
COMPSCI 105 S1 2017

Principles of Computer Science

20-Recursion(1)

Agenda & Readings

 Agenda

 What is recursion?

 Recursive solutions, examples:

 The Factorial of N

 Box Trace Example

 Write a String Backward

 Tail Recursion

 Reference:

 Textbook:

 Problem Solving with Algorithms and Data Structures

 Chapter 4 – Recursion

Lecture 20COMPSCI1052

Definitions

 Problem Domain:

 The space consisting of all elements for which the problem is

solved

 Examples: An array of integers, all people in this room, the days of

the month, all “All Blacks” rugby games

 Problem Size:

 The number of elements of the problem domain

 Examples: An array with N elements, the number of people in this

room, a list of N cities, the number of games played by the “All

Blacks”

 GOAL: Design algorithms to solve problems!

Lecture 20COMPSCI1053

20.1 Introduction

Iterative Algorithm

 Algorithm which solves a problem by applying a function to

each element of the problem domain

 Example: Find the tallest person in a group of N>0 students

Lecture 20COMPSCI1054

20.1 Introduction

163
157 155

162
169

Tallest Student?

def Student FindTallestStudent(Group_of_students)

TallestStudent = Take any student from group;

Repeat until nobody left

Take next student from group

If student is taller than TallestStudent then

TallestStudent = student

Return TallestStudent

Recursion

 Recursion is a powerful problem solving technique where a

problem is broken into smaller and smaller identical versions

of itself until a smaller version is small enough that it has an

obvious solution

 Note:

 Complex problems can have simple recursive solutions It is an

alternative to iteration (involves loops)

 BUT: Some recursion solutions are inefficient and impractical!

Lecture 20COMPSCI1055

20.1 Introduction

P1
P2

…

PNA base case is a special case
whose solution is known

Recursion

 Recursion involves a function calling itself

 Example: Find the tallest person in a group of N>0 students

Lecture 20COMPSCI1056

20.1 Introduction

FindTallestStudent([162,155,169,157])

FindTallestStudent([155,169,157])

FindTallestStudent([169,157])

FindTallestStudent([157])

unknown

unknown

unknown

taller

taller

taller

157

169

169

169

def FindTallestStudent(Group of students)

If only one student in group

return this student

else

StudentA = Take any student from group

StudentB = FindTallestStudent(Remaining Group)

return the taller person of StudentA and studentB;

Recursive Solutions

 Properties of a recursive solution

 A recursive method calls itself

 Each recursive call solves an identical, but smaller, problem

 A test for the base case enables the recursive calls to stop

 Base case: a known case in a recursive definition

 Eventually, one of the smaller problems must be the base case

(problem not allowed to become smaller than base case)

Lecture 20COMPSCI1057

20.2 Recursion

Recursive Solutions

 Four questions for constructing recursive solutions

 How can you define the problem in terms of a smaller problem of

the same type?

 How does each recursive call diminish the size of the problem?

 What instance of the problem can serve as the base case?

 As the problem size diminishes, will you reach this base case?

Lecture 20COMPSCI1058

20.2 Recursion

Example – Calculate the Sum

 Get the sum by:

 Taking the first number + the sum of the rest of the list

Lecture 20COMPSCI1059

20.3 Examples

recursive_sum([2, 1, 5, 6])

recursive_sum([1, 5, 6])

recursive_sum([5, 6])

recursive_sum([6])

def recursive_sum(num_list):

if len(num_list) == 0:

return 0

return num_list[0] + recursive_sum(num_list[1:])

6

11

12

14

5+

1+

2+

6+

0

Example – – Bad Recursion 1

 Problem:

 Compute the sum of all integers from 1 to n

Lecture 20COMPSCI10510

20.3 Examples

def bad_sum(n):

return n + bad_sum(n-1)

No base case!!!

Example – – Bad Recursion 2

 Problem:

 If n is odd compute the sum of all odd integers from 1 to n, if it is

even compute sum of all even integers

Lecture 20COMPSCI10511

20.3 Examples

def bad_sum(n):

if (n == 0):

return 0

return n + bad_sum(n-2)

Base case cannot be reached!!!

