
VERSION 00000001 COMPSCI105

CONTINUED

THE UNIVERSITY OF AUCKLAND

SECOND SEMESTER, 2014

Campus: City

COMPUTER SCIENCE

TEST

Principles of Computer Science

(Time Allowed: 75 minutes)

Note:
• The use of calculators is NOT permitted.
• Compare the term test version number on the Teleform sheet supplied with the version

number above. If they do not match, ask the supervisor for a new sheet.
• Enter your name and student ID on the Teleform sheet. Your name should be entered left

aligned. If your name is longer than the number of boxes provided, truncate it.
• Answer all Multiple-choice questions on the Teleform answer sheet provided. Answer

Section B in the space provided in this booklet. Attempt all questions.
• Use a dark pencil to mark your answers in the multiple choice answer boxes on the Teleform

sheet. Check that the question number on the sheet corresponds to the question number in this
question/answer book. If you spoil your sheet, ask the supervisor for a replacement.

• Write your answers in the space provided in the short answer section. Write as clearly as
possible. The space provided will generally be sufficient but is not necessarily an indication
of the expected length. Extra space is provided at the end of this exam book.

Surname:
First Name(s):
Student ID:
Login Name(UPI):
Lab Time:

MARKERS ONLY

Question Mark Out Of

 1 – 18 Multiple Choice 20

19 – 25 Written 30

 TOTAL 50

VERSION 00000001 - 2 - COMPSCI105

CONTINUED

The Right_Angle_Triangle class below is used by the following two questions.

import math

class Right_Angle_Triangle:
 """Represents a right angle triangle. The length of the two shortest
 sides are required.
 """

 def __init__(self, a, b):
 #Store the length of the two shortest sides
 self.a = a
 self.b = b

 def perimeter(self):
 #Calculate the sum of the three edges
 hypotenuse = math.sqrt(self.a ** 2 + self.b ** 2)
 return self.a + self.b + hypotenuse

 def area(self):
 #Area of a triangle is half height times the base
 return self.a / 2 * self.b

 def scale(self, factor):
 #Alters the size of the triangle
 self.a = self.a * factor
 self.b = self.b * factor

Question 1
[1 mark] Which of the following functions will NOT test to see if a list is a palindrome?

(a) def is_palindrome(the_list):
 for x in the_list:
 for y in the_list[::-1]:
 if x != y:
 return False
 return True

(b) def is_palindrome(the_list):
 return the_list == the_list[::-1]

(c) def is_palindrome(the_list):
 copy = the_list.copy()
 copy.reverse()
 return the_list == copy

(d) def is_palindrome(the_list):
 size = len(the_list)
 for x in range(size):
 if the_list[x] != the_list[size-x-1]:
 return False
 return True

(e) def is_palindrome(the_list):
 backwards = []
 for x in the_list:
 backwards = [x] + backwards
 return backwards == the_list

VERSION 00000001 - 3 - COMPSCI105

CONTINUED

 def __gt__(self, other):
#Uses the area to compare size
return self.area() > other.area()

 def __lt__(self, other):
#Uses the area to compare size
return self.area() < other.area()

 def __eq__(self, other):
#Compares the edges of the two triangles
return self.a == other.a and self.b == other.b

Question 2
[1 mark] Which of the following code fragments will cause an error?

(a) s = Right_Angle_Triangle(3, 4)
print(s.scale(4))

(b) s = Right_Angle_Triangle(3, 4)
bigger = s > s
print(bigger)

(c) s = Right_Angle_Triangle(3, 4)
print(s.perimeter())

(d) s = Right_Angle_Triangle(3, 4)
print(s.area())

(e) s = Right_Angle_Triangle(3, 4)
t = s.scale(4)
print(t.area())

Question 3
[1 mark] What is the output of the following code?

s = Right_Angle_Triangle(3, 4)
t = Right_Angle_Triangle(4, 3)
print(s > t, s < t, s == t)

(a) True, True, False

(b) False, True, False

(c) True, False, True

(d) False, False, False

(e) False, False, True

Question 4
[1 mark] What is the output of the following code?

a = [1, 2, 3]
b = [1, 2, 3]
c = a
print(a is b, a == b, a is c, a == c)

(a) True False False False

(b) True True False

(c) False True True True

(d) False True False True

(e) True False True False

VERSION 00000001 - 4 - COMPSCI105

CONTINUED

The check_exceptions function below is used by the following two questions:

def check_exceptions(n):
 result = 3 / n #possible exception
 try:
 result = 'Output: ' + result #possible exception
 print(result)
 except:
 print('Exception')
 finally:
 print('Finally')
 print('Exit function')

Question 5
[1 mark] What is the output of the following code?

