

Proceedings of the 2005 IJCAI Workshop on
Reasoning, Representation, and Learning in Computer Games

(http://home.earthlink.net/~dwaha/research/meetings/ijcai05-rrlcgw)

David W. Aha, Héctor Muñoz-Avila, & Michael van Lent (Eds.)

Edinburgh, Scotland
31 July 2005

Workshop Committee

David W. Aha, Naval Research Laboratory (USA)

Daniel Borrajo, Universidad Carlos III de Madrid (Spain)
Michael Buro, University of Alberta (Canada)

Pádraig Cunningham, Trinity College Dublin (Ireland)
Dan Fu, Stottler-Henke Associates, Inc. (USA)
Joahnnes Fürnkranz, TU Darmstadt (Germany)

Joseph Giampapa, Carnegie Mellon University (USA)
Héctor Muñoz-Avila, Lehigh University (USA)

Alexander Nareyek, AI Center (Germany)
Jeff Orkin, Monolith Productions (USA)
Marc Ponsen, Lehigh University (USA)

Pieter Spronck, Universiteit Maastricht (Netherlands)
Michael van Lent, University of Southern California (USA)

Ian Watson, University of Auckland (New Zealand)

Aha, D.W., Muñoz-Avila, H., & van Lent, M. (Eds.) (2005). Reasoning, Representation, and Learning in Computer Games:
Proceedings of the IJCAI Workshop (Technical Report AIC-05). Washington, DC: Naval Research Laboratory, Navy Center
for Applied Research in Artificial Intelligence.

Preface

These proceedings contain the papers presented at the Workshop on Reasoning, Representation, and
Learning in Computer Games held at the 2005 International Joint Conference on Artificial Intelligence
(IJCAI’05) in Edinburgh, Scotland on 31 July 2005.

Our objective for holding this workshop was to encourage the study, development, integration, and
evaluation of AI techniques on tasks from complex games. These challenging performance tasks are
characterized by huge search spaces, uncertainty, opportunities for coordination/teaming, and
(frequently) multi-agent adversarial conditions. We wanted to foster a dialogue among researchers in a
variety of AI disciplines who seek to develop and test their theories on comprehensive intelligent agents
that can function competently in virtual gaming worlds. We expected that this workshop would yield an
understanding of (1) state-of-the-art approaches for performing well in complex gaming environments
and (2) research issues that require additional attention.

Games-related research extends back to the origins of artificial intelligence, which includes Turing’s
proposed imitation game and Arthur Samuel’s work on checkers. Several notable achievements have
been attained for the games of checkers, reversi, Scrabble, backgammon, and chess, among several
others. Several AI journals are devoted to this topic, such as the International Computer Games
Association Journal, the International Journal of Intelligent Games and Simulation, and the Journal of
Game Development. Similarly, many conferences are likewise devoted to this topic, including the
International Conference on Computers and Games, the European Conference on Simulation and AI in
Computer Games, and the new Conference on Artificial Intelligence and Interactive Digital
Entertainment. Naturally, IJCAI has also hosted workshops on AI research and games, including
Entertainment and AI/Alife (IJCAI’95), Using Games as an Experimental Testbed for AI Research
(IJCAI’97), and RoboCup (IJCAI’97, IJCAI’99).

In contrast to previous IJCAI workshops on AI and games, this one has a relatively broad scope; it was
not focused on a specific sub-topic (e.g., testbeds), game or game genre, or AI reasoning paradigm.
Rather, we focused on topics of general interest to AI researchers (i.e., reasoning, representation,
learning) to which many different types of AI approaches could apply. Thus, this workshop provided an
opportunity to share and learn from a wide variety of research perspectives, which is not feasible for
meetings held at conferences on AI sub-disciplines.

Therefore, our agenda was quite broad. Our invited speakers included Ian Davis, who discussed applied
research at Mad Doc Software, and Michael Genesereth/Nat Love, who reported on the first annual
General Game Playing Competition (at AAAI’05) and their future plans. In addition to sessions of
presentations and discussion periods on the workshop’s three themes (i.e., reasoning, representation, and
learning), our fourth session focused on AI architectures. We also held a sizable poster session (i.e.,
perhaps we should have scheduled this as a 2-day event) and a wrap-up panel that generated visions for
future research and development, including feasible and productive suggestions for dissertation topics.

The Workshop Committee did a great job in providing suggestions and informative reviews for the
submissions; thank you! Thanks also to Carlos Guestrin, ICCBR’05 Workshop Chair, for his assistance
in helping us to hold and schedule this workshop. Finally, thanks to all the participants; we hope you
found this to be useful!

David W. Aha, Héctor Muñoz-Avila, & Michael van Lent
Edinburgh, Scotland

31 July 2005

ii

Table of Contents

Title Page i
Preface ii
Table of Contents iii

Hazard: A Framework Towards Connecting Artificial Intelligence and Robotics 1
Peter J. Andersson

Extending Reinforcement Learning to Provide Dynamic Game Balancing 7
Gustavo Andrade, Geber Ramalho, Hugo Santana, & Vincent Corruble

Best-Response Learning of Team Behaviour in Quake III 13
Sander Bakkes, Pieter Spronck, & Eric Postma

OASIS: An Open AI Standard Interface Specification to Support Reasoning, Representation and Learning in Computer
Games 19
Clemens N. Berndt, Ian Watson, & Hans Guesgen

Colored Trails: A Formalism for Investigating Decision-Making in Strategic Environments 25
Ya’akov Gal, Barbara J. Grosz, Sarit Kraus, Avi Pfeffer, & Stuart Shieber

Unreal GOLOG Bots 31
Stefan Jacobs, Alexander Ferrein, & Gerhard Lakemeyer

Knowledge Organization and Structural Credit Assignment 37
Joshua Jones & Ashok Goel

Requirements for Resource Management Game AI 43
Steven de Jong, Pieter Spronck, & Nico Roos

Path Planning in Triangulations 49
Marcelo Kallmann

Interfacing the D’Artagnan Cognitive Architecture to the Urban Terror First-Person Shooter Game 55
Bharat Kondeti, Maheswar Nallacharu, Michael Youngblood, & Lawrence Holder

Knowledge-Based Support-Vector Regression for Reinforcement Learning 61
Rich Maclin, Jude Shavlik, Trevor Walker, & Lisa Torrey

Writing Stratagus-playing Agents in Concurrent ALisp 67
Bhaskara Marthi, Stuart Russell, & David Latham

Defeating Novel Opponents in a Real-Time Strategy Game 72
Matthew Molineaux, David W. Aha, & Marc Ponsen

