
COMPSCI 105 S1 2017
Principles of Computer Science

17 Linked List(1)

Agenda & Readings

Agenda
Introduction
The Node class
The UnorderedList ADT
Comparing Implementations

Reference:
Textbook:

Problem Solving with Algorithms and Data Structures
Chapter 3 Lists
Chapter 3 Unordered List Abstract Data Type
Chapter 3 Implementing an Unordered List: Linked Lists

Lecture 17COMPSCI1052

Review

We have used Python lists to implement the abstract data
types presented (Stack and Queue)

The list is a powerful, yet simple, collection mechanism that
provides the programmer with a wide variety of operations

A Python list stores each element in contiguous memory if
possible

This makes it possible to access any element in O(1) time
However, insertion or deletion elements at the beginning of the list
takes O(n)

Lecture 17COMPSCI1053

ADT List

A list is a collection of items where each item holds a
relative position with respect to the others

We can consider the list as having a first item, a second item, a third
item, and so on
We can also refer to the beginning of the list (the first item) and
the end of the list (the last item)

Unordered Vs Ordered
Unordered meaning that the items are not stored in a sorted
fashion

A Python list ([]) is an implementation of an unordered list,

Lecture 17COMPSCI1054

17.1 Introduction

54, 26, 93, 17, 77 and 31 17, 26, 31, 54, 77 and 93

ADT List

A list is a collection of items where each item holds a
relative position with respect to the others

We can consider the list as having a first item, a second item, a third
item, and so on
We can also refer to the beginning of the list (the first item) and
the end of the list (the last item)

Unordered Vs Ordered
Unordered meaning that the items are not stored in a sorted
fashion

A Python list ([]) is an implementation of an unordered list,

Lecture 17COMPSCI1055

17.1 Introduction

ADT List

What are the operations which can be used with a List
Abstract Data?

List()
Creates a new list that is empty
It needs no parameters and returns an empty list.

add(item)
Adds a new item to the list
It needs the item and returns nothing
Assume the item is not already in the list

remove(item)
Removes the item from the list
It needs the item and modifies the list
Assume the item is present in the list

Lecture 17COMPSCI1056

17.1 Introduction

No checking is done
in the implementation

ADT List

What are the operations which can be used with a List
Abstract Data?

search(item)
Searches for the item in the list
It needs the item and returns a boolean value

is_empty()
Tests to see whether the list is empty
It needs no parameters and returns a boolean value

size()
Returns the number of items in the list
It needs no parameters and returns an integer

Lecture 17COMPSCI1057

17.1 Introduction

Contiguous Memory

A Python list stores each element in contiguous memory if
possible
List ADT there is no requirement that the items be stored
in contiguous memory
In order to implement an unordered list, we will construct
what is commonly known as a linked list

A Node object will store the data in the node of the list
A Link to the next Node object

Lecture 17COMPSCI1058

17.1 Introduction

Insertion and Deletion

Items can be inserted into and deleted from the linked list
without shifting data

Lecture 17COMPSCI1059

17.1 Introduction

The Node class

A node is the basic building block of a linked list
It contains the data as well as a link to the next node in the list

Lecture 17COMPSCI10510

17.2 The Node Class

p

p = Node(93)
temp = Node(93)

The Node class

Code

Lecture 17COMPSCI10511

17.2 The Node Class

class Node:
def __init__(self, init_data):

self.data = init_data
self.next = None

def get_data(self):
return self.data

def get_next(self):
return self.next

def set_data(self, new_data):
self.data = new_data

def set_next(self, new_next):
self.next = new_next

Chain of nodes

Code

Lecture 17COMPSCI10512

17.2 The Node Class

n = Node(6)
first = Node(9)
first.set_next(n)

n.set_data(1)
print(first.get_next().get_data()))

1

Exercise 1

What is the output of the following program?

Lecture 17COMPSCI10513

def print_chain(n):
while not n == None:

print(n.get_data(), end = " ")
n = n.get_next()

n5 = Node(15)
n6 = Node(34)
n7 = Node(12)
n8 = Node(84)
n6.set_next(n5)
n7.set_next(n8)
n8.set_next(n6)
n5.set_next(None)

print_chain(n5)
print()
print_chain(n6)
print()
print_chain(n7)
print()
print_chain(n8)
print()

The UnorderedList ADT

The unordered list is built from a collection of nodes, each
linked to the next by explicit references

It must maintain a reference to the first node (head)
It is commonly known as a linked list

Examples:
An Empty List:

A linked list of integers:

Lecture 17COMPSCI10514

17.3 The UnorderedList Class

Operations

List()
Creates a new list that is empty
It needs no parameters and returns an empty list

add(item)
Adds a new item to the list
It needs the item and returns nothing
Assume the item is not already in the list

remove(item)
Removes the item from the list
It needs the item and modifies the list
Assume the item is present in the list

Lecture 17COMPSCI10515

17.3 The UnorderedList Class

No checking is done
in the implementation

Operations

search(item)
Searches for the item in the list
It needs the item and returns a boolean value

is_empty()
Tests to see whether the list is empty
It needs no parameters and returns a boolean value

size()
Returns the number of items in the list
It needs no parameters and returns an integer

Lecture 17COMPSCI10516

17.3 The UnorderedList Class

Constructor

The constructor contains
A head reference variable

References
Always exists even when the list is empty

Lecture 17COMPSCI10517

17.3 The UnorderedList Class

class UnorderedList:
def __init__(self):

self.head = None
...