s = "Hello"
t = "World"
print("{1}-{0}-{2}-{0}".format(s, t, s, t))

(a) Hello-World-Hello-World
(b) HelloWorld--HelloWorldHelloWorld-
(c) World-Hello-WorldWorld-Hello
(d) Hello-World-HelloHello-World
(e) World-Hello-Hello-Hello

Question 6
[1 mark] What is the output from the following code?

try:
 check_exceptions(0)
except:
 print('Done')

(a) Finally
Done

(b) Done
(c) Output: 3

Finally
Exit function

(d) Finally
Exit function
Done

(e) Exception
Finally
Exit function

VERSION 00000001 - 5 - COMPSCI105

CONTINUED

Question 7
[1 mark] What is the output from the following code?

try:
 check_exceptions(3)
except:
 print('Done')

(a) Output: 1
Finally
Exit function

(b) Exeption
Done

(c) Exception
Finally
Exit function

(d) Output: 1
Exit function

(e) Done

Question 8
[1 mark] What is the output of the following code?

class simple_maze:
 def __init__(self):
 self.maze = {}

 def add_connection(self, src, dst):
 if src in self.maze:
 self.maze[src].append(dst)
 else:
 self.maze[src] = [dst]
 if dst in self.maze:
 self.maze[dst].append(src)
 else:
 self.maze[dst] = [src]

m = simple_maze()
m.add_connection(0, 2)
m.add_connection(1, 2)
print(m.maze)

(a) {0: [2], 1: [2]}
(b) {0: [2], 1: [2], 2: [0], 2:[1]}
(c) {0: [1, 2], 1: [0, 2], 2: [0, 1]}
(d) {0: [2], 1: [2], 2: [0, 1]}
(e) {}

VERSION 00000001 - 6 - COMPSCI105

CONTINUED

The website class below is used by the following two questions.

class website:
 def __init__(self, d):
 try:
 if len(d) < 1:
 raise ValueError()
 else:
 self.links = d
 except:
 raise ValueError('The website must contain at least one page.')

 def add_link(self, src, dst):
 if src not in self.links:
 raise ValueError("That source page doesn't exist.")
 if dst not in self.links:
 raise ValueError("That destination page doesn't exist.")
 if dst in self.links[src]:
 raise ValueError("That link already exists.")
 self.links[src] += dst

 def add_page(self, label):
 if label in self.links:
 raise ValueError("That page already exists.")
 self.links[label] = []

Question 9
[1 mark] What is the output of the following code?

before = {
 'A' : ['B'],
 'B' : ['C'],
 'C' : []
 }
w = website(before)
try:
 w.add_link('D', 'C')
except Exception as e:
 print(e)

(a) No output is printed.
(b) That source page doesn't exist.
(c) That page already exists.
(d) That link already exists.
(e) That destination page doesn't exist.

VERSION 00000001 - 7 - COMPSCI105

CONTINUED

Question 10
[1 mark] What is the output of the following code?

before = {
 'A' : ['B'],
 'B' : ['C'],
 'C' : []
 }
w = website(before)
try:
 w.add_link('B', 'C')
except Exception as e:
 print(e)

(a) No output is printed.
(b) That destination page doesn't exist.
(c) That source page doesn't exist.
(d) That link already exists.
(e) That page already exists.

Question 11
[1 mark] What is the big-O complexity of the following function?

def complexity_01(my_list):
 n = len(my_list)
 i = 5
 while i < n:
 print(my_list[i])
 i += 1

(a) O(log n)
(b) O(n)
(c) O(n2)
(d) O(1)
(e) None of the above

Question 12
[1.5 marks] What is the big-O complexity of the following function?

def complexity_02(my_list1):
 my_list2 = []
 n = len(my_list1)
 for i in range(n):
 my_list2.insert(0, my_list1[i])
 return my_list2

(a) O(log n)
(b) O(n log n)
(c) O(n)
(d) O(n2)
(e) None of the above

VERSION 00000001 - 8 - COMPSCI105

CONTINUED

Question 13
[1 mark] What is the big-O complexity of the following function?

def complexity_03(my_list1):
 my_list2 = [2, 4, 6, 8, 10]
 count = 0
 number = 0
 for i in my_list1:
 if i == my_list2[number] and number < len(my_list2):
 count += 1
 number += 1
 return count

(a) O(n)
(b) O(n2)
(c) O(n log n)
(d) O(log n)
(e) None of the above

Question 14
[1.5 marks] What is the big-O complexity of the following function?

def complexity_04(my_list1):
 my_list2 = []
 n = len(my_list1)
 for i in range(1, n, 2):
 my_list2.append(my_list1[i])
 return my_list2

(a) O(n2)
(b) O(log n)
(c) O(n log n)
(d) O(n)
(e) None of the above

Question 15
[1 mark] Using the algorithm studied in class to check for balanced braces, which of the following is
TRUE if the string has balanced braces and the end of the string has been reached?