Stratagus: An Open-Source Game Engine for Research in Real-Time Strategy Games 78
Marc J.V. Ponsen, Stephen Lee-Urban, Héctor Muñoz-Avila, David W. Aha, & Matthew Molineaux

Towards Integrating AI Story Controllers and Game Engines: Reconciling World State Representations 84
Mark O. Riedl

An Intelligent Decision Module based on CBR for C-evo 90
Rubén Sánchez-Pelegrín & Belén Díaz-Agudo

iii

A Model for Reliable Adaptive Game Intelligence 95
Pieter Spronck

Knowledge-Intensive Similarity-based Opponent Modeling 101
Timo Steffens

Using Model-Based Reflection to Guide Reinforcement Learning 107
Patrick Ulam, Ashok Goel, Joshua Jones, & William Murdock

The Design Space of Control Options for AIs in Computer Games 113
Robert E. Wray, Michael van Lent, Jonathan Beard, & Paul Brobst

A Scheme for Creating Digital Entertainment with Substance 119
Georgios N. Yannakakis & John Hallam

Author Index 125

iv

Hazard: A Framework Towards Connecting Artificial Intelligence and Robotics

Peter J. Andersson
Department of Computer and Information Science, Linköping university

petan@ida.liu.se

Abstract
The gaming industry has started to look for so-
lutions in the Artificial intelligence (AI) research
community and work has begun with common
standards for integration. At the same time, few
robotic systems in development use already de-
veloped AI frameworks and technologies. In this
article, we present the development and evalua-
tion of the Hazard framework that has been used
to rapidly create simulations for development of
cognitive systems. Implementations include for
example a dialogue system that transparently can
connect to either an Unmanned Aerial Vehicle
(UAV) or a simulated counterpart. Hazard is
found suitable for developing simulations support-
ing high-level AI development and we identify and
propose a solution to the factors that make the
framework unsuitable for lower level robotic spe-
cific tasks such as event/chronicle recognition.

1 Introduction
When developing or testing techniques for artificial intelli-
gence, it is common to use a simulation. The simulation
should as completely as possible simulate the environment
that the AI will encounter when deployed live. Sometimes,
it is the only environment in which the AI will be deployed
(as is the case with computer games). As there exist many
more types of environments than AI techniques, there is a
need to reuse existing implementations of AI techniques with
new environments. AI frameworks often come bundled with
an environment to test the AI technique against and the envi-
ronments are often not as easy to modify as a developer would
want, nor is it easy to evaluate the framework in new environ-
ments without developing time-consuming middleware. In
the case of robotics, there is an extended development period
to develop low-level control programs. The AI then devel-
oped is often tailored to the low-level control programs and it
is hard, if at all possible to reuse.

The Player-Stage project [Gerkey et al., 2003] develops
low-level drivers for robotic architectures and gives the de-
veloper an interface that can either be used together with the
stand-alone simulator to evaluate the configuration or to con-
trol the actual robotic hardware. This kind of interface en-

courages focus on the high-level control of the robot, but
since there are no wrappers to high-level AI frameworks, it
does not encourage reuse of existing AI techniques. By de-
veloping a high-level interface between Player-Stage and AI
frameworks, we will also allow AI researchers to take advan-
tage of the Player-Stage project.

The Robocup initiative [Kitano et al., 1997] uses both ac-
tual robotic hardware and simulation in competition. Yet,
there exists no common interface for using simulation league
AIs with robotic league robots. This can mean that the sim-
ulation interface is unintuitive for actual robotics, or that AIs
developed with the simulation are not usable with actual ro-
bots. In either case it is a problem worth investigating.

The WITAS Unmanned Aerial Vehicle project [Doherty
et al., 2000] uses several simulators in their research, both
for hardware-in-the-loop simulation of the helicopter hard-
ware and for development of dialogue interaction with an ac-
tual UAV. A middleware translating actions and events from
WITAS protocol to other protocols would allow experimen-
tation with for example SOAR [Laird et al., 1987] as a high-
level decision system. It would also allow the application of
developed agent architecture to other environments and prob-
lems.

By creating a middleware framework that can mediate be-
tween low-level drivers and high-level decision system, we
hope to be able to alleviate the problems for AI researchers
presented above and inspire researchers in both artificial intel-
ligence and robotics to reuse existing implementations. Ro-
botic researchers can reuse AI techniques that exist and AI
researchers can test their AI implementation in off-the-shelf
simulators before building an expensive robotic system. It
would also allow separate research groups to work with low-
level control and high-level decision issues.

As a step towards proposing an interface and middleware
for connecting AI and robotics, we have designed and imple-
mented a framework for developing agents and environments
where we focus on the distinction between agent and envi-
ronment. The design iterations and various implementations
with the framework have allowed us to gain valuable experi-
ence in designing both interface and framework. The work
is presented here together with an evaluation of the strengths,
weaknesses and limitations.

1

Figure 1: Agents and Environments.

2 Interface
The framework is designed around action theory and based
on the agent-environment concept as found in [Russel and
Norvig, 1995], see figure 1. The framework is thus divided
into three parts; interface layer, agent module and environ-
ment module. The agent uses actuators to communicate its
intention to the environment, the environment delivers the
sensor impressions back to the agent. In this interface the
actuation is handled by actions. Each action and sensor has
an owning agent to which all data is passed. The interface
encourages multi-threaded applications where the agent deci-
sion loop is in one thread and the environment is in another.
This design has been helpful when building continuous, asyn-
chronous environments such as simulations of robotic vehi-
cles.

Figure 2: How actions are used.

Actions
When an agent has decided on using a certain action, it
configures the action and notifies the environment that it
wants to “register” the action. If the action is applicable
in the current state of the environment, it is accepted and
execution starts. The action contains its own executable
code and is thus defined in the environment module. Ac-

tions are bundled with their own event recognition and
execution monitoring. At each execution interval, they
update the state of their owner in the environment. If
applicable, they can send “checkpoint” reports back to
the owner. When the action has reached its end criteria,
it sends a “success” message. If it fails during execu-
tion, it sends a “fail” message. If it is an action to which
success/fail has no meaning (for actions without an ex-
plicit goal), the action can send a “stop” message. All
these messages are implemented as callback methods in
the agent interface. The implementation is visualized
in the sequence diagram in figure 2. Since actions are
implemented in the environment, the agent must have
knowledge of the environment to be able to use the ac-
tions. Actions are considered to be executed in contin-
uous time, can be concurrent and are either discrete or
durative regarding the end criteria.

