
COMPSCI 105 S1 2017

Principles of Computer Science

13 Stack (1)

Agenda & Readings

 Agenda

 Introduction

 The Stack Abstract Data Type (ADT)

 Two implementations of Stack

 Reference:

 Textbook: Problem Solving with Algorithms and Data Structures

 Chapter 3: Basic Data Structures

Lecture 13COMPSCI1052

Linear Structures

 Linear structures are data collections whose items are

ordered depending on how they are added or removed

from the structure

 Once an item is added, it stays in that position relative to

the other elements that came before and came after it

 Linear structures can be thought of as having two ends, top

and bottom, (or front and end or front and back)

 What distinguishes one linear structure from another is the

way in which items are added and removed, in particular the

location where these additions and removals occur, e.g., add

only to one end, add to both, etc.

Lecture 13COMPSCI1053

13.1 Introduction

What is a Stack?

 A stack is an ordered collection of items where the addition

of new items and the removal of existing items always takes

place at the same end, referred to as the top of the stack

 i.e. add at top, remove from top

 Last-in, first-out (LIFO) property

 The last item placed on the stack will be the first item removed

 Example:

 A stack of dishes in a cafeteria

Lecture 13COMPSCI1054

13.1 Introduction

Stack Example

 Add only to the top of a Stack

 Remove only from the top of the Stack

 Note: The last item placed on the stack will be the first item

removed

Lecture 13COMPSCI1055

13.1 Introduction

34

57

12

34

57

12

103

34

57

12

34

57

Remove

the top

element

Add a

new

element

Remove

the top

element

Last In - First Out (LIFO)

Orders

 The base of the stack contains the oldest item, the one

which has been there the longest

 For a stack the order in which items are removed is exactly

the reverse of the order that they were placed

Lecture 13COMPSCI1056

13.1 Introduction

ADT Stack Operations

 What are the operations which can be used with a Stack

Abstract Data?

 Create an empty stack

 Determine whether a stack is empty

 Add a new item to the stack

 push

 Remove from the stack the item that was added most recently

 pop

 Retrieve from the stack the item that was added most recently

 peek

Lecture 13COMPSCI1057

13.1 Introduction

ADT Stack Operations

 What are the operations which can be used with a Stack

Abstract Data?

Lecture 13COMPSCI1058

13.1 Introduction

34

57

12

Retrieve

the top

element

peek()

34

57

12

12

34

57

12

103

Add a

new

element

push(103)

103

34

57

12

Remove

the top

element

Pop()
12

The Stack Abstract Data Type

 Stack() creates a new stack that is empty

 It needs no parameters and returns an empty stack

 push(item) adds a new item to the top of the stack

 It needs the item and returns nothing

 The stack is modified

 pop() removes the top item from the stack

 It needs no parameters and returns the item

 The stack is modified

Lecture 13COMPSCI1059

13.2 The Stack Abstract Data Type

Stack(), push(item) and pop() are critical

operations in order to manipulate the elements

of the stack

The Stack Abstract Data Type

 peek() returns the top item from the stack but does not

remove it

 It needs no parameters

 The stack is not modified

 is_empty() tests to see whether the stack is empty

 It needs no parameters and returns a Boolean value

 The stack is not modified

 size() returns the number of items on the stack

 It needs no parameters and returns an integer

 The stack is not modified

Lecture 13COMPSCI10510

13.2 The Stack Abstract Data Type

peek(), is_empty() and size() are useful to allow

the users to retrieve the properties of the stack

but they are not necessary

Code Example - Application

 Code:

Lecture 13COMPSCI10511

13.2 The Stack Abstract Data Type

s = Stack()

print(s.is_empty())

s.push(4)

s.push('dog')

print(s.peek())

s.push(True)

print(s.size())

print(s.is_empty())

s.push(8.4)

s.pop()

s.pop()

print(s.size())

s

s

4s

4s dog

4s dog

4s dog True

4s dog True

4s dog True

4s dog True 8.4

4s dog True

4s dog

4s dog

True

dog

3

False

8.4

True

2

Code Example - Application

 Code:

Lecture 13COMPSCI10512

13.2 The Stack Abstract Data Type

s = Stack()

print(s.is_empty())

s.push(4)

s.push('dog')

print(s.peek())

s.push(True)

print(s.size())

print(s.is_empty())

s.push(8.4)

s.pop()

s.pop()

print(s.size())

True

dog

3

False

8.4

True

2

s = []

s = []

s = [4]

s = [4, 'dog']

s = [4, 'dog']

s = [4, 'dog', True]

s = [4, 'dog', True]

s = [4, 'dog', True]

s = [4, 'dog', True, 8.4]

s = [4, 'dog', True, 8.4]

s = [4, 'dog', True]

s = [4, 'dog']

Top element

Exercise 1

 What is the output of the following code fragment?

Lecture 13COMPSCI10513

13.2 The Stack Abstract Data Type

s = Stack()

print(s.is_empty())

s.push(True)

print(s.peek())

print(s.size())

s.push(‘cat')

s.pop()

print(s.peek())

s.push(8)

s.pop()

print(s.size())

Exercise 2

 What is the output of the following code fragment?

Lecture 13COMPSCI10514

13.2 The Stack Abstract Data Type

s = Stack()

print(s.is_empty())

s.push(4)

print(s.peek())

s.pop()

s.push(8.4)

print(s.size())

s.push('dog')

print(s.peek())

s.pop()

print(s.size())

The Stack In Python

 We use a python List data structure to implement the stack

 Remember:

 The addition of new items and the removal of existing items always takes

place at the same end, referred to as the top of the stack

Lecture 13COMPSCI10515

13.2 The Stack Implementation

class Stack:

def __init__(self):

self.items = []

def is_empty(self):

return self.items == []

def size(self):

return len(self.items)

…...

Python list

The Stack In Python

 We use a python List data structure to implement the stack

 Question:

 Which “end” of the Python list is better for our Stack implementation?

Lecture 13COMPSCI10516

13.2 The Stack Implementation

class Stack:

…...

def push(self, item):

def pop(self):

def peek(self):

Top element?

Top element?

The Stack In Python

 We use a python List data structure to implement the stack

 Question:

 Which “end” of the Python list is better for our Stack implementation?

 Version 1

Lecture 13COMPSCI10517

13.2 The Stack Implementation

class Stack:

…...

def push(self, item):

self.items.append(item)

def pop(self):

result = self.items.pop()

Top element

Big-O?

push()/pop(): O(1)

search(): O(n)

The Stack In Python

 We use a python List data structure to implement the stack

 Question:

 Which “end” of the Python list is better for our Stack implementation?

 Version 2

Lecture 13COMPSCI10518

13.2 The Stack Implementation

class Stack:

…...

def push(self, item):

self.items.insert(0, item)

def pop(self):

result = self.items.pop(0)

Top element

Big-O?

push()/pop(): O(n)

search(): O(n)

The Stack In Python

 We use a python List data structure to implement the stack

 Question:

 Which “end” of the Python list is better for our Stack implementation?

 Version 2

Lecture 13COMPSCI10519

13.2 The Stack Implementation

s = Stack()

print(s.is_empty())

s.push(4)

s.push('dog')

s.push(‘cat')

Top element

4dogcat

Big-O?

push()/pop(): O(n)

search(): O(n)

Summary

 Last-in, first-out data structure (push, pop)

 Access is at one point (top of the stack)

 Python lists support simple implementations of stacks

Lecture 13COMPSCI10520

