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Agenda & Readings

 Agenda

 Introduction 

 Queue Abstract Data Type (ADT) 

 Implementing a queue using a list

 Reference:  

 Textbook: Problem Solving with Algorithms and Data Structures 

 Chapter 3: Basic Data Structures
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What is a Queue?

 Queues are appropriate for many real-world situations 

 Example:  A line to buy a movie ticket 

 Computer applications, e.g. a request to print a document 

 A queue is an ordered collection of items where the addition 

of new items happens at one end (the rear or back of the 

queue) and the removal of existing items always takes place at 

the other end (the front of the queue)

 New items enter at the back, or rear, of the queue 

 Items leave from the front of the queue 

 First-in, first-out (FIFO) property:  

 The first item inserted into a queue is the first item to leave
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What is a Queue?

 Queues implement the FIFO (first-in first-out) policy:

 For example: the printer / job queue!
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Queue Example

 Add only to the rear of a Queue 

 Remove only from the front of the Queue 

 Note: The last item placed on the queue will be the last item 

removed
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ADT Queue Operations

 What are the operations which can be used with a Queue 

Abstract Data? 

 Create an empty queue:  

 Determine whether a queue is empty:  

 Add a new item to the queue:  

 enqueue

 Remove from the queue the item that was added earliest: 

 dequeue

 Retrieve from the queue the item that was added earliest: 

 peek
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ADT Queue Operations

 What are the operations which can be used with a Queue Abstract 

Data?
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The Queue Abstract Data Type

 Queue() creates a new queue that is empty

 It needs no parameters and returns an empty queue

 enqueue(item) adds a new item to the rear of the queue

 It needs the item and returns nothing

 The queue is modified

 dequeue() removes the front item from the queue

 It needs no parameters and returns the item

 The queue is modified
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Queue(), enqueue(item) and dequeue() are 

critical operations in order to manipulate the 

elements of the queue



The Queue Abstract Data Type

 peek() returns the earliest item from the queue but does not 

remove it

 It needs no parameters

 The queue is not modified

 is_empty() tests to see whether the queue is empty

 It needs no parameters and returns a boolean value

 The queue is not modified

 size() returns the number of items in the queue

 It needs no parameters and returns an integer

 The queue is not modified
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peek(), is_empty() and size() are useful to allow 

the users to retrieve the properties of the 

queue but they are not necessary



Code Example - Application

 Code:
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s = Queue()

print(s.is_empty())

s.enqueue(4)

s.enqueue('dog')

print(s.peek())

s.enqueue(True)

print(s.size())

print(s.is_empty())

s.enqueue(8.4)

s.dequeue()

s.dequeue()

print(s.size())

s

s

4s

4s dog

4s dog

4s dog True

4s dog True

4s dog True

4s dog True 8.4

dogs True 8.4

Trues 8.4

Trues 8.4

True

4

3

False

4

dog

2



Code Example - Application

 Code:
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s = Queue()

print(s.is_empty())

s.enqueue(4)

s.enqueue('dog')

print(s.peek())

s.enqueue(True)

print(s.size())

print(s.is_empty())

s.enqueue(8.4)

s.dequeue()

s.dequeue()

print(s.size())

True

4

3

False

4

dog

2

s = []

s = []

s = [4]

s = [4, 'dog']

s = [4, 'dog']

s = [4, 'dog', True]

s = [4, 'dog', True]

s = [4, 'dog', True]

s = [4, 'dog', True, 8.4]

s = ['dog', True, 8.4]

s = [True , 8.4]

s = [True , 8.4]



Exercise 1

 What is the output of the following code fragment?
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s = Queue()

print(s.is_empty())

s.enqueue(4)

s.enqueue('dog')

print(s.peek())

print(s.size())

print(s.is_empty())

s.dequeue()

s.enqueue(3)

s.dequeue()

print(s.size())



Code Example - Application

 We use a python List data structure to implement the queue
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class Queue:

def __init__(self):

self.items = []

def is_empty(self):

return self.items == []

def size(self):

return len(self.items)

…...

Python list



Code Example - Application

 We use a python List data structure to implement the queue

 Version 1

 The addition of new items takes place at the beginning of the list  

 The removal of existing items takes place at the end of the list
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class Queue: 

…...

def enqueue(self, item):

self.items.insert(0,item)

def dequeue(self): 

return self.items.pop()

enqueue (rear of 

the queue)

dequeue (front 

of the queue)
Big-O?

enqueue()/search(): O(n)

dequeue()/peek(): O(1)



Code Example - Application

 We use a python List data structure to implement the queue

 Version 2

 The addition of new items takes place at the beginning of the list  

 The removal of existing items takes place at the end of the list

Lecture 15

15.3 The Queue Implementation 

COMPSCI10515

class Queue: 

…...

def enqueue(self, item):

self.items.append(item)

def dequeue(self): 

return self.items.pop(0)

dequeue (front 

of the queue)

enqueue (rear 

of the queue)
Big-O?

enqueue(): O(1)

dequeue()/peek()/search(): O(n)



Exercise 2

 What is the output of the following code fragment?
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from Queue import Queue  

try:

q = Queue()

q.enqueue(2)

q.enqueue(4)

q.enqueue(6)

while not q.is_empty():

print(q.dequeue())

except IndexError:

print ('empty queue')



Comparisons between Queue & Stack

 Behaviour:

 The behaviour of a stack is like a Last-In-First-Out (LIFO) system

 The behaviour of a queue is like a First-In-First-Out (FIFO) system

 Implementation with Python list:

 The list methods make it very easy to use a list as a stack

 To add an item to the top of the stack, using append()

 To retrieve an item from the top of the stack, using pop() without an 

explicit index

 It is not efficient to use a list as a queue

 To add or remove an item from the end of list are fast, using append() and 

pop()

 To add or remove an item at the beginning of list are slow (because all of 

the other elements have to be shifted by one)
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Comparisons between Queue & Stack

 Big O:

 Stack

 push(): O(1) 

 pop(): O(1)

 peek(): O(1)

 search(): O(n)

 Queue (best scenario)

 enqueue(): O(n) 

 dequeue(): O(1)

 peek(): O(1)

 search(): O(n)
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Summary

 The definition of the queue operations gives the ADT queue 

first-in, first-out (FIFO) behavior

 Python lists support simple implementations of queues
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