Sensors
Sensors are permanent non-invasive actions that can be
registered in the environment. Sensors contain their
own executable code and should not modify the envi-
ronment. A sensor analyzes the environment at a pre-
set time-interval and stores the extracted information.
When it has new data, the sensor can notify the own-
ing agent via a callback routine. The agent can then
fetch the new sensor data from the sensor via the sen-
sor interface. What kind of data that is passed between
sensor and agent is not defined by the interface but im-
plemented on a case by case basis.

3 Framework
Together with the interface a framework has been designed.
The framework has been named Hazard and helps develop-
ers to rapidly create new environments and agents. It can
also be used to design wrappers for other environments or
agents, thus allowing other implementations using Hazard to
be quickly modified to use that agent implementation or en-
vironment. The design has been developed iteratively with
several simulations as reference implementations. The ex-
perience from developing each simulator has given a simpler,
more robust and better designed framework ready for the next
project.

The goal of the framework has been both to allow devel-
opment of new environments and agents, and to use it as a
middleware between already existing frameworks. The de-
sign focus has been on forcing developers to make important
design decisions at an early stage of the project and to leave
simpler issues in the hands of the framework.

3.1 Environments
An overview of the environment module can be found in fig-
ure 3 and described in more detail below.

Environment
An environment in Hazard has the task of keeping track
of Maps and execution of actions and sensors. The en-
vironment can contain several maps, dividing computa-
tion, and gives a more scalable structure.

2

Figure 3: General structure of the environment module.

Map
A map in Hazard can contain a number of objects and
agents, where agents are a subset of the objects. The
framework has a number of default types of maps that
can be used by developers. Each of these maps is data-
driven and can be inherited or used as is.

GenericObject
GenericObject is the template implementation of all ob-
jects in the environment. For most objects, the Generi-
cObject class can be used as is. For specific needs, the
class can be inherited to create unique objects specific
to a certain environment.

The environment module also implements a basic graphics
engine that can handle two dimensional graphics.

3.2 Agents

Figure 4: General structure of the agent module.

Agents are controlled by either AI or a user. To general-
ize, both cases implement the interface “Controller”. A con-
troller can control one or more objects in the environment,
effectively turning them into agents. Controllers implement
methods for registering/unregistering actions and sensors in
the environment. They implement the callbacks for actions
and sensors, but have otherwise no limitations. A Generi-
cObject that implements the Controller interface is called an
agent. The Agent module also contains classes and methods
for class reuse, action and sensor design and abstract classes
for different types of controllers.

4 Iterations of Design and Implementation
The strength of a design proposal may be measured in term of
its development history. Designs that have undergone several

iterations under different conditions are much more mature
than designs without practical grounding. The Hazard frame-
work was derived from the Haphazard Role-Playing Game
project. The derivation was redesigned and reimplemented
to form the first version of the framework. The Haphazard
project was redesigned to use the new framework and expe-
rience from that work was used to implement the traffic sim-
ulator. The framework was redesigned again, and was used
to implement a development support simulator for a dialogue
system, leading to the present Hazard framework. The Hap-
hazard Online Role-Playing Game and the Simulator for Sup-
port of Dialogue System Development are currently using the
latest version of the Hazard framework while the Subsump-
tion Simulator is using an older version.

4.1 Haphazard - An Online Role-Playing Game

The Haphazard Role-Playing Game [Andersson and Beskid,
2003] started as an open-source project for creating a simple
online role-playing game with focus on AI implementations.
It was from this game project that the first version of Hazard
was extracted. The framework was then redesigned and Hap-
hazard was reimplemented to use the new framework. Hap-
hazard has the most complex environment of all implemen-
tations up to date, but only rudimentary AI. The Haphazard
project was the most prominent project when designing the
framework for environments.

Environment
The environment in Haphazard is a grid-based model using
tiles for visualisation. Objects in the world are either static
or dynamic. Static objects include houses, trees and other
scenery. Dynamic objects are the objects that can be manipu-
lated by the player. Haphazard includes a novel inventory sys-
tem, environment specific enhancements to the Hazard frame-
work that include minor agent interaction and a dynamic en-
vironment system. Players can roam between different maps
which allows for a distributed environment. The environment
is visualized by an isometric tile-based graphics engine. The
environment is data-driven. Both environment and graphics
can be changed at run-time.

Agents
The main focus is on the agent that allows the user to interact
with the environment. It implements a graphical user inter-
face which allows the user to have direct control of the agent.
The user interface implements movement control, skill man-
agement and inventory management. The agent does not have
complete vision of the world, but has a small field of vision
that is represented by grayed out tiles in the user interface.
The agent does not make use of sensors and has complete ac-
cess to the environment. The available actions for each agent
are Move, Pack, Drop, Equip, Eat, Fight, Say, Pull, Push and
Stop. Sensors used in the AI-implementation are Closest Ob-
ject, Global Position and Closest Item. Some small AI agents
have been implemented, for example roving barbarians that
hunt the player on sight. All agents are data-driven and can
be added or removed from the environment at run-time.

3

4.2 Simulator for Evaluating the Subsumption
Architecture

An implementation of the subsumption architecture [Brooks,
1985] was introduced to the agent part of the framework as
part of the work towards evaluation the subsumption archi-
tecture for use in obstacle avoidance systems for cars [Wolt-
jer and McGee, 2004]. This implementation allowed us to
evaluate the agent part of the framework and enhance it. The
subsumption architecture was integrated with an editor which
allowed the user to change the subsumption network during
simulation runs to experiment with new behaviours.

Environment
The subsumption agent was used in two environments. The
architecture was developed and tested in the Haphazard en-
vironment, but mainly used in a traffic simulator. The traffic
simulator used a straight road without any static obstacles. It
used an approaching car as a dynamic obstacle and the user’s
input was merged with the subsumption architecture to get
user driven obstacle avoidance.

Agents
The user controlled a car with acceleration and turning and
the agent merged the user’s input with sensor data in a sub-
sumption network before it was actuated. The sensor data was
a vector to the closest object within a preset distance, possible
actions were accelerate, break, steer left, steer right. Another
agent was also implemented, a car travelling with constant
speed in the opposite direction.

4.3 Simulator for Dialogue System Development
Support

Within the WITAS Unmanned Aerial Vehicle (UAV) project
[Doherty et al., 2000], the Hazard framework was used in
implementing a simulator that supports development of a dia-
logue system for command and control of one or more UAVs.
The new simulator replaced an old simulator that had been in
development by several persons totalling approximately one
man year. The implementation achieved about the same func-
tionality (more in visualization, less in camera control) but
better integration by one person in three weeks.

