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Agenda & Readings

 Agenda 

 Some Software design Principles 

 Abstract Data Type (ADT) 

 What is an ADT? 

 What is a Data Structure? 

 Examples on ADT: 

 Integer,  Set, and List 

 Reference:  

 Textbook: Problem Solving with Algorithms and Data Structures 

 Chapter 3: Basic Data Structures

 Data Abstraction & Problem Solving with Java 

 Chapter 4 – Data Abstraction: The Walls 
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Modularity

 Modularity (divide a program into manageable parts) 

 Keeps the complexity of a large program manageable

 Isolates errors 

 Eliminates redundancies 

 Encourages reuse (write libraries) 

 A modular program is 

 Easier to write / Easier to read / Easier to modify
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12.1 Some Software design Principles 



Information Hiding

 Hides certain implementation details within a module 

 Makes these details inaccessible from outside the module 

 Isolate the implementation details of a module from other 

modules
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12.1 Some Software design Principles 

Isolated tasks: the implementation of task T does not affect task Q



Isolation of Modules

 The isolation of modules is not total (otherwise module 

would be useless) 

 Methods’ specifications, or contracts, govern how they interact with 

each other 

 Similar to having a wall hiding details, but being able to access 

through “hole in the wall”
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Abstraction

 What does ‘abstract’ mean? 

 From Latin: to ‘pull out’—the essentials 

 To defer or hide the details 

 Abstraction emphasizes essentials and defers the details, making 

engineering artifacts easier to use 

 Example:

 I don’t need a mechanic’s understanding of what’s under a car’s hood in 

order to drive it 

 What’s the car’s interface? 

 What’s the implementation?

Lecture 12COMPSCI1056

12.1 Some Software design Principles 



Abstraction

 Abstraction  

 The principle of ignoring those aspects of a subject that are not 

relevant to the current purpose in order to concentrate solely on 

those aspects which are relevant

 How do we achieve:  

 Modularity

 Information hiding

 Isolation of modules  

 i.e.  The abstraction of what from the how

Lecture 12COMPSCI1057

12.1 Some Software design Principles 



Abstraction

 Separates the purpose and use of a module 

from its implementation 

 A module’s specifications should 

 Detail how the module behaves 

 Identify details that can be hidden within the 

module   

 Advantages 

 Hides details (easier to use) 

 Allows us to think about the general framework 

(overall solution) & postpone details for later 

 Can easily replace implementations by better ones 
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Data and Operations

 What do we need in order to achieve the above Software 

Engineering design principles? 

 What are the typical operations on data? (example: database)

 Add data to the database 

 Remove data from the database 

 Find data (or determine that it is not in the data base) 

 Ask questions about the data in a data collection (e.g. how many CS105 students 

do stage 1 Math courses?) 

 Question: 

 Do we need to know what data structures used? 

 No, better make implementation independent of it!
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Data and Operations

 Asks you to think what you can do to a collection of data 

independently of how you do it 

 Allows you to develop each data structure in relative isolation 

from the rest of the solution 

 A natural extension of procedural abstraction
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CAR:

Start()

Stop()

TurnLeft()

TurnRight()

CAR:

Start(){

Select first gear

Release parking brake

Bring clutch up to the     

friction point

Press gas pedal 

Release clutch

}

NOTE: Implementation 

can be different for 

different cars, e.g. 

automatic transmission



Abstract Data Types

 An Abstract Data Types (ADT) is composed of 

 A collection of data 

 A set of operations on that data 

 Specifications of an ADT indicate What the ADT operations 

do, not how to implement them 

 Implementation of an ADT 

 Includes choosing a particular data structure
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12.2 Abstract Data Types



Properties and Behaviors of the ADT

 The properties of the ADT are described by the collection of 

data 

 The data can be in terms of simple data types of complex data 

types

 Simple data types

 Integer

 Floating point

 Character

 Complex data types

 Multimedia

 The behaviors of the ADT are its operations or functions
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Data structure Vs ADT

 An ADT is not the same with a Data Structure 

 Data structure 

 A construct that is defined within a programming language to store 

a collection of data 

 Example: arrays 

 ADT provides “data abstraction” 

 Results in a wall of ADT operations between data structures and 

the program that accesses the data within these data structures 

 Results in the data structure being hidden 

 Can access data using ADT operations  

 Can change data structure without changing functionality of 

methods accessing it
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Abstract Data Types

 A wall of ADT operations isolates a data structure from the 

program that uses it
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Disadvantages & Advantages

 Disadvantages of Using ADTs

 Initially, there is more to consider

 Design issues

 Code to write and maintain

 Overhead of calling a method to access ADT information

 Greater initial time investment

 Advantages of Using ADTs

 A client (the application using the ADT) doesn't need to know 

about the implementation

 Maintenance of the application is easier

 The programmer can focus on problem solving and not worry 

about the implementation
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Designing an ADT

 An abstract data type (ADT) is a specification of a set of data

and the set of operations that can be performed on the data

 Such a data type is abstract in the sense that it is 

independent of various concrete implementations

 Questions to ask when designing an ADT 

 What data does a problem require? 

 What operations does a problem require?  

 Examples: 

 Integers, floating-point

 Sets 

 Lists 

 Stacks, Queues, Trees …
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Integers

 Data

 Containing the positive and negative whole numbers and 0 

 Operations which manipulate the data: 

 Such as addition, subtraction, multiplication, equality comparison, 

and order comparison 

 Methods for data conversion, output etc.
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12.3 ADT Examples



Floating-point

 Data

 Containing the whole possible positive and negative values

 Precision is limited by number of digits

 Operations which manipulate the data: 

 Such as addition, subtraction, multiplication, equality comparison, 

and order comparison 

 Complex mathematical functions such as exponential, logarithm, 

triangular functions etc.

 Roundings

 Methods for data conversion, output etc.
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Sets

 Data

 An unordered collection of unique elements

 Operations which manipulate the data: 

 add

 Add an element to a set

 remove

 Remove an element from the set,  

 Others

 Get the union, intersection, complement of two Set objects
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Linear Structures

 Linear structures are data collections whose items are 

ordered depending on how they are added or removed

from the structure

 Once an item is added, it stays in that position relative to 

the other elements that came before and came after it

 Linear structures can be thought of as having two ends, top

and bottom, (or front and end or front and back)

 What distinguishes one linear structure from another is the 

way in which items are added and removed, in particular the 

location where these additions and removals occur, e.g., add 

only to one end, add to both, etc.
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Linear Structures

 Examples: Stack, Queue, Linked-list, etc.
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Non-Linear Structures

 Every data item is attached to several other data items in a 

way that is specific for reflecting relationships

 The data items are not arranged in a sequential structure

 Examples: Tree, Graph, Heap, etc.
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Summary

 Solving a problem becomes easier by considering only 

relevant data and operations and ignoring the 

implementations (“abstraction”)   
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Abstract Data Type

Abstract Data Structure

Operations

Interface



Summary

 Abstract Data Types (ADTs) enable you to think –

 What you can do with the data independently of how you do it 

 An abstract data type can be accessed by a limited number of 

public methods –

 They are often defined by using an interface 

 The implementation of the ADT (data structures and 

algorithms) can be changed without influencing the behavior 

of the ADT
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