THE UNIVERSITY OF AUCKLAND

COMPSCI 105 S1 2017
Principles of Computer Science

16 Queue(2)

SIS

Agenda & Readings

» Agenda
Using the Queue ADT to solve problems
A Circular Queue
The Deque Abstract Data Type

» Reference:

Textbook: Problem Solving with Algorithms and Data Structures
1 Chapter 3: Basic Data Structures

2 COMPSCI105 Lecture 16

S

16.1 Applications
¥ Simulation: Hot Potato

» Example (six persons game):

After 5 passes,

until predefined counting constant and so on

3 COMPSCI105 Lecture 16

SIS

16.1 Applications
¥ Simulation: Hot Potato

» Example (six persons game):
Children form a circle and pass an item from neighbour to
neighbour as fast as they can
At a certain point in the game, the action is stopped and the child
who has the item (the potato) is removed from the circle

Play continues until only one child is left

4 COMPSCI105 Lecture 16

SIS

16.1 Applications

¥ Simulation: Hot Potato

» Example (hotPotato([Bill, David, Susan, |Jane], 3)):

Round 1 _— Bill David Susan Jane
[] David Susan Jane Bill
Susan Jane Bill David\(
*Jane Bill David Susan \
Round 2 Bill David Susan
David Susan Bill
Susan Bill David
' Bill David Susan
5 COMPSCI105

Lecture 16

SIS

16.1 Applications

» Example (hotPotato([Bill, David, Susan, |Jane], 3)):

Round 3

Final

¥ Simulation: Hot Potato

David Susan

Susan David

David Susan

’Susan David

David WIN!
COMPSCI105

Lecture 16

SIS

16.1 Applications
¥ Simulation: Hot Potato

» Code:

@)

def hotPotato(namelist, num):
simqueue = Queue()
for name in namelist:
simqueue.enqueue(name) Y,
while simqueue.size() > |:
for i in range(num):
simqueue.enqueue(simqueue.dequeue())

simqueue.dequeue() ()
return simqueue.dequeue()

7 COMPSCI105 Lecture 16

SIS

&

» What is the Big-O performance of enqueue and dequeue of
the implementation using Python List?
enqueue(...): O(n) {]
Shifting array elements to the right after each addition — too Expensive!
dequeue() : O(l)
» Another Implementation: Circular Queue

16.2 Circular Queue

Circular Queue

enqueue & dequeue : O(l)

ltems can be added/removed without shifting the other items in the
process

S
o

8 COMPSCI105 Lecture 16

SIS

"4

» Uses a Python list data structure to store the items in the
queue

16.2 Circular Queue

Circular Queue - Set up

» There are three critical variables:
front: indicates the location of the item at the front
back: indicates the location of the item at the back

count: indicates the number of items in the queue

» The list has an initial capacity (all elements None)

9 COMPSCI105 Lecture 16

SIS

» Keeps an index of the current front of the queue and of the
current back of the queue
set front to 0 /[\]
set back to MAX QUEUE - |

set countto 0

16.2 Circular Queue

Z_Circular Queue - Set up

» New items are enqueued at the back index position
» Items are dequeued at the front index position.

» A counting of the queue items to detect queue-full and
queue-empty conditions

10 COMPSCI105 Lecture 16

SIS

16.2 Circular Queue
& Circular Queue - How To Advance

» Queue-empty:
front is one slot ahead of back

» When either front or back advances past MAX QUEUE - I,
it wraps around to 0
The wrap-around effect: by using Modulus (%) arithmetic operator

@)

def enqueue(self, item): # if not full 7 0
self.back = (self.back + |) % self MAX QUEUE
self.items[self.back] = item
self.count += |

def dequeue(self): # if not empty
item = self.items[self.front] c 5
self.front = (self.front + |) % self MAX_QUEUE

self.count -= | 4 3

CI return item
J J

11 COMPSCI105 Lecture 16

16.2 Circular Queue
Enqueue g)

T def enqueue(self, item): # if not full
) Examp|e- self.back = (self.back + |) % self MAX_ QUEUE
. self.items[self.back] = item

» g.enqueue(32) @ self.count += |

» back is advanced by one position

» New item is inserted at the position of back

» count is incremented by |

_ 7 0
back = 6 front = 1 back = 6 0 front = 1

4 3

size = 8; count =5 size = 8; count =6

12 COMPSCI105 Lecture 16

5359553

16.2 Circular Queue
Dequeue

» Example:

» qg.dequeue() a

def dequeue(self): # if not empty
item = self.items[self.front]
self.front = (self.front + |) % self. MAX_QUEUE
self.count -= |
return item

> Value in front position is returned

» front is advanced by |

» count is decremented by |

7 = = 7
back = 6 0 front=1 back = 6 0
6 1 6 1
5 2 5 2
front = 2

4 3

size = 8; count = 6

4 3 front =2

size = 8; count =5

COMPSCI105 Lecture 16

16.2 Circular Queue
2 _Enqueue

» g.enqueue(8)

» After running the first enqueue, back =7
» g.enqueue(20)