Environment
The environment consists of a three-dimensional map con-
taining roads and buildings. The roads consist of several seg-
ments, intersections and dead ends. All roads have a name.
Buildings are visualized as polygons and have a height. All
buildings also have a name, color, material and one or more
windows which can be observed by sensors. The environment
is fully data-driven and new environments using these types
of objects can easily be constructed.

Agents
There exist three types of agents:
WITAS UAV

The WITAS UAV agent mainly consists of a socket in-
terface which can receive commands from the dialog
system, execute these and report their progress. The
agent has a camera sensor and can detect cars and build-
ings that come within the camera’s field of vision. A

WITAS UAV can take off, land, ascend, descend, hover,
fly to positions/buildings/heights, follow cars and fol-
low roads to accomplish it’s mission. A camera sensor
detects buildings and cars within a preset distance. It is
an interactive agent that can build plans and follow the
commands of a user.

COMETS UAV
The COMETS UAV agent was implemented as an ex-
periment together with the COMETS project [Ollero et
al., 2004]. It implements an interface to the COMETS
Multi-Level Executive [Gancet et al., 2005] and uses
the same set of actions and sensors as the WITAS UAV
agent. Since the WITAS project and the COMETS
project deal with approximately the same environment
and agents, the interface could reuse most of the WITAS
UAV implementation. The integration of the COMETS
UAV into the simulation was made in about 12 man
hours.

Car
Cars drive along roads with a set speed. They can either
drive around randomly or follow a preset route, but can’t
detect or interact with other Car agents. Cars are com-
pletely autonomous agents. They use only one action,
“drive”, and no sensors.

All agents are data-driven and can be added to the envi-
ronment before the start up. They cannot be added during
run-time (at present). The simulation is transparent and can
be fully or partly substituted by a connection to a real world
UAV. The visualization is 2D, but current work is extending
both camera view and world view to three dimensions.

5 Evaluation
The evaluation of the framework is based on our own experi-
ence in developing simulations. It is focused on development
and how suitable the framework is for use as middleware and
as a framework for development of high-level and low-level
AI for robotic applications.

5.1 Strengths
Clear design guidelines

The framework gives clear design guidelines due to its
structure. The flow for developing is generally:

• What type of environment (discrete-continuous)
shall I use?

• What important objects exist in the environment?
• What actions are available?
• What information do agents need that is not avail-

able through success/fail information for actions?
(i.e. what sensors are needed?)

• What agents do we need?
Rapid development

The different implementations have shown that the
framework rapidly gives a working system. The only
comparison that has been done on development time is
with the replacement of the Simulator for Dialogue Sys-
tem Development Support. The implementation using

4

the Hazard framework cut the development time radi-
cally.

Scalability
The framework is very scalable in the form of develop-
ing new agents or objects for an environment. It has not
been tested how scalable it is in regard to the number of
existing objects/agents or actions/sensors in an environ-
ment.

5.2 Weaknesses
Agents are tightly linked to the environment

Since the framework was extracted from an integrated
system, the agents are tightly linked to the environment
and can have complete knowledge of the world without
using sensors. This is a big drawback as it allows devel-
opers to “cheat” and use information that shouldn’t be
available to the AI implementation. The agent module
should be completely separate from the environment.

Agent to agent interaction
Since the design does not distinguish between suc-
cess/fail messages for an action and sensor data, it is
hard to develop agent to agent interactions. A solution
for this problem could be to remove the success/fail no-
tion from the environment side of the action and let the
agent side sensor interpreter decide when an action has
been successful or failed. This solution would also al-
low research into event/chronicle recognition.

New developers
The system is well documented, but lacks examples and
tutorials. This makes it harder for new developers to use
the framework.

5.3 Limitations
Mid-level functionality

Since the framework only supports high-level actions
and is confusing on the part of sensor data, mid-
level functionality is not intuitively supported. By
mid-level functionality is meant functionality such as
event/chronicle recognition, symbol grounding and sim-
ilar robotic tasks. This is a disadvantage if the system is
used for developing AI techniques for robotic systems
since a developer can easily “cheat” with constructed
events instead of having to identify them from sensor
data.

Pre-defined set of actions
Since the actions are pre-defined in the environment,
both with regard to execution and evaluation of the exe-
cution (success/fail), an agent cannot learn new actions
or interpret the result in new ways. Also, since the ac-
tions can be of different level of abstraction, it is hard to
combine actions concurrently.

6 Related Work
Currently, the International Game Developers Association
(IGDA) is pushing towards AI standard interfaces for com-
puter games and is in the process of publishing the first drafts
of a proposed standard. These standards are geared towards

enabling game AI developers to reuse existing AI middleware
and to concentrate on higher level AI tasks. IGDA is working
on interfaces for common AI tasks and has currently work-
ing groups on interface standards for world interfacing, path
planning, steering, finite state machines, rule-based systems
and goal-oriented action planning. The work presented here
is closest to the work on world interfacing, but since the draft
was not available at the time of writing, it was impossible to
compare.

The Testbed for Integrating and Evaluating Learning Tech-
niques (TIELT) [Aha and Molineaux, 2004] is a free software
tool that can be used to integrate AI systems with (e.g., real-
time) gaming simulators, and to evaluate how well those sys-
tems learn on selected simulation tasks. TIELT is used as
a configurable middleware between gaming simulators and
learning systems and can probably be used as a middleware
between general environments and agent frameworks with
some modification. The middleware philosophy of TIELT
differs from our implementation, TIELT sits as a black box
between environment and agent while Hazard is only meant
as a transparent interface without any real functionality, ex-
cept if the framework is used on either side. The black box
functionality would hide event/chronical recognition, symbol
grounding, etc. . . in a robotic system. This means that special
care has to be taken if the system is to be used with actual
robotics.

The System for Parallel Agent Discrete Event Simulator
(SPADES) [Riley and Riley, 2003] is a simulation framework
with approximately the same concept as the Hazard frame-
work with regards to the separation between agents and envi-
ronments. It focuses on repeatability of simulations and uses
a concept of Software-in-the-Loop. Software-in-the-Loop in
SPADES measures the actual time an agent executes. Us-
ing this technology, it can give a large number of agents the
same time-share by slowing down the simulation without sac-
rificing simulation detail and repeatability. SPADES is a dis-
crete event simulator and uses a sense-think-act loop for the
agents which limits its deliberation time to the time between
receiving events until it has decided what to do. This limi-
tation is minimized by allowing agents to tell the simulation
that it wants to receive a time notification which works as
a sense event. Our framework on the other hand sacrifices
repeatability and agent timesharing to obtain a continuous,
asynchronous time model which is more inline with robotic
architectures than a discrete model. The agent developer can
then decide to translate into a discrete time model or keep the
continuous one.

