
COMPSCI 105 S1 2017

Principles of Computer Science

16 Queue(2)

Agenda & Readings

 Agenda

 Using the Queue ADT to solve problems

 A Circular Queue

 The Deque Abstract Data Type

 Reference:

 Textbook: Problem Solving with Algorithms and Data Structures

 Chapter 3: Basic Data Structures

Lecture 16COMPSCI1052

Simulation: Hot Potato

 Example (six persons game):

Lecture 16COMPSCI1053

16.1 Applications

Simulation: Hot Potato

 Example (six persons game):

 Children form a circle and pass an item from neighbour to

neighbour as fast as they can

 At a certain point in the game, the action is stopped and the child

who has the item (the potato) is removed from the circle

 Play continues until only one child is left

Lecture 16COMPSCI1054

16.1 Applications

Simulation: Hot Potato

 Example (hotPotato([Bill, David, Susan, Jane], 3)):

Lecture 16COMPSCI1055

16.1 Applications

Bill David Susan JaneRound 1

David Susan Jane Bill

Susan Jane Bill David

Jane Bill David Susan

dequeue

enqueue

Bill David SusanRound 2

David Susan Bill

Susan Bill David

Bill David Susan

Simulation: Hot Potato

 Example (hotPotato([Bill, David, Susan, Jane], 3)):

Lecture 16COMPSCI1056

16.1 Applications

David SusanRound 3

Susan David

David Susan

Susan David

David WIN!Final

Simulation: Hot Potato

 Code:

Lecture 16COMPSCI1057

16.1 Applications

def hotPotato(namelist, num):

simqueue = Queue()

for name in namelist:

simqueue.enqueue(name)

while simqueue.size() > 1:

for i in range(num):

simqueue.enqueue(simqueue.dequeue())

simqueue.dequeue()

return simqueue.dequeue()

Move element from

the front of the queue

to the end

Return the name

when there is only

ONE name remains in

the queue

Circular Queue

 What is the Big-O performance of enqueue and dequeue of

the implementation using Python List?

 enqueue(…): O(n)

 Shifting array elements to the right after each addition – too Expensive!

 dequeue() : O(1)

 Another Implementation: Circular Queue

 enqueue & dequeue : O(1)

 Items can be added/removed without shifting the other items in the

process

Lecture 16COMPSCI1058

16.2 Circular Queue

We have to shift all list elements by one position to

make room for the new item

Viewed as a circle

instead of line Avoid the “shifting” of list elements by one position

to make room for the new item

Circular Queue - Set up

 Uses a Python list data structure to store the items in the

queue

 There are three critical variables:

 front: indicates the location of the item at the front

 back: indicates the location of the item at the back

 count: indicates the number of items in the queue

 The list has an initial capacity (all elements None)

Lecture 16COMPSCI1059

16.2 Circular Queue

Circular Queue - Set up

 Keeps an index of the current front of the queue and of the

current back of the queue

 set front to 0

 set back to MAX_QUEUE – 1

 set count to 0

 New items are enqueued at the back index position

 Items are dequeued at the front index position.

 A counting of the queue items to detect queue-full and

queue-empty conditions

Lecture 16COMPSCI10510

16.2 Circular Queue

To initialize the

queue

Circular Queue - How To Advance

 Queue-empty:

 front is one slot ahead of back

 When either front or back advances past MAX_QUEUE - 1,

it wraps around to 0

 The wrap-around effect: by using Modulus (%) arithmetic operator

Lecture 16COMPSCI10511

16.2 Circular Queue

def enqueue(self, item): # if not full

self.back = (self.back + 1) % self.MAX_QUEUE

self.items[self.back] = item

self.count += 1

def dequeue(self): # if not empty

item = self.items[self.front]

self.front = (self.front + 1) % self.MAX_QUEUE

self.count -= 1

return item

0

1

2

34

5

6

7

0

1

2

34

5

6

70

1

2

34

5

6

7

Enqueue

 Example:

 q.enqueue(32)

 back is advanced by one position

 New item is inserted at the position of back

 count is incremented by 1

Lecture 16COMPSCI10512

16.2 Circular Queue

def enqueue(self, item): # if not full

self.back = (self.back + 1) % self.MAX_QUEUE

self.items[self.back] = item

self.count += 1

50

30

15

7

front = 1

back = 5

size = 8; count = 5

back = 6

50

30

15

7

32

front = 1

size = 8; count = 6

back = 6

0

1

2

34

5

6

70

1

2

34

5

6

7

Dequeue

 Example:

 q.dequeue()

 Value in front position is returned

 front is advanced by 1

 count is decremented by 1

Lecture 16COMPSCI10513

16.2 Circular Queue

def dequeue(self): # if not empty

item = self.items[self.front]

self.front = (self.front + 1) % self.MAX_QUEUE

self.count -= 1

return item

50

30

15

7

32

front = 2

front = 1

size = 8; count = 6

back = 6

50

30

15

7

32

front = 2

size = 8; count = 5

back = 6

0

1

2

34

5

6

7

Enqueue

 q.enqueue(8)

 After running the first enqueue, back = 7

 q.enqueue(20)