» After running the second enqueue, back = 0 as the “back” is
wrapped around the list

back = 7 back = 7 back = 0
7 7 0

0
back = 6 front = 1

front = 1

6 1 6

4 3 4 3 4 3
size = 8; count = 6 size = 8; count =7 size = 8; count = 8

14 COMPSCI105 Lecture 16

5359553

16.2 Circular Queue

Full & Empty

» front and back cannot be used to distinguish between queue-
full and queue-empty conditions for a circular array

@) (@) (@
g.enqueue(5) g.dequeue()
g.enqueue(2) g.dequeue()

q = Queuecircular(8) g.enqueue(l) g.dequeue()
g.enqueue(7) g.dequeue()
G a g.enqueue(9) G g.dequeue()
back g
/ 0 front /
back back
back
6 1 6 1
5 2 5 2

4 3

back

back 4 3 back

________ back = front - |

COMPSCI105 Lecture 16

SIS

16.2 Circular Queue

Z_Full & Empty

» front and back cannot be used to distinguish between queue-
full and queue-empty conditions for a circular array

@)

q = Queuecircular(8) 7 0
g.enqueue(5) <V 2

I
g.enqueue(2) ¢ 215 .
g.enqueue(l) f« 7 2 J\
g.enqueue(7) \&Z\%j
g.enqueue(9) 5 7
g.enqueue(l) 9 7
L~

g.enqueue(7) 4 3
(}: g.enqueue(9)
J /
a) @)
def is_empty(): def is_full():
return self.count == return self. MAX QUEUE <= self.count

16 COMPSCI105 Lecture 16

16.2 Circular Queue
¥ Exercise 1

» What are the values of “front” and “back” after executing the
following code fragment?

@) (@)

q = Queuecircular(10)
g.enqueue(12)
g.enqueue(17)
g.enqueue(25)
g.enqueue(l I)
g.dequeue()
g.dequeue()
g.enqueue(30)

&) G)

17 COMPSCI105 Lecture 16

SIS

"4

» Deque - Double Ended Queue

A deque is an ordered collection of items where items are added
and removed from either end, either front or back

16.3 Deque

Deque Abstract Data Type

» The newest item is at one of the ends

18 COMPSCI105 Lecture 16

S

"4

» What are the operations which can be used with a Deque
Abstract Data!

16.3 Deque

Deque Abstract Data Type

» Create an empty deque:
» Determine whether a deque is empty:

» Add a new item to the deque:
add_front()
add_rear()
» Remove from the deque the item that was added earliest:

remove_front()

remove_rear()

19 COMPSCI105 Lecture 16

16.3 Deque

¥ Code Example

» We use a python List data structure to implement the deque

@

class Deque:
def __init__ (self):
self.items =[]

1tems]

-

def add_front(self, item):
self.items.append(item)

def add_rear(self, item):
self.items.insert(0,item)
def remove_front(self):

return self.items.pop()
def remove_rear(self):
return self.items.pop(0)

COMPSCI105

add_front()/remove_front(): :
add_rear()/remove_rear():

Lecture 15

SIS

16.3 Deque

¥ Code !
» Code:

()

@

d.is_empty()
d.add_rear(4)
d.add_rear()
d.add_front('cat’)
d.add_front(True)
d.size()
d.is_empty()
d.add_rear(8.4)
d.remove_rear()
d.remove_front()

21

O 0000000 ao

\—/

| | | | | O | A | I |
rFrTrYe|sessTrssoeerrorr o e

xample

Ny —
—_—

*
N

COMPSCI105

@

True

False

8.4
True

J

Lecture 15

SIS

"

» A string which reads the same either left to right, or right to
left is known as a palindrome
Radar
deed

A dog, a plan, a canal: pagoda

16.3 Deque

Z_Application: Palindrome Checker

raar front

remove from rear ltems remove from fronc

r
Remowe from front and rear

22 COMPSCI105 Lecture 15

SIS

16.3 Deque
2 Palindrome Checker - Algorithm

» Create a deque to store the characters of the string
The front of the deque will hold the first character of the string
and the rear of the deque will hold the last character
» Remove both of them directly, we can compare them and
continue only if they match
If we can keep matching first and the last items, we will eventually
either run out of characters or be left with a deque of size |

In either case, the string must be a palindrome

raar front

remowve from raar ltems ramove from frong

r
Remaoye from fronc and rear

23 COMPSCI105 Lecture 15

SIS

16.3 Deque
Z_ Palindrome Checker - Examples

» print(pal_checker(" ")
Queue:f, k, s,f,j, k,d,s, |
|5 round: compare f and | => FALSE, STOP
» print(pal_checker(" ")
Queue:n,a,d,a, r
|5t round: compare r (front) and r (back)

2" round: compare 2 (front) and a (back)
37 round: size() = |, STOP, return TRUE

24 COMPSCI105

Lecture 15

SIS

16.3 Deque
¥ Palindrome Checker - Codes

» Check:

The front of the deque (the first character of the string)
The rear of the deque (the last character of the string)

@)

still_equal = True
while char_deque.size() > | and still_equal:
first = char_deque.remove_front()
last = char_deque.remove_rear()
if first != last:
still_equal = False
return still_equal

25 COMPSCI105 Lecture 15

S

. Summary

» To distinguish between the queue-full and queue-empty
conditions in a queue implementation that uses a circular
array

By counting the number of items in the queue

» Models of real-world systems often use queues

26 COMPSCI105 Lecture 16