There is also research on modules and frameworks that can
be used in conjunction with a set of interfaces for cognitive
systems, in particular DyKnow [Heinz and Doherty, 2004], a
framework to facilitate event and chronicle recognition in a
robotic architecture.

7 Conclusions and Future Work
The iterative development of framework and interfaces has
enabled us to gain valuable experience in designing interfaces
that are adequate for both robotic systems and simulated en-
vironments without sacrificing detail or ease of use. Our goal

5

is to develop an architecture for connecting AI and robotics
with the following characteristics:

• Rapid environment/agent development
• Connects agents and environments
• Able to reuse both existing agents and environments
• Capable of acting as middleware between existing

frameworks
• Usable in research of both simulations and actual ro-

botic systems
Hazard is a mature system which has undergone several

design iterations. It allows rapid development and reuse of
agents and environments. It contains intuitive interfaces be-
tween agent and environment and can be used as middleware
between existing frameworks. But Hazard has been found
unsuitable for development of AI or simulations for actual
robotic systems due to its inherent limitation in event recogni-
tion and actuator control. To be usable in a robotic AI imple-
mentation, the interfaces need to be layered to allow both for
high-level AI frameworks and middle-level event and chron-
ical recognition on the agent side. The framework for agents
and environments also need to be structured in layers to sup-
port both discrete event and continuous time simulations with
action/event and actuator/sensor interfaces.

Currently, work has been started on a new generation of
interfaces and framework. This work is called CAIRo (Con-
necting AI to Robotics) and a first implementation with the
framework has already been done. The development will fo-
cus on first validating the new framework with the current im-
plementations and then continue the validation with middle-
ware functionality and implementations of robotic systems.

8 Acknowledgements
This research work was funded by the Knut and Alice Wal-
lenberg Foundation, Sweden, and by the Swedish National
Graduate School in Computer Science (CUGS).

References
[Aha and Molineaux, 2004] D.W. Aha and M Molineaux.

Integrating learning in interactive gaming simulators. In
D. Fu and J. Orkin, editors, Challenges of Game AI: Pro-
ceedings of the AAAI’04 Workshop (Technical Report WS-
04-04), San Jose, CA, 2004. AAAI Press.

[Andersson and Beskid, 2003] Peter J. Andersson and Lu-
cian Cristian Beskid. The haphazard game project.
http://haphazard.sf.net, 2003.

[Brooks, 1985] R. A. Brooks. A robust layered control sys-
tem for a mobile robot. Memo 864, MIT AI Lab, Septem-
ber 1985.

[Doherty et al., 2000] P. Doherty, G. Granlund,
G. Krzysztof, K. Kuchcinski, E. Sandewall, K. Nordberg,
E. Skarman, and J. Wiklund. The witas unmanned aerial
vehicle project. In ECAI-00, Berlin, Germany, 2000.

[Gancet et al., 2005] Jérémi Gancet, Gautier Hattenberger,
Rachid Alami, and Simon Lacroix. An approach to deci-
sion in multi-uav systems: architecture and algorithms. In

Proceedings of the ICRA-2005 Workshop on Cooperative
Robotics, 2005.

[Gerkey et al., 2003] Brian Gerkey, Richard T. Vaughan, and
Andrew Howard. The player/stage project: Tools for
multi-robot and distributed sensor systems. In Proceedings
of the 11th International Conference on Advanced Robot-
ics, pages 317–323, Coimbra, Portugal, June 2003.

[Heinz and Doherty, 2004] Fredrik Heinz and Patrick Do-
herty. Dyknow: An approach to middleware for knowl-
edge processing. Journal of Intelligent and Fuzzy Systems,
15(1), 2004.

[Kitano et al., 1997] Hiroaki Kitano, Minoru Asada, Yasuo
Kuniyoshi, Itsuki Noda, and Eiichi Osawa. RoboCup: The
robot world cup initiative. In W. Lewis Johnson and Bar-
bara Hayes-Roth, editors, Proceedings of the First Inter-
national Conference on Autonomous Agents (Agents’97),
pages 340–347, New York, 5–8, 1997. ACM Press.

[Laird et al., 1987] J. E. Laird, A. Newell, and P. S. Rosen-
bloom. Soar: An architecture for general intelligence. Ar-
tificial Intelligence, 33(3):1–64, 1987.

[Ollero et al., 2004] Aníbal Ollero, Günter Hommel, Jeremi
Gancet, Luis-Gonzalo Gutierrez, D.X. Viegas, Per-Erik
Forssén, and M.A. González. Comets: A multiple hetero-
geneous uav system. In Proceedings of the 2004 IEEE In-
ternational Workshop on Safety, Security and Rescue Ro-
botics (SSRR 2004), Bonn (Germany), May 2004.

[Riley and Riley, 2003] Patrick F. Riley and George F. Ri-
ley. Spades - a distributed agent simulation environment
with software-in-the-loop execution. In S. Chick, P. J.
Sanchez, D. Ferrin, and D.J. Morrice, editors, Proceedings
of the 2003 Winter Simulation Conference, pages 817–825,
2003.

[Russel and Norvig, 1995] Stuart Russel and Peter Norvig.
Artificial Intelligence: A Modern Approach. Prentice Hall,
1995.

[Woltjer and McGee, 2004] R. Woltjer and K. McGee. Sub-
sumption architecture as a framework to address hu-
man machine function allocation. Presented at Sim-
Safe, http://130.243.99.7/pph/pph0220/simsafe/dok/ sim-
safe05.pdf, 2004.

6

Extending Reinforcement Learning to Provide Dynamic Game Balancing

Gustavo Andrade
Geber Ramalho
Hugo Santana

Universidade Federal de Pernambuco
Centro de Informática

Cx. Postal 7851, 50732-970, Recife, Brazil
{gda,glr,hps}@cin.ufpe.br

Vincent Corruble
Université Paris 6

Laboratoire d'Informatique de Paris VI
Bôite 169 - 4 Place Jussieu
75252 PARIS CEDEX 05
Vincent.Corruble@lip6.fr

Abstract
A recognized major concern for the game
developers’ community is to provide
mechanisms to dynamically balance the
difficulty level of the games in order to keep the
user interested in playing. This work presents an
innovative use of reinforcement learning to build
intelligent agents that adapt their behavior in
order to provide dynamic game balancing. The
idea is to couple learning with an action
selection mechanism which depends on the
evaluation of the current user’s skills. To
validate our approach, we applied it to a real-
time fighting game, obtaining good results, as
the adaptive agent is able to quickly play at the
same level as opponents with different skills.

