COMPSCI 105 S1 2017
Principles of Computer Science

17 Linked List(1)

E Review

» We have used Python lists to implement the abstract data
types presented (Stack and Queue)
The list is a powerful, yet simple, collection mechanism that
provides the programmer with a wide variety of operations
» A Python list stores each element in contiguous memory if
possible
This makes it possible to access any element in O(1) time

However, insertion or deletion elements at the beginning of the list
takes O(n)

3 COMPSCI105 Lecture 17

2

. Agenda & Readings

» Agenda
Introduction
The Node class
The UnorderedList ADT
Comparing Implementations

» Reference:

Textbook:

Problem Solving with Algorithms and Data Structures
Chapter 3 — Lists
Chapter 3 — Unordered List Abstract Data Type
Chapter 3 — Implementing an Unordered List: Linked Lists

2 COMPSCI105 Lecture 17

e 17.1 Introduction

¥ _ADT List

» Alist is a collection of items where each item holds a
relative position with respect to the others
We can consider the list as having a first item, a second item, a third
item, and so on
We can also refer to the beginning of the list (the first item) and
the end of the list (the last item)
» UnorderedVs Ordered

Unordered meaning that the items are not stored in a sorted
fashion
54, 26, 93, 17, 77 and 31 17, 26, 31, 54, 77 and 93

» A Python list ([]) is an implementation of an unordered list,

4 COMPSCI105 Lecture 17

eee 17.1 Introduction

& ADT List

» Alist is a collection of items where each item holds a
relative position with respect to the others
We can consider the list as having a first item, a second item, a third
item, and so on
We can also refer to the beginning of the list (the first item) and
the end of the list (the last item)
» UnorderedVs Ordered

Unordered meaning that the items are not stored in a sorted
fashion

» A Python list ([]) is an implementation of an unordered list,

5 COMPSCI105 Lecture 17

e 17.1 Introduction

F_ADT List

» What are the operations which can be used with a List
Abstract Data?

search(item)
Searches for the item in the list
It needs the item and returns a boolean value

is_empty()
Tests to see whether the list is empty
It needs no parameters and returns a boolean value

size()
Returns the number of items in the list

It needs no parameters and returns an integer

7 COMPSCI105 Lecture 17

eee 17.1 Introduction

W ADT List

» What are the operations which can be used with a List
Abstract Data!?

List()
Creates a new list that is empty
It needs no parameters and returns an empty list.

add(item)
Adds a new item to the list
It needs the item and returns nothing

Assume the item is not already in the list

remove(item) No checking is done

Removes the item from the list in the implementation

It needs the item and modifies the list
Assume the item is present in the list

6 COMPSCI105 Lecture 17

e 17.1 Introduction

¥ Contiguous Memory

» A Python list stores each element in contiguous memory if
possible

» List ADT — there is no requirement that the items be stored
in contiguous memory

» In order to implement an unordered list, we will construct
what is commonly known as a linked list
A Node object will store the data in the node of the list
A Link to the next Node object Y

31 (End)

Start
54

I

8 COMPSCI105 Lecture 17

eee 17.1 Introduction

¥ Insertion and Deletion

» Items can be inserted into and deleted from the linked list
without shifting data

(a)

20 > 45 > 51 > 76 > 84

_ ~
~ 0ld value

(b) 7
20 > 45 »| 51 76 > 84
60
Inserted item
©
20 Z—* 45 »| 51 > 60 > 76 > 84
Deleted item
9 COMPSCI105 Lecture 17
A
17.2 The Node Class
............... . The Node class
» Code
class Node:
def __init__(self, init_data):
self.data = init_data
self.next = None
def get_data(self):
return self.data
def get_next(self): a_node .
return self.next data 1
def set_data(self, new_data):
self.data = new_data next — | another
def set_next(self, new_next): node
self.next = new_next
< J Y
11 COMPSCI105 Lecture 17

eee 17.2 The Node Class

¥ The Node class

» A node is the basic building block of a linked list

It contains the data as well as a link to the next node in the list

data next

E2E

Q D)
a_node—> I
p = Node(93) data —|
temp = Node(93) next —{—>|
nother
node
10 COMPSCI105 Lecture 17
F 17.2 The Node Class
Z_ Chain of nodes
» Code
) D
n = Node(6) nn
first = Node(9) /
first.set_next(n) E—»EZ
(C, J first
) D
1/
n.set_data(l) " /
print(first.get_next().get_data())) E_,EE
a

