
COMPSCI 105 S1 2017
Principles of Computer Science

12 Abstract Data Type

Agenda & Readings

Agenda
Some Software design Principles
Abstract Data Type (ADT)

What is an ADT?
What is a Data Structure?

Examples on ADT:
Integer, Set, and List

Reference:
Textbook: Problem Solving with Algorithms and Data Structures

Chapter 3: Basic Data Structures

Data Abstraction & Problem Solving with Java
Chapter 4 Data Abstraction: The Walls

Lecture 12COMPSCI1052

Modularity

Modularity (divide a program into manageable parts)
Keeps the complexity of a large program manageable
Isolates errors
Eliminates redundancies
Encourages reuse (write libraries)
A modular program is

Easier to write / Easier to read / Easier to modify

Lecture 12COMPSCI1053

12.1 Some Software design Principles

Information Hiding

Hides certain implementation details within a module
Makes these details inaccessible from outside the module
Isolate the implementation details of a module from other
modules

Lecture 12COMPSCI1054

12.1 Some Software design Principles

Isolated tasks: the implementation of task T does not affect task Q

Isolation of Modules

The isolation of modules is not total (otherwise module
would be useless)

Methods
each other
Similar to having a wall hiding details, but being able to access

Lecture 12COMPSCI1055

12.1 Some Software design Principles

Abstraction

From the essentials
To defer or hide the details
Abstraction emphasizes essentials and defers the details, making
engineering artifacts easier to use

Example:
I
order to drive it

the implementation?

Lecture 12COMPSCI1056

12.1 Some Software design Principles

Abstraction

Abstraction
The principle of ignoring those aspects of a subject that are not
relevant to the current purpose in order to concentrate solely on
those aspects which are relevant

How do we achieve:
Modularity
Information hiding
Isolation of modules
i.e. The abstraction of what from the how

Lecture 12COMPSCI1057

12.1 Some Software design Principles

Abstraction

Separates the purpose and use of a module
from its implementation
A

Detail how the module behaves
Identify details that can be hidden within the
module

Advantages
Hides details (easier to use)
Allows us to think about the general framework
(overall solution) & postpone details for later
Can easily replace implementations by better ones

Lecture 12COMPSCI1058

12.1 Some Software design Principles

Data and Operations

What do we need in order to achieve the above Software
Engineering design principles?

What are the typical operations on data? (example: database)
Add data to the database
Remove data from the database
Find data (or determine that it is not in the data base)

Ask questions about the data in a data collection (e.g. how many CS105 students
do stage 1 Math courses?)

Question:
Do we need to know what data structures used?

No, better make implementation independent of it!

Lecture 12COMPSCI1059

12.1 Some Software design Principles

Data and Operations

Asks you to think what you can do to a collection of data
independently of how you do it
Allows you to develop each data structure in relative isolation
from the rest of the solution
A natural extension of procedural abstraction

Lecture 12COMPSCI10510

12.1 Some Software design Principles

CAR:
Start()
Stop()
TurnLeft()
TurnRight()

CAR:
Start(){

Select first gear
Release parking brake
Bring clutch up to the

friction point
Press gas pedal
Release clutch

}

NOTE: Implementation
can be different for
different cars, e.g.
automatic transmission

Abstract Data Types

An Abstract Data Types (ADT) is composed of
A collection of data
A set of operations on that data

Specifications of an ADT indicate What the ADT operations
do, not how to implement them
Implementation of an ADT

Includes choosing a particular data structure

Lecture 12COMPSCI10511

12.2 Abstract Data Types

Properties and Behaviors of the ADT

The properties of the ADT are described by the collection of
data

The data can be in terms of simple data types of complex data
types
Simple data types

Integer
Floating point
Character

Complex data types
Multimedia

The behaviors of the ADT are its operations or functions

Lecture 12COMPSCI10512

12.2 Abstract Data Types

Brand: BMW

Data structure Vs ADT

An ADT is not the same with a Data Structure
Data structure

A construct that is defined within a programming language to store
a collection of data
Example: arrays