1 Introduction
In computer games, the issue of providing a good level of
challenge for the user is referred to as game balancing. It
is widely recognized as a key feature of successful games
[Falstein, 2004]. Balancing a game consists in changing
parameters, scenarios and behaviors in order to avoid the
extremes of getting the player frustrated because the game
is too hard or becoming bored because the game is too
easy [Koster, 2004]. The idea is too keep the user
interested in playing the game from the beginning to the
end. Unfortunately, setting a few pre-defined and static
difficulty levels (e.g. beginner, intermediate and
advanced) is not sufficient. In fact, not only should the
classification of users’ skill levels be fine-grained, but the
game difficulty should also follow the players’ personal
evolutions, as they make progress via learning, or as they
regress (for instance, after a long period without playing
the game).

In order to deal with the problem, we avoided the
drawbacks of directly learning to play at the same level as
the user. Instead, we coupled two mechanisms. First, we
build agents that are capable of learning optimal
strategies, using Reinforcement Learning (RL). These
agents are trained offline to exhibit a good initial
performance level and keep learning during the game.

Second, we provide the agents with an adaptive capability
through an innovative action selection mechanism
dependent on the difficulty the human player is currently
facing. We validated our approach empirically, applying
it to a real-time two-opponent fighting game named
Knock’Em [Andrade et al., 2004], whose functionalities
are similar to those of successful commercial games, such
as Capcom Street Fighter and Midway Mortal Kombat.

In the next section we introduce the problems in
providing dynamic game balancing. Then, we briefly
present some RL concepts and discuss their application to
games. In Section 4 and 5, respectively, we introduce our
approach and show its application to a specific game.
Finally, we present some conclusions and ongoing work.

2 Dynamic Game Balancing
Dynamic game balancing is a process which must satisfy
at least three basic requirements. First, the game must, as
quickly as possible, identify and adapt itself to the human
player’s initial level, which can vary widely from novices
to experts. Second, the game must track as close and as
fast as possible the evolutions and regressions in the
player’s performance. Third, in adapting itself, the
behavior of the game must remain believable, since the
user is not meant to perceive that the computer is
somehow facilitating things (e.g. by decreasing the
agents’ physical attributes or executing clearly random
and inefficient actions).

There are many different approaches to address
dynamic game balancing. In all cases, it is necessary to
measure, implicitly or explicitly, the difficulty the user is
facing at a given moment. This measure can be performed
by a heuristic function, which some authors [Demasi and
Cruz, 2002] call a “challenge function”. This function is
supposed to map a given game state into a value that
specifies how easy or difficult the game feels to the user
at that specific moment. Examples of heuristics used are:
the rate of successful shots or hits, the numbers of pieces
which have been won and lost, life point evolution, time
to complete a task, or any metric used to calculate a game
score.

7

Hunicke and Chapman’s approach [2004] controls the
game environment settings in order to make challenges
easier or harder. For example, if the game is too hard, the
player gets more weapons, recovers life points faster or
faces fewer opponents. Although this approach is
effective, its application is constrained to game genres
where such particular manipulations are possible. This
approach could not be used, for instance, in board games,
where the players share the same features.

Another approach to dynamic game balancing is to
modify the behavior of the Non-Player Characters
(NPCs), characters controlled by the computer and
usually modeled as intelligent agents. A traditional
implementation of such an agent’s intelligence is to use
behavior rules, defined during game development using
domain-specific knowledge. A typical rule in a fighting
game would state “punch opponent if he is reachable,
chase him, otherwise”. Besides the fact that it is time-
consuming and error-prone to manually write rule bases,
adaptive behavior can hardly be obtained with this
approach. Extending such an approach to include
opponent modeling can be made through dynamic
scripting [Spronck et al., 2004], which assigns to each
rule a probability of being picked. Rule weights are
dynamically updated throughout the game, reflecting the
success or failure rate of each rule. The use of this
technique to game balancing can be made by not
choosing the best rule, but the closest one to the user
level. However, as game complexity increases, this
technique requires a lot of rules, which are hard to build
and maintain. Moreover, the performance of the agent
becomes limited by the best designed rule, which can not
be good enough for very skilled users.

A natural approach to address the problem is to use
machine learning [Langley, 1997]. Demasi and Cruz
[2002] built intelligent agents employing genetic
algorithm techniques to keep alive those agents that best
fit the user level. Online coevolution is used in order to
speed up the learning process. Online coevolution uses
pre-defined models (agents with good genetic features) as
parents in the genetic operations, so that the evolution is
biased by them. These models are constructed by offline
training or by hand, when the agent genetic encoding is
simple enough. This is an innovative approach, indeed.
However, it shows some limitations when considering the
requirements stated before. Using pre-defined models, the
agent’s learning becomes restricted by these models,
jeopardizing the application of the technique for very
skilled users or users with uncommon behavior. As these
users do not have a model to speed up learning, it takes a
long time until the agents reaches the user level.
Furthermore, this approach works only to increase the
agent’s performance level. If the player’s skill regresses,
the agent cannot regress also. This limitation compels the

agent to always start the evolution from the easiest level.
While this can be a good strategy when the player is a
beginner, it can be bothering for skilled players, since
they will probably need to wait a lot for the agents’
evolution.

3 Reinforcement Learning in Games

3.1 Background
Reinforcement Learning (RL) is often characterized as
the problem of “learning what to do (how to map
situations into actions) so as to maximize a numerical
reward signal” [Sutton and Barto, 1998]. This framework
is often defined in terms of the Markov Decision
Processes (MDP) formalism, in which we have an agent
that sequentially makes decisions in an environment: it
perceives the current state s, from a finite set S, chooses
an action a, from a finite set A, reaches a new state s’ and
receives an immediate reward signal r(s,a). The
information encoded in s should satisfy the Markov
Property, that is, it should summarize all present and past
sensations in such a way that all relevant information is
retained. Implicitly, the reward signal r(s,a) determines
the agent’s objective: it is the feedback which guides the
desired behavior.

The main goal is to maximize a long-term performance
criterion, called return, which represents the expected
value of future rewards. The agent then tries to learn an
optimal policy π* which maximizes the expected return.
A policy is a function π(s)→a that maps state perceptions
into actions. Another concept in this formalism is the
action-value function, Qπ(s,a), defined as the expected
return when starting from state s, performing action a,
and then following π thereafter. If the agent can learn the
optimal action-value function Q*(s,a), an optimal policy
can be constructed greedily: for each state s, the best
action a is the one that maximizes Q*(s,a).

A traditional algorithm for solving MDPs is Q-
Learning [Sutton and Barto, 1998]. It consists in
iteratively computing the values for the action-value
function, using the following update rule:

)],()'(.[),(),(asQsVrasQasQ −++← γα

in which V(s’) = maxa Q(s’,a), α is the learning rate and γ
is a discount factor, which represents the relative
importance of future against immediate rewards.