‘I’ is displayed

12 COMPSCI105 Lecture 17

2]
,,,,,,,,,,,, " Exercise 1

» What is the output of the following program?

(@) (@

def print_chain(n): p:::zacham(nS)
while not n == None: i n
i o print_chain(né)
print(n.get_data(),end =" ") print()
= MR sl print_chain(n7)
- print()
n5 = Node(15) . .
6 = Node(34) prin_chaln(n®)
n7 = Node(12) G)

n8 = Node(84)

né.set_next(n5)

n7.set_next(n8)
n8.set_next(n6)

<) n5.set_next(None)

13 COMPSCI105

Lecture 17

e 17.3 The UnorderedList Class

F_Operations
» List()

Creates a new list that is empty

It needs no parameters and returns an empty list
» add(item)

Adds a new item to the list

It needs the item and returns nothing

Assume the item is not already in the list

» remove(item)

Removes the item from the list No checking is done

It needs the item and modifies the li in the implementation

Assume the item is present in the list

15 COMPSCI105 Lecture 17

252

) 17.3 The UnorderedList Class

¥ The UnorderedList ADT

» The unordered list is built from a collection of nodes, each

linked to the next by explicit references
It must maintain a reference to the first node (head)
It is commonly known as a linked list

» Examples:
. mylist
An Empty List: ||
A linked list of integers:
head —»{ 54 | +—» 26 93 17 7 31 It
14 COMPSCI105
22

) 17.3 The UnorderedList Class

Operations

» search(item)

Searches for the item in the list
It needs the item and returns a boolean value

» is_empty()

Tests to see whether the list is empty

It needs no parameters and returns a boolean value
» size()

Returns the number of items in the list

It needs no parameters and returns an integer
16 COMPSCI105

Lecture 17

Lecture 17

eee 17.3 The UnorderedList Class

¥ Constructor

» The constructor contains

A head reference variable
References the list’s first node

Always exists even when the list is empty

(@)

class UnorderedList:
def __init__(self):
self.head = None

17 COMPSCI105 Lecture 17

e 17.3 The UnorderedList Class

¥ List Traversals

» To traverse a linked list, set a pointer to be the same address
as head, process the data in the node, move the pointer to
the next node, and so on

Before After

curr curr

19 COMPSCI105 Lecture 17

eee 17.3 The UnorderedList Class

¥ Constructor

» Example:
An Empty List:

Q D}

my_list = UnorderedList()

A linked list of integers
@ D)
my_list = UnorderedList()
for i in range(6):
my_list.add(i)

head 5 4 3 2 1 0 3 |||

18 COMPSCI105 Lecture 17

e 17.3 The UnorderedList Class

¥ List Traversals

» Loop stops when the next pointer is None

Use a reference variable: curr
References the current node

Initially references the first node (head)

curr = self.head

To advance the current position to the next node

curr = curr.get_next()

Loop: (C) D
curr = self.head
while curr != None:

curr = curr.get_next()

20 COMPSCI105 Lecture 17

% 17.3 The UnorderedList Class
............ . Displaying the Contents

» Traversing the Linked List from the Head to the End

Use a reference variable: curr

curr = self.head

while curr != None:
print(curr.get_data(), end="")
curr = curr.get_next()

5425931777 31

Print the content
of a linked list

traversal >

nead —a{ 54 [{26 [f—af03 [4l 17 [F—w 77 [{31 [F—|I

21 COMPSCI105 Lecture 17

e 17.3 The UnorderedList Class

¥ Inserting a Node

» To insert at the beginning of a linked list
Create a new Node and store the new data into it

