COMPSCI 105 S1 2017 Principles of Computer Science

429
 Agenda \& Readings

- Agenda
- What is recursion?
- Recursive solutions, examples:
- The Factorial of N
- BoxTrace Example
- Write a String Backward
- Tail Recursion
- Reference:

, Textbook:
- Problem Solving with Algorithms and Data Structures
\square Chapter 4 - Recursion

Definitions

- Problem Domain:
- The space consisting of all elements for which the problem is solved
- Examples: An array of integers, all people in this room, the days of the month, all "All Blacks" rugby games
- Problem Size:
- The number of elements of the problem domain
- Examples: An array with N elements, the number of people in this room, a list of N cities, the number of games played by the "All Blacks"
- GOAL: Design algorithms to solve problems!

Iterative Algorithm

- Algorithm which solves a problem by applying a function to each element of the problem domain
- Example: Find the tallest person in a group of $\mathrm{N}>0$ students

Recursion

- Recursion is a powerful problem solving technique where a problem is broken into smaller and smaller identical versions of itself until a smaller version is small enough that it has an obvious solution
- Note:

A base case is a special case whose solution is known

- Complex problems can have simple recursive solutions It is an alternative to iteration (involves loops)
- BUT: Some recursion solutions are inefficient and impractical!

Recursion

- Recursion involves a function calling itself
- Example: Find the tallest person in a group of $\mathrm{N}>0$ students

Recursive Solutions

- Properties of a recursive solution
- A recursive method calls itself
- Each recursive call solves an identical, but smaller, problem
- A test for the base case enables the recursive calls to stop
- Base case: a known case in a recursive definition
- Eventually, one of the smaller problems must be the base case (problem not allowed to become smaller than base case)

Recursive Solutions

- Four questions for constructing recursive solutions
- How can you define the problem in terms of a smaller problem of the same type?
- How does each recursive call diminish the size of the problem?
- What instance of the problem can serve as the base case?
- As the problem size diminishes, will you reach this base case?

Example - Calculate the Sum

- Get the sum by:
- Taking the first number + the sum of the rest of the list

| recursive_sum $([2, I, 5,6])$ | $2+$ |
| :--- | :--- | :--- |

| recursive_sum $([1,5,6])$ | 12 |
| :--- | :--- | :--- |

| recursive_sum $([5,6])$ | $5+$ |
| :--- | :--- | :--- |

Example - - Bad Recursion 1

problem:

- Compute the sum of all integers from I to n

No base case!!!

20.3 Examples

Example - - Bad Recursion 2

problem:

- If n is odd compute the sum of all odd integers from I to n, if it is even compute sum of all even integers

Base case cannot be reached!!!

20.3 The Factorial of n

Definition

- Problem

- Compute the factorial of an integer $n>=0$

An iterative definition of factorial(n)

- If $\mathrm{n}=0$, factorial $(0)=$ I
> If $\mathrm{n}>0$, factorial(n) $=\mathrm{n} *(\mathrm{n}-\mathrm{I}) *(\mathrm{n}-2) * \ldots *$ I
Examples:
- $4!=4 * 3 * 2 * \mid=24$
- $7!=7 * 6 * 5 * 4 * 3 * 2 * \mid=5040$
def factorial(n):
result $=1$
for i in range($\mathrm{n}, \mathrm{I},-\mathrm{I}$): result $=$ result $* i$
return result
- A recurrence relation
- A mathematical formula that generates the terms in a sequence from previous terms
- factorial(n) $=\mathrm{n} *[(\mathrm{n}-\mathrm{I}) *(\mathrm{n}-2) * \ldots * \mathrm{I}]$
- factorial $(\mathrm{n})=\mathrm{n} *$ factorial $(\mathrm{n}-\mathrm{I})$
- A recursive definition of factorial(n)
\Rightarrow factorial $(n)=\left\{\begin{array}{l}1, \text { if } n=0 \\ n * \text { factorial }(n-I), \text { if } n>0\end{array}\right.$

Four Criteria

- fact(n) satisfies the four criteria of a recursive solution
- fact(n) calls itself
- At each recursive call, the integer whose factorial to be computed is diminished by I
- The methods handles the factorial 0 differently from all other factorials, where fact (0) is I
- Thus the base case occurs when n is 0
- Given that n is non-negative, item 2 of this assures that the computation will always reach the base case

20.4 Box Trace

Box Trace

- A systematic way to trace the actions of a recursive method
- Create a new box for each recursive method call
- Describe how return value is computed
- Provide link to box (or boxes) for recursive method calls within the current method call
- Each box corresponds to an activation record
- Contains a method's local environment at the time of and as a result of the call to the method

> The local environment contains:
> Value of argument, local variables, return value, address of calling method, ..., etc.

Box Trace

- A method's local environment includes:
- The method's local variables
- A copy of the actual value arguments
- A return address in the calling routine
- The value of the method itself

Example

Exercise 1

Draw a call tree of the following method call: fact(4)

- Problem:
- Given a string of characters, write it in reverse order
- Recursive solution:
- Each recursive step of the solution diminishes by I the length of the string to be written backward
- Base case:
- Write the empty string backward
- Examples:

- Two approaches
- writeBackward(s)
call method recursively for the string minus the last character
if the string s is empty:
Do nothing - base case
else:
write the last char of s
writeBackward(s minus its last char)
p writeBackward2(s)
call method recursively for the string minus the first character
20.5 Writing a String Backward Implementation
- Example

20.5 Writing a String Backward Implementation

- Example

Summary

- A recursive algorithm passes the buck repeatedly to the same function
- Recursive algorithms are well-suited for solving problems in domains that exhibit recursive patterns
- Recursive strategies can be used to simplify complex solutions to difficult problems