There are some particular characteristics of RL which
makes it attractive to applications like computer games.
First, different from other kinds of machine learning
techniques, it does not require any previous example of
good behavior, being able to find optimal strategies only
through trial and error, thus reducing the development
effort necessary to build the AI of the game. Furthermore,

8

it can be applied offline, as a pre-processing step during
the development of the game, and then be continuously
improved online after its release [Manslow, 2003].

RL has been successfully used in board games, like
backgammon [Tesauro, 1994] and checkers [Samuel,
1967], as well as in other domains such as robotic soccer
[Merke and Riedmiller, 2001]. The work presented here
differs from these mainly in two different aspects. First,
many of these applications are turn-based games. We deal
in this work with real-time, dynamic games, which lead in
general to more complex state representations, and the
need to address time processing issues. Second, while
these works are basically interested in making the
computer beat any opponent, our goal is to have the
computer always adequately challenge his opponent,
whether or not he/she is playing optimally.

3.2 Directly Learning to Play at the User Level
The problem of dynamically changing the game level
could be addressed with RL by carefully choosing the
reward so that the agent learns to act in the same level of
user skill. When the game is too easy or too hard a
negative reward is given to the agent, otherwise the
feedback is a positive reward.

This approach has the clear benefit that the
mathematical model of learning actually corresponds to
the goal of the agent. However, this approach has a lot of
disadvantages, with respect to the requirements stated in
Section 2. First, using this approach, the agent will not be
able immediately to fight against expert players, since it
would need to learn first. Second, this learning approach
may lead to non-believable behaviors. For instance, in a
fight game such as Knock’em, the agent can learn that
after hitting the user hard, it must be static and use no
defense, letting the user hit him back, so as the overall
game score remains balanced.

4 Challenge-Sensitive Action Selection
Given the difficulties in directly learning to play at the
user level, an alternative is to face dynamic game
balancing as two separate problems: learning (building
agents that can learn optimal strategies) and adapting
(providing action selection mechanisms for providing
game balance, possibly using sub-optimal actions).

Our approach faces both problems with reinforcement
learning. Due to the requirement of being immediately
able to play at the human player level, including expert
ones, at the beginning of the game, offline training is
needed to bootstrap the learning process. This can be
done by letting the agent play against itself (self-learning)
[Kaelbling et al., 1996], or other pre-programmed agents
[Madeira et al., 2004]. Then, online learning is used to
adapt continually this initially built-in intelligence to the

specific human opponent, in order to discover the most
adapted strategy to play against him or her.

Concerning dynamic game balancing, the idea is to
find the adequate policy for choosing actions that provide
a good game balance, i.e., actions that keep agent and
human player at approximately the same performance
level. In our approach, according to the difficulty the
player is facing, we propose that the agent choose actions
with high or low expected return. For a given situation, if
the game level is too hard, the agent does not choose the
optimal action (the one with highest action value), but
chooses progressively sub-optimal actions until its
performance is as good as the player’s. This entails
choosing the second best action, the third one, and so on,
until it reaches the player’s level. Similarly, if the game
level becomes too easy, it will choose actions whose
values are higher, possibly until it reaches the optimal
policy. In this sense, our idea of adaptation shares the
same principles of the one proposed by Spronck et al.
[2004], although the techniques used are different and the
works have been developed in parallel.

In this challenge-sensitive action selection mechanism,
the agent periodically evaluates if it is at the same level of
the player, through the challenge function, and according
to this result, maintains or changes its performance level.
The agent does not change its level until the next cycle.
This evaluation cycle is strongly tied to the particular
environment, in which the agent acts, depending, in
particular, on the delay of the rewards. If the cycle is too
short, the agent can exhibit a random behavior; if the
cycle is too long, it will not match the player evolution (or
regression) fast enough.

Our approach uses the order relation naturally defined
over the actions in a given state by the action-value
function, which is automatically built during the learning
process. As these values estimate the individual quality of
each possible action, it is possible to have a strong and
fast control on the agent behavior and consequently on
the game level.

It is important to notice that this technique changes
only the action selection procedure, while the agent keeps
learning during the entire game. It is also worthwhile to
stress that this action selection mechanism coupled with a
successful offline learning phase (during the bootstrap
phase), can allow the agent to be fast enough to play at
the user level at the beginning of the game, no matter how
experienced he or she is.

5 Case Study

5.1 Game Description
As a case study, the approach was applied to Knock’Em
[Andrade et al., 2004], a real-time fighting game where

9

two players face each other inside a bullring. The main
objective of the game is to beat the opponent. A fight
ends when the life points of one player (initially, 100
points) reach zero, or after 1min30secs of fighting,
whatever comes first. The winner is the fighter which has
the highest remaining life at the end. The environment is
a bidimensional arena in which horizontal moves are free
and vertical moves are possible through jumps. The
possible attack actions are to punch (strong or fast), to
kick (strong or fast), and to launch fireballs. Punches and
kicks can also be performed in the air, during a jump. The
defensive actions are blocking or crouching. While
crouching, it is also possible for a fighter to punch and
kick the opponent. If the fighter has enough spiritual
energy (called mana), fireballs can be launched. Mana is
reduced after a fireball launch and continuously refilled
over time at a fixed rate.

5.2 Learning to Fight
The fighters’ artificial intelligence is implemented as a
reinforcement learning task. As such, it is necessary to
code the agents’ perceptions, possible actions and reward
signal. We used a straightforward tabular implementation
of Q-learning, since, as we will show, although simple,
this approach can provide very good results. The state
representation (agent perceptions) is represented by the
following tuple:

S = (Sagent, Sopponent, D, Magent, Mopponent, F)
Sagent stands for agent state (stopped, jumping, or
crouching), and represents the ones in which it can
effectively make decisions, i.e., change its state. Sopponent
stands for opponent state (stopped, jumping, crouching,
attacking, jump attacking, crouch attacking, and
blocking). D represents opponent distance (near, medium
distance and far away). M stands for agent or opponent
mana (sufficient or insufficient to launch one fireball).
Finally, F stands for enemies’ fireballs configuration
(near, medium distance, far away, and no existence).

The agent’s actions are the ones possible to all fighters:
punching and kicking (strong or fast), coming close,
running away, jumping, jumping to approximate, jumping
to escape, launching fireball, blocking, crouching and
standing still.

The reinforcement signal is based on the difference of
life caused by the action (life taken out from opponent
minus life lost by the agent). As a result, the agent reward
is always in the range [-100, 100]. Negative rewards
mean bad performance, because the agent lost more life
than was taken from the opponent, while positive rewards
are the desired agent’s learning objective.