(a) the stack contains one "{"
(b) the stack is empty
(c) the stack contains one "{" and one "}"
(d) the stack contains one "}"
(e) None of the above

VERSION 00000001 - 9 - COMPSCI105

CONTINUED

Question 16
[1.5 marks] Which of the following is FALSE about converting infix expressions to postfix
expressions?

(a) the operator always moves "to the right" with respect to the operands
(b) all parentheses are removed
(c) the operators always stay in the same order with respect to one another
(d) the operands always stay in the same order with respect to one another
(e) None of the above

Question 17
[1.5 marks] Which of the following is the postfix form of the infix expression: 4 * 2 + 5?

(a) 4 2 5 * +
(b) 4 2 * 5 +
(c) 5 2 + 4 *
(d) 2 4 5 * +
(e) None of the above

Question 18
[1 mark] Complete the following statement so that it is true:
 "The pop operation throws an IndexError: when it tries to ...".

(a) check if an already empty stack is empty
(b) add an item to an empty stack
(c) delete an item from an empty stack
(d) check the size of an empty stack
(e) None of the above

VERSION 00000001 - 10 - COMPSCI105
Question/Answer Sheet ID ……….…………

CONTINUED

SECTION B

Answer all questions in this section in the space provided. If you run out of space then please use the
Overflow Sheet and indicate in the allotted space that you have used the Overflow Sheet.

Question 19: [5 marks]

As shown in lecture 02, the structure of the list created by the following code:

a_list = [4, 2, 6, 9, 3]

can be represented with the diagram:

a_list 4 2 6 9 3
0 1 2 3 4

Draw a diagram to show the structure of the list created by the code:

my_list = [[4], [2, 6, 9], [3]]

 (5 marks)

Question 20: [5 marks]

In lecture 03, you were shown diagrams that illustrated how different lists were represented in
memory. Use this approach to draw a diagram showing how the lists labelled e and f are represented
in memory.

a = [1]
b = a
c = [1, 2, 3]
d = c

e = [1, a, c]
f = [2, b, d]

VERSION 00000001 - 11 - COMPSCI105

CONTINUED

 (5 marks)

Question 21: [5 marks]

Given the following dictionary representing a maze in the same format as used in Assignment 02,
draw the maze on the grid provided. By drawing thick lines between adjacent cells that should not
have a connection between them, clearly indicate where the walls are.

maze = {

 (0, 0) : [(0, 1), (1, 0)],

(0, 1) : [(0,0)],

(0, 2) : [(1, 2)],

(1, 0) : [(0,0), (1, 1), (2, 0)],

(1, 1) : [(1, 0), (1, 2), (2, 1)],

(1, 2) : [(0, 2), (1, 1), (2, 2)],

(2, 0) : [(1, 0)],

(2, 1) : [(1, 1)],

(2, 2) : [(1, 2)]

}

 (5 marks)

VERSION 00000001 - 12 - COMPSCI105

CONTINUED

Question 22 [3 marks]

Complete the following table regarding the operations of Python Lists. You need to complete the
four missing bits of the Description column and the four parts in the Complexity column.

Python Lists Description Complexity

append(item) adds an item to the end of the list O(1)

pop(0) removes the item at the beginning of the list O(n)

pop() removes the item at the end of the list O(1)

insert(0, item) adds an item to the beginning of the list O(n)

 (3 marks)

Question 23: [3 marks]

Complete the definition of the Stack class below.

class Stack:
 def __init__(self):
 self.items = []

 def is_empty(self):
 return self.items == []

 def push(self, item): #has O(1) complexity
 self.items.append(item)

 (1.5 marks)
 def pop(self): #has O(1) complexity
 return self.items.pop()

 (1.5 marks)
 def peek(self):
 return self.items[len(self.items) - 1]

 def size(self):
 return len(self.items)

VERSION 00000001 - 13 - COMPSCI105

CONTINUED

Question 24: [4 marks]

Give the output produced by the following code fragment.

from Stack import Stack

s = Stack()

for i in range(10):
 if i % 2 == 0:
 s.push(i)

while not s.is_empty():
 print(s.pop())

8
6
4
2
0

 (4 marks)

VERSION 00000001 - 14 - COMPSCI105

CONTINUED

Question 25: [5 marks]

Evaluate the following postfix expression using a stack structure. Show the status of the stack after
each step.

4 8 + 6 5 - * 7 2 – *

 (5 marks)

4
8
4 12

6
12

5
6
12

1
12 12

7
12

2
7
12

5
12 60

