
COMPSCI 105 S1 2017

Principles of Computer Science

15 Queue(1)

Agenda & Readings

 Agenda

 Introduction

 Queue Abstract Data Type (ADT)

 Implementing a queue using a list

 Reference:

 Textbook: Problem Solving with Algorithms and Data Structures

 Chapter 3: Basic Data Structures

Lecture 15COMPSCI1052

What is a Queue?

 Queues are appropriate for many real-world situations

 Example: A line to buy a movie ticket

 Computer applications, e.g. a request to print a document

 A queue is an ordered collection of items where the addition

of new items happens at one end (the rear or back of the

queue) and the removal of existing items always takes place at

the other end (the front of the queue)

 New items enter at the back, or rear, of the queue

 Items leave from the front of the queue

 First-in, first-out (FIFO) property:

 The first item inserted into a queue is the first item to leave

Lecture 15

15.1 Introduction

COMPSCI1053

What is a Queue?

 Queues implement the FIFO (first-in first-out) policy:

 For example: the printer / job queue!

Lecture 15

15.1 Introduction

COMPSCI1054

enqueue(o)

is_empty()

peek()

dequeue()

front Rear of the

queue

Queue Example

 Add only to the rear of a Queue

 Remove only from the front of the Queue

 Note: The last item placed on the queue will be the last item

removed

Lecture 15

15.1 Introduction

COMPSCI1055

34

57

12

34

57

12

103

57

12

103

12

103

Remove

the front

element

Add a

new

element

Remove

the front

element

First In - First Out (FIFO)

ADT Queue Operations

 What are the operations which can be used with a Queue

Abstract Data?

 Create an empty queue:

 Determine whether a queue is empty:

 Add a new item to the queue:

 enqueue

 Remove from the queue the item that was added earliest:

 dequeue

 Retrieve from the queue the item that was added earliest:

 peek

Lecture 15

15.1 Introduction

COMPSCI1056

ADT Queue Operations

 What are the operations which can be used with a Queue Abstract

Data?

Lecture 15

15.1 Introduction

COMPSCI1057

34

57

12

Retrieve

the earliest

element

peek()

57

12

103

103

34

57

12

103

Add a

new

element

enqueue(103)
103

57

12

103

Remove

the earliest

element

dequeue()
34

The Queue Abstract Data Type

 Queue() creates a new queue that is empty

 It needs no parameters and returns an empty queue

 enqueue(item) adds a new item to the rear of the queue

 It needs the item and returns nothing

 The queue is modified

 dequeue() removes the front item from the queue

 It needs no parameters and returns the item

 The queue is modified

Lecture 15

15.2 The Queue Abstract Data Type

COMPSCI1058

Queue(), enqueue(item) and dequeue() are

critical operations in order to manipulate the

elements of the queue

The Queue Abstract Data Type

 peek() returns the earliest item from the queue but does not

remove it

 It needs no parameters

 The queue is not modified

 is_empty() tests to see whether the queue is empty

 It needs no parameters and returns a boolean value

 The queue is not modified

 size() returns the number of items in the queue

 It needs no parameters and returns an integer

 The queue is not modified

Lecture 15

15.2 The Queue Abstract Data Type

COMPSCI1059

peek(), is_empty() and size() are useful to allow

the users to retrieve the properties of the

queue but they are not necessary

Code Example - Application

 Code:

Lecture 15

15.2 The Queue Abstract Data Type

COMPSCI10510

s = Queue()

print(s.is_empty())

s.enqueue(4)

s.enqueue('dog')

print(s.peek())

s.enqueue(True)

print(s.size())

print(s.is_empty())

s.enqueue(8.4)

s.dequeue()

s.dequeue()

print(s.size())

s

s

4s

4s dog

4s dog

4s dog True

4s dog True

4s dog True

4s dog True 8.4

dogs True 8.4

Trues 8.4

Trues 8.4

True

4

3

False

4

dog

2

Code Example - Application

 Code:

