3 The Factorial of n

def fact (n):
if n <= 0:

return 1
return n * fact(n-1)

Box Trace

A systematic way to trace the actions of a recursive method
Create a new box for each recursive method call
Describe how return value is computed
Provide link to box (or boxes) for recursive method calls within the
current method call
Each box corresponds to an activation record

Contains
call to the method

Lecture 20COMPSCI10515

20.4 Box Trace

The local environment contains:
Value of argument, local variables, return value,

address of calling method,

Box Trace

The
A copy of the actual value arguments
A return address in the calling routine
The value of the method itself

Lecture 20COMPSCI10516

20.4 Box Trace

fact(3)
n = 3
A: fact(n-1) = ?
return ?

Box Trace

Example

Lecture 20COMPSCI10517

20.4 Box Trace

fact(3)
n = 3
return ? 3 * fact(2)

fact(2)
n = 2
return ? 2 * fact(1)

fact(1)
n = 1
return ? 1 * fact(0)

fact(0)
n = 0
return ? 1

1

1

2

6

Exercise 1

Draw a call tree of the following method call: fact(4)

Lecture 20COMPSCI10518

Definition

Problem:
Given a string of characters, write it in reverse order

Recursive solution:
Each recursive step of the solution diminishes by 1 the length of the
string to be written backward
Base case:

Write the empty string backward

Examples:

Lecture 20COMPSCI10519

20.5 Writing a String Backward

print(writeBackward("cat"))

print(writeBackward("cat"))

tac

tac

Implementation

Two approaches
writeBackward(s)

writeBackward2(s)

Lecture 20COMPSCI10520

20.5 Writing a String Backward

if the string s is empty:
Do nothing base case

else:
write the last char of s
writeBackward(s minus its last char)

if the string s is empty:
Do nothing base case

else:
writeBackward2(s minus its first char)
write the first char of s

call method recursively
for the string minus the

last character

call method recursively
for the string minus the

first character

Implementation

Example

Lecture 20COMPSCI10521

20.5 Writing a String Backward

writeBackward("cat")
s cat t
writeBackward("ca")

writeBackward("ca")
ca write a

writeBackward("c")

writeBackward("c")
c write c

writeBackward("")

writeBackward("")
s =
return

t

ta

tac

Implementation

Example

Lecture 20COMPSCI10522

20.5 Writing a String Backward

writeBackward2("cat")
s cat

at"), write c

at")
s = at
writeBackward2 t"), write a

t")
s = t
writeBackward2(""), write t

writeBackward2("")
s =
return

t

ta

tac

Summary

A recursive algorithm passes the buck repeatedly to the same
function
Recursive algorithms are well-suited for solving problems in
domains that exhibit recursive patterns
Recursive strategies can be used to simplify complex
solutions to difficult problems

Lecture 20COMPSCI10523