Connect the new node to the linked list by changing references

Change the next reference of the new node to refer to the old first node
of the list

Modify the head of the list to refer to the new node

C)

new_node = Node(item)
new_node.set_next(self.head)
self.head = new_node

newNode

23 COMPSCI105 Lecture 17

D (@ D)

0

2

17.3 The UnorderedList Class

. is_empty() & size()

» is_empty()
Tests to see whether the list is empty

J return self.head == None |

» size()
Returns the number of items in the list

22

213

Traverses the list and counts the number of items

D

curr = self.head

count =0

while curr != None:
count = count + |
curr = curr.get_next()

head

EE

3 4 5 6
(oo [} [} [} [}~

) 17.3 The UnorderedList Class

COMPSCI105

¥ Searching an Item

» Searches for the item in the list

Returns a Boolean

» Examples: |

24

head

head

print (my_list.search(17

E2E;

current

93 1

(17)) | ~ B
{17 (377 (3>
<

ENE . EIE

current

03

[17 [

J print (my_list.search(l)) | .
" (77 [I
C.

COMPSCI105

Lecture 17

Lecture 17

eee 17.3 The UnorderedList Class

2. Searching an Item

» To search an item in a linked list:
Set a pointer to be the same address as head
Process the data in the node, (search) move the pointer to the next
node, and so on @)
Loop stops either
The item is found

The next pointer is None

curr = self.head
while curr !'= None:
if curr.get_data() == item:
return True
else:
curr = curr.get_next()
return False

& Y

25 COMPSCI105 Lecture 17
% 17.3 The UnorderedList Class
............... . Deleting a Node

» To delete a node from a linked list
Locate the node that you want to delete (curr)
Disconnect this node from the linked list by changing references

» Two situations:

J self.head = curr.get_next()

I head

%

To delete the first node =i
Modify head to refer to the node after the current node

To delete a node in the middle of the list
Set next of the prev node to refer to the node after the current node

Node N

e N
A I S KNS e 174

Jprevious.set_next(curr.get_next()) | neaa ﬁm

prev

27 COMPSCI105 Lecture 17

eee 17.3 The UnorderedList Class

Z_Deleting a Node

» Removes the item from the list
It needs the item and modifies the list

Assume the item is present in the list
» Examples:

Delete the first node 'IE:—I_' _’

J- my_list.remove(5) I IZ

prev curr

Delete a node in the middle of the list

With prev and curr references
m
I e IR I 0 e s [4

head 1 next

prev curr

J my_list.remove(8) I

26 COMPSCI105 Lecture 17

e 17.3 The UnorderedList Class

¥ Example
» Example:

s @ O
.)

def TestUnorderedList():

my_list = UnorderedList()
number_list = [31,77, 17,93, 26, 54]

for num in number_list: 6
my_list.add(num) True
print (my_list.size()) False

print (my_list.search(17)) 2

print (my_list.search(l))
my_list.remove(31)
my_list.remove(54)

print (my_list.size())
& p

28 COMPSCI105 Lecture 17

AR AR
¥ Exercise 2 & Summary

» What is the output of the following program? » Reference variables can be used to implement the data

e . structure known as a linked list
o) (@)

» Each reference in a linked list is a reference to the next node

def TestUnorderedList(): in the list
my_list = UnorderedList()
number list = [11, 17,7, 3, 26, 54,2] » Any element in a list can be accessed directly; however, you
for num in number_list: must traverse a linked list to access a particular node
my_list.add(num) . .
print (my_list.size()) » Items can be inserted into and deleted from a reference-

print (my_list.search(17))
print (my_list.search(l))
my_list.remove(2)
my_list.remove(54)

print (my_list.size())

@ J @ J

29 COMPSCI105 Lecture 17 30 COMPSCI105

based linked list without shifting data

Lecture 17