Constructor

Example:
An Empty List:

A linked list of integers

Lecture 17COMPSCI10518

17.3 The UnorderedList Class

my_list = UnorderedList()

my_list = UnorderedList()
for i in range(6):

my_list.add(i)

12345 0

List Traversals

To traverse a linked list, set a pointer to be the same address
as head, process the data in the node, move the pointer to
the next node, and so on

Lecture 17COMPSCI10519

17.3 The UnorderedList Class

List Traversals

Loop stops when the next pointer is None
Use a reference variable: curr

References the current node
Initially references the first node (head)

To advance the current position to the next node

Loop:

Lecture 17COMPSCI10520

17.3 The UnorderedList Class

curr = self.head

curr = self.head
while curr != None:

...
curr = curr.get_next()

curr = curr.get_next()

Displaying the Contents

Traversing the Linked List from the Head to the End
Use a reference variable: curr

Lecture 17COMPSCI10521

17.3 The UnorderedList Class

curr = self.head
while curr != None:

print(curr.get_data(), end=" ")
curr = curr.get_next()Print the content

of a linked list

54 25 93 17 77 31

curr = self.head

curr = curr.get_next()

is_empty() & size()

is_empty()
Tests to see whether the list is empty

size()
Returns the number of items in the list
Traverses the list and counts the number of items

Lecture 17COMPSCI10522

17.3 The UnorderedList Class

return self.head == None

curr = self.head
count = 0
while curr != None:

count = count + 1
curr = curr.get_next()

0 1 2 3 4 5

count = 0

count = count + 1

6

Inserting a Node

To insert at the beginning of a linked list
Create a new Node and store the new data into it
Connect the new node to the linked list by changing references

Change the next reference of the new node to refer to the old first node
of the list
Modify the head of the list to refer to the new node

Lecture 17COMPSCI10523

17.3 The UnorderedList Class

new_node = Node(item)
new_node.set_next(self.head)
self.head = new_node

new_node = Node(item)1
new_node.set_next(self.head)2 1

23

self.head = new_node3

Searching an Item

Searches for the item in the list
Returns a Boolean

Examples:

Lecture 17COMPSCI10524

17.3 The UnorderedList Class

current

current

True

False

print (my_list.search(17))

print (my_list.search(1))

Searching an Item

To search an item in a linked list:
Set a pointer to be the same address as head
Process the data in the node, (search) move the pointer to the next
node, and so on
Loop stops either

The item is found
The next pointer is None

Lecture 17COMPSCI10525

17.3 The UnorderedList Class

curr = self.head
while curr != None:

if curr.get_data() == item:
return True

else:
curr = curr.get_next()

return False

Deleting a Node

Removes the item from the list
It needs the item and modifies the list
Assume the item is present in the list

Examples:
Delete the first node

Delete a node in the middle of the list
With prev and curr references

Lecture 17COMPSCI10526

17.3 The UnorderedList Class

my_list.remove(5)

my_list.remove(8)

Deleting a Node

To delete a node from a linked list
Locate the node that you want to delete (curr)
Disconnect this node from the linked list by changing references

Two situations:

To delete the first node
Modify head to refer to the node after the current node

To delete a node in the middle of the list
Set next of the prev node to refer to the node after the current node

Lecture 17COMPSCI10527

17.3 The UnorderedList Class

self.head = curr.get_next()

previous.set_next(curr.get_next())

Example

Example:

Lecture 17COMPSCI10528

17.3 The UnorderedList Class

def TestUnorderedList():
my_list = UnorderedList()
number_list = [31, 77, 17, 93, 26, 54]
for num in number_list:

my_list.add(num)
print (my_list.size())

print (my_list.search(17))
print (my_list.search(1))
my_list.remove(31)
my_list.remove(54)
print (my_list.size())

6
True
False
2

Exercise 2

What is the output of the following program?

Lecture 17COMPSCI10529

def TestUnorderedList():
my_list = UnorderedList()
number_list = [11, 17, 7, 3, 26, 54, 2]
for num in number_list:

my_list.add(num)
print (my_list.size())

print (my_list.search(17))
print (my_list.search(1))
my_list.remove(2)
my_list.remove(54)
print (my_list.size())

Summary

Reference variables can be used to implement the data
structure known as a linked list
Each reference in a linked list is a reference to the next node
in the list
Any element in a list can be accessed directly; however, you
must traverse a linked list to access a particular node
Items can be inserted into and deleted from a reference-
based linked list without shifting data

Lecture 17COMPSCI10530