ADT
Results in a wall of ADT operations between data structures and
the program that accesses the data within these data structures
Results in the data structure being hidden
Can access data using ADT operations
Can change data structure without changing functionality of
methods accessing it

Lecture 12COMPSCI10513

12.2 Abstract Data Types

Abstract Data Types

A wall of ADT operations isolates a data structure from the
program that uses it

Lecture 12COMPSCI10514

12.2 Abstract Data Types

Disadvantages & Advantages

Disadvantages of Using ADTs
Initially, there is more to consider

Design issues
Code to write and maintain
Overhead of calling a method to access ADT information
Greater initial time investment

Advantages of Using ADTs
A client (the application using the ADT) doesn't need to know
about the implementation
Maintenance of the application is easier
The programmer can focus on problem solving and not worry
about the implementation

Lecture 12COMPSCI10515

12.2 Abstract Data Types

Designing an ADT

An abstract data type (ADT) is a specification of a set of data
and the set of operations that can be performed on the data
Such a data type is abstract in the sense that it is
independent of various concrete implementations
Questions to ask when designing an ADT

What data does a problem require?
What operations does a problem require?
Examples:

Integers, floating-point
Sets
Lists
Stacks, Queues, Trees

Lecture 12COMPSCI10516

12.3 ADT Examples

Integers

Data
Containing the positive and negative whole numbers and 0

Operations which manipulate the data:
Such as addition, subtraction, multiplication, equality comparison,
and order comparison
Methods for data conversion, output etc.

Lecture 12COMPSCI10517

12.3 ADT Examples

Floating-point

Data
Containing the whole possible positive and negative values
Precision is limited by number of digits

Operations which manipulate the data:
Such as addition, subtraction, multiplication, equality comparison,
and order comparison
Complex mathematical functions such as exponential, logarithm,
triangular functions etc.
Roundings
Methods for data conversion, output etc.

Lecture 12COMPSCI10518

12.3 ADT Examples

Sets

Data
An unordered collection of unique elements

Operations which manipulate the data:
add

Add an element to a set

remove
Remove an element from the set,

Others
Get the union, intersection, complement of two Set objects

Lecture 12COMPSCI10519

12.3 ADT Examples

Linear Structures

Linear structures are data collections whose items are
ordered depending on how they are added or removed
from the structure
Once an item is added, it stays in that position relative to
the other elements that came before and came after it
Linear structures can be thought of as having two ends, top
and bottom, (or front and end or front and back)
What distinguishes one linear structure from another is the
way in which items are added and removed, in particular the
location where these additions and removals occur, e.g., add
only to one end, add to both, etc.

Lecture 12COMPSCI10520

12.3 ADT Examples

Linear Structures

Examples: Stack, Queue, Linked-list, etc.

Lecture 12COMPSCI10521

12.3 ADT Examples

34

57

12

34

57

12

103

34

57

12

34

57

Remove
top

element

Add a
new

element

Remove
top

element

Non-Linear Structures

Every data item is attached to several other data items in a
way that is specific for reflecting relationships
The data items are not arranged in a sequential structure
Examples: Tree, Graph, Heap, etc.

Lecture 12COMPSCI10522

12.3 ADT Examples

Remove
a

element

Add a
new

element

Remove
a

element

34 57

12

34 57

12

93

34 93

12

93

12

Summary

Solving a problem becomes easier by considering only
relevant data and operations and ignoring the

Lecture 12-13COMPSCI10523

Abstract Data Type

Abstract Data Structure

Operations

Interface

Summary

Abstract Data Types (ADTs) enable you to think
What you can do with the data independently of how you do it

An abstract data type can be accessed by a limited number of
public methods

They are often defined by using an interface

The implementation of the ADT (data structures and
algorithms) can be changed without influencing the behavior
of the ADT

Lecture 12COMPSCI10524