 After running the second enqueue, back = 0 as the “back” is

wrapped around the list

Lecture 16COMPSCI10514

16.2 Circular Queue

size = 8; count = 6 size = 8; count = 7

back = 7

size = 8; count = 8

back = 0

front = 1

0

1

2

34

5

6

7 0

1

2

34

5

6

7

50

30

15

7

32
50

30

15

7

32

8

50

30

15

7

32

8 20

back = 6

back = 7

front = 1

0

1

2

34

5

6

7

Full & Empty

 front and back cannot be used to distinguish between queue-

full and queue-empty conditions for a circular array

Lecture 16COMPSCI10515

16.2 Circular Queue

9 7

1

back

0

1

2

34

5

6

7
front

back front

2

5

back

back

back

back

0

1

2

34

5

6

7

front

back

front

front

front

front

9 7

1

2

5

back front

q = Queuecircular(8)

q.enqueue(5)

q.enqueue(2)

q.enqueue(1)

q.enqueue(7)

q.enqueue(9)

q.dequeue()

q.dequeue()

q.dequeue()

q.dequeue()

q.dequeue()

back = front - 1

0

1

2

34

5

6

7

Full & Empty

 front and back cannot be used to distinguish between queue-

full and queue-empty conditions for a circular array

Lecture 16COMPSCI10516

16.2 Circular Queue

9 7

1

back

front

2

5

back

back

back

back

back

q = Queuecircular(8)

q.enqueue(5)

q.enqueue(2)

q.enqueue(1)

q.enqueue(7)

q.enqueue(9)

q.enqueue(1)

q.enqueue(7)

q.enqueue(9)

1

7

9

back

back

back

def is_empty():

return self.count == 0

def is_full():

return self.MAX_QUEUE <= self.count

Exercise 1

 What are the values of “front” and “back” after executing the

following code fragment?

Lecture 16COMPSCI10517

16.2 Circular Queue

q = Queuecircular(10)

q.enqueue(12)

q.enqueue(17)

q.enqueue(25)

q.enqueue(11)

q.dequeue()

q.dequeue()

q.enqueue(30)

Deque Abstract Data Type

 Deque - Double Ended Queue

 A deque is an ordered collection of items where items are added

and removed from either end, either front or back

 The newest item is at one of the ends

Lecture 16COMPSCI10518

16.3 Deque

Deque Abstract Data Type

 What are the operations which can be used with a Deque

Abstract Data?

 Create an empty deque:

 Determine whether a deque is empty:

 Add a new item to the deque:

 add_front()

 add_rear()

 Remove from the deque the item that was added earliest:

 remove_front()

 remove_rear()

Lecture 16COMPSCI10519

16.3 Deque

Code Example

 We use a python List data structure to implement the deque

Lecture 15

16.3 Deque

COMPSCI10520

class Deque:

def __init__(self):

self.items = []

...

def add_front(self, item):

self.items.append(item)

def add_rear(self, item):

self.items.insert(0,item)

def remove_front(self):

return self.items.pop()

def remove_rear(self):

return self.items.pop(0)

rear of the

queue

front of

the queue

Big-O?

add_front()/remove_front(): :O(1)

add_rear()/remove_rear(): O(n)

Code Example

 Code:

Lecture 15

16.3 Deque

COMPSCI10521

d.is_empty()

d.add_rear(4)

d.add_rear(‘dog’)

d.add_front(‘cat’)

d.add_front(True)

d.size()

d.is_empty()

d.add_rear(8.4)

d.remove_rear()

d.remove_front()

True

4

False

8.4

True

d = []

d = [4]

d = [‘dog’, 4]

d = [‘dog’, 4, ‘cat’]

d = [‘dog’, 4, ‘cat’, True]

d = [‘dog’, 4, ‘cat’, True]

d = [‘dog’, 4, ‘cat’, True]

d = [8.4, ‘dog’, 4, ‘cat’, True]

d = [‘dog’, 4, ‘cat’, True]

d = [‘dog’, 4, ‘cat’]

Application: Palindrome Checker

 A string which reads the same either left to right, or right to

left is known as a palindrome

 Radar

 deed

 A dog, a plan, a canal: pagoda

Lecture 15

16.3 Deque

COMPSCI10522

Palindrome Checker - Algorithm

 Create a deque to store the characters of the string

 The front of the deque will hold the first character of the string

and the rear of the deque will hold the last character

 Remove both of them directly, we can compare them and

continue only if they match

 If we can keep matching first and the last items, we will eventually

either run out of characters or be left with a deque of size 1

 In either case, the string must be a palindrome

Lecture 15

16.3 Deque

COMPSCI10523

Palindrome Checker - Examples

 print(pal_checker("lsdkjfskf"))

 Queue: f, k, s, f, j, k, d, s, l

 1st round: compare f and l => FALSE, STOP

 print(pal_checker("radar"))

 Queue: r, a, d, a, r

 1st round: compare r (front) and r (back)

 2nd round: compare a (front) and a (back)

 3rd round: size() = 1, STOP, return TRUE

Lecture 15

16.3 Deque

COMPSCI10524

Palindrome Checker - Codes

 Check:

 The front of the deque (the first character of the string)

 The rear of the deque (the last character of the string)

Lecture 15

16.3 Deque

COMPSCI10525

still_equal = True

while char_deque.size() > 1 and still_equal:

first = char_deque.remove_front()

last = char_deque.remove_rear()

if first != last:

still_equal = False

return still_equal

Summary

 To distinguish between the queue-full and queue-empty

conditions in a queue implementation that uses a circular

array

 By counting the number of items in the queue

 Models of real-world systems often use queues

Lecture 16COMPSCI10526