Lecture 15

15.2 The Queue Abstract Data Type

COMPSCI10511

s = Queue()

print(s.is_empty())

s.enqueue(4)

s.enqueue('dog')

print(s.peek())

s.enqueue(True)

print(s.size())

print(s.is_empty())

s.enqueue(8.4)

s.dequeue()

s.dequeue()

print(s.size())

True

4

3

False

4

dog

2

s = []

s = []

s = [4]

s = [4, 'dog']

s = [4, 'dog']

s = [4, 'dog', True]

s = [4, 'dog', True]

s = [4, 'dog', True]

s = [4, 'dog', True, 8.4]

s = ['dog', True, 8.4]

s = [True , 8.4]

s = [True , 8.4]

Exercise 1

 What is the output of the following code fragment?

Lecture 15

15.2 The Queue Abstract Data Type

COMPSCI10512

s = Queue()

print(s.is_empty())

s.enqueue(4)

s.enqueue('dog')

print(s.peek())

print(s.size())

print(s.is_empty())

s.dequeue()

s.enqueue(3)

s.dequeue()

print(s.size())

Code Example - Application

 We use a python List data structure to implement the queue

Lecture 15

15.3 The Queue Implementation

COMPSCI10513

class Queue:

def __init__(self):

self.items = []

def is_empty(self):

return self.items == []

def size(self):

return len(self.items)

…...

Python list

Code Example - Application

 We use a python List data structure to implement the queue

 Version 1

 The addition of new items takes place at the beginning of the list

 The removal of existing items takes place at the end of the list

Lecture 15

15.3 The Queue Implementation

COMPSCI10514

class Queue:

…...

def enqueue(self, item):

self.items.insert(0,item)

def dequeue(self):

return self.items.pop()

enqueue (rear of

the queue)

dequeue (front

of the queue)
Big-O?

enqueue()/search(): O(n)

dequeue()/peek(): O(1)

Code Example - Application

 We use a python List data structure to implement the queue

 Version 2

 The addition of new items takes place at the beginning of the list

 The removal of existing items takes place at the end of the list

Lecture 15

15.3 The Queue Implementation

COMPSCI10515

class Queue:

…...

def enqueue(self, item):

self.items.append(item)

def dequeue(self):

return self.items.pop(0)

dequeue (front

of the queue)

enqueue (rear

of the queue)
Big-O?

enqueue(): O(1)

dequeue()/peek()/search(): O(n)

Exercise 2

 What is the output of the following code fragment?

Lecture 15

15.3 The Queue Implementation

COMPSCI10516

from Queue import Queue

try:

q = Queue()

q.enqueue(2)

q.enqueue(4)

q.enqueue(6)

while not q.is_empty():

print(q.dequeue())

except IndexError:

print ('empty queue')

Comparisons between Queue & Stack

 Behaviour:

 The behaviour of a stack is like a Last-In-First-Out (LIFO) system

 The behaviour of a queue is like a First-In-First-Out (FIFO) system

 Implementation with Python list:

 The list methods make it very easy to use a list as a stack

 To add an item to the top of the stack, using append()

 To retrieve an item from the top of the stack, using pop() without an

explicit index

 It is not efficient to use a list as a queue

 To add or remove an item from the end of list are fast, using append() and

pop()

 To add or remove an item at the beginning of list are slow (because all of

the other elements have to be shifted by one)

Lecture 15COMPSCI10517

15.3 The Queue Implementation

Comparisons between Queue & Stack

 Big O:

 Stack

 push(): O(1)

 pop(): O(1)

 peek(): O(1)

 search(): O(n)

 Queue (best scenario)

 enqueue(): O(n)

 dequeue(): O(1)

 peek(): O(1)

 search(): O(n)

Lecture 15COMPSCI10518

15.3 The Queue Implementation

Summary

 The definition of the queue operations gives the ADT queue

first-in, first-out (FIFO) behavior

 Python lists support simple implementations of queues

Lecture 15COMPSCI10519