Definition

 Problem

 Compute the factorial of an integer n >=0

 An iterative definition of factorial(n)

 If n = 0, factorial(0) = 1

 If n > 0, factorial(n) = n * (n-1) * (n-2) * … * 1

 Examples:

 4! = 4 * 3 * 2 * 1 = 24

 7! = 7 * 6 * 5 * 4 * 3 * 2 * 1 = 5040

Lecture 20COMPSCI10512

20.3 The Factorial of n

def factorial(n):

result = 1

for i in range(n, 1, -1):

result = result * i

return result

Definition

 A recurrence relation

 A mathematical formula that generates the terms in a sequence

from previous terms

 factorial(n) = n * [(n-1) * (n-2) * … * 1]

 factorial(n) = n * factorial(n-1)

 A recursive definition of factorial(n)

 factorial(n) = 1, if n = 0

n * factorial(n-1), if n > 0

Lecture 20COMPSCI10513

20.3 The Factorial of n

def fact (n):

if n <= 0:

return 1

return n * fact(n-1)

Four Criteria

 fact(n) satisfies the four criteria of a recursive solution

 fact(n) calls itself

 At each recursive call, the integer whose factorial to be computed

is diminished by 1

 The methods handles the factorial 0 differently from all other

factorials, where fact(0) is 1

 Thus the base case occurs when n is 0

 Given that n is non-negative, item 2 of this assures that the

computation will always reach the base case

Lecture 20COMPSCI10514

20.3 The Factorial of n

def fact (n):

if n <= 0:

return 1

return n * fact(n-1)

Box Trace

 A systematic way to trace the actions of a recursive method

 Create a new box for each recursive method call

 Describe how return value is computed

 Provide link to box (or boxes) for recursive method calls within the

current method call

 Each box corresponds to an activation record

 Contains a method’s local environment at the time of and as a result of the

call to the method

Lecture 20COMPSCI10515

20.4 Box Trace

The local environment contains:

Value of argument, local variables, return value,

address of calling method, …, etc.

Box Trace

 A method’s local environment includes:

 The method’s local variables

 A copy of the actual value arguments

 A return address in the calling routine

 The value of the method itself

Lecture 20COMPSCI10516

20.4 Box Trace

fact(3)

n = 3

A: fact(n-1) = ?

return ?

Box Trace

 Example

Lecture 20COMPSCI10517

20.4 Box Trace

fact(3)

n = 3

return ? 3 * fact(2)

fact(2)

n = 2

return ? 2 * fact(1)

fact(1)

n = 1

return ? 1 * fact(0)

fact(0)

n = 0

return ? 1

1

1

2

6

Exercise 1

 Draw a call tree of the following method call: fact(4)

Lecture 20COMPSCI10518

Definition

 Problem:

 Given a string of characters, write it in reverse order

 Recursive solution:

 Each recursive step of the solution diminishes by 1 the length of the

string to be written backward

 Base case:

 Write the empty string backward

 Examples:

Lecture 20COMPSCI10519

20.5 Writing a String Backward

print(writeBackward("cat"))

print(writeBackward("cat"))

tac

tac

Implementation

 Two approaches

 writeBackward(s)

 writeBackward2(s)

Lecture 20COMPSCI10520

20.5 Writing a String Backward

if the string s is empty:

Do nothing – base case

else:

write the last char of s

writeBackward(s minus its last char)

if the string s is empty:

Do nothing – base case

else:

writeBackward2(s minus its first char)

write the first char of s

call method recursively

for the string minus the

last character

call method recursively

for the string minus the

first character

Implementation

 Example

Lecture 20COMPSCI10521

20.5 Writing a String Backward

writeBackward("cat")

s = “cat”, write t

writeBackward("ca")

writeBackward("ca")

s = “ca”, write a

writeBackward("c")

writeBackward("c")

s = “c”, write c

writeBackward("")

writeBackward("")

s = “”

return

t

ta

tac

Implementation

 Example

Lecture 20COMPSCI10522

20.5 Writing a String Backward

writeBackward2("cat")

s = “cat”

writeBackward2(“at"), write c

writeBackward2(“at")

s = “at”

writeBackward2(“t"), write a

writeBackward2(“t")

s = “t”

writeBackward2(""), write t

writeBackward2("")

s = “”

return

t

ta

tac

Summary

 A recursive algorithm passes the buck repeatedly to the same

function

 Recursive algorithms are well-suited for solving problems in

domains that exhibit recursive patterns

 Recursive strategies can be used to simplify complex

solutions to difficult problems

Lecture 20COMPSCI10523