The RL agent’s initial strategy is built through
offline learning against other agents. We used state-
machine, random and another RL agent (self-learning) as

trainers. The 3 agents trained with different opponents
fought then against each other in a series of 30 fights. The
resulting mean of life differences after each fight showed
that the agents trained against the random and the
learning agents obtained the best performances. Since the
difference between these two latter agents is not
significant, in the next section experiments, the agent that
learned against a random agent is considered as the
starting point for the online RL agent. In all RL agents,
the learning rate was fixed at 0.50 and the reward
discount rate at 0.90, both for offline and online learning.
This high learning rate is used because, as the opponent
can be a human player with dynamic behavior, the agent
needs to quickly improve its policy against him or her.

5.3 Fighting at the User’s Level
The action selection mechanism proposed was
implemented and evaluated in Knock’em. The challenge
function used is based on the life difference during the
fights. In order to stimulate the player, the function is
designed so that the agent tries to act better than him or
her. Therefore, we empirically stated the following
heuristic challenge function: when the agent’s life is
smaller than the player’s life, the game level is easy;
when their life difference is smaller than 10% of the total
life (100), the game level is medium; otherwise, it is
difficult. ⎧

⎪
⎩

⎪
⎨ <−

<
=

otherwisedifficult
playerLagentLifmedium

playerLagentLifeasy
f

,
10)()(,

)()(,

The evaluation cycle used is 100 game cycles (or game
loops). This value was empirically set to be long enough
so that the agent can get sufficient data about the
opponent before evaluating him or her, and short enough
so that the agent quickly adapt to the player’s behavior.

The implementation of the proposed action selection
mechanism is summarized as follows. The agent starts the
game acting at its medium performance level. As in
Knock’em there are thirteen possible actions and so
thirteen possible levels in our adaptive agent, it starts at
the sixth level. During the game, the agent chooses the
action which is the 6th highest value at the action-value
function. After the evaluation cycle (100 game cycles), it
evaluates the player through the previous challenge
function. If the level is easy, the agent regresses to the 7th
level; if it is difficult, it progresses to the 5th level;
otherwise, it remains on the 6th level. As there are
approximately 10 evaluations through a single fight, the
agent can advance to the best performance level or
regress to the worst one in just the first fight.

5.4 Experimental Results
Since it is too expensive and complex to run experiments
with human players, we decided to initially validate our

10

adaptation approach comparing the performance of two
distinct agents: a traditional reinforcement learning
(playing as well as possible), and the adaptive agent
(implementing the proposed approach). Both agents were
previously trained against a random agent. The evaluation
scenario consists of a series of fights against different
opponents, simulating the diversity of human players
strategies: a state-machine (SM, static behavior), a
random (RD, unforeseeable behavior) and a trained
traditional RL agent (TRL, intelligent and with learning
skills).

Each agent being evaluated plays 30 fights against each
opponent. The performance measure is based on the final
life difference in each fight. Positive values represent
victories of the evaluated agent, whereas negative ones
represent defeats.

In each evaluation, testing hypotheses (p-value
significance tests) are provided to check whether the
mean of the differences of life in each set is different
from zero at a significance level of 5%. If the mean is
significantly different from zero, then one of the agents is
better than the other; otherwise, the agents must be
playing at the same level.

Figure 1 shows the traditional RL (TRL) agent
performance against each of the other 3 agents. The
positive values of the white and black lines show that the
agent can beat a random and a state-machine opponent.
The gray line shows that two TRL fighters have a similar
performance while fighting against each other. Table 1
summarizes these data and shows that the TRL is
significantly better than a SM and a RD agent, but play at
the same level of other TRL agent.

Figure 2 illustrates the adaptive RL agent performance.
Although this agent has the same capabilities as
traditional RL, because their learning algorithms and their
initial knowledge are the same, the adaptive mechanism
forces the agent to act at the same level as the opponent.
The average performance shows that most of the fights
end with a small difference of life, meaning that both
fighters had similar performance. Table 2 confirms these
results showing that the adaptive agent is equal to the
three opponent agents.

The adaptive RL agent (ARL) obtains similar
performance against different opponents because it can
interleave easy and hard actions, balancing the game
level. Figure 3 shows a histogram with the agent actions
frequency. The thirteen x-values correspond to all actions
the agent can perform. The leftmost action is to the one
with the highest value at the action-value function, while
the rightmost is the one with lowest value. This way, the
leftmost is the action which the agent believes to be the
strongest one in each state and the rightmost is the action
it believes to be the lighter one. The high frequency of

powerful actions against the TRL agent shows that the
ARL agent needed to play at an advanced performance
level. The frequency of actions against the SM and RD
agents shows that the ARL played in an easier level,
around the 9th and 11th one.

Traditional RL against other agents

-100

-80

-60

-40

-20

0

20

40

60

80

100

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30

SM RD TRL
Figure 1: Traditional RL agent performance (SM = State

Machine, RD = Random, TRL = traditional RL).

Table 1: Traditional RL performance analysis

 Mean Std. deviation p-value Difference is
significant?

SM 52,47 11,54 0,00 Yes
RD 55,47 23,35 0,00 Yes
TRL -2,17 27,12 0,66 No

Adaptive RL against other agents

-100

-80

-60

-40

-20

0

20

40

60

80

100

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30

SM RD TRL
Figure 2: Adaptive RL agent performance (SM = State

Machine, RD = Random, TRL = traditional RL).

Table 2: Adaptive RL performance analysis

 Mean Std. deviation p-value Difference is
significant?

SM 0,37 20,67 0,92 No
RD 4,47 23,47 0,30 No
TRL -7,33 21,98 0,07 No

6 Conclusions
In this paper, we presented agents that can analyze their
own learned knowledge in order to choose actions which
are just good enough to be challenging for the human
opponent, whatever his or her level. These agents
dynamically adapt their behavior while learning in order

11

to keep the game level adapted to the current user skills, a
key problem in computer games.

Actions Frequency Histogram

1st 2nd 3rd 4th 5th 6th 7th 8th 9th 10th 11th 12th 13th

ARL x SM ARL x RD ARL x TRL
Figure 3: Histogram for the adaptive agent

The results obtained in a real-time fighting game
indicate the effectiveness of our approach. In fact,
although the adaptive agent could easily beat their
opponents, it plays close to their level, interleaving wins
and defeats. However, the proposed approach can be used
in different game genres [Manslow, 2003]. It is only
necessary to formulate the game as a reinforcement
learning task, using as challenge function a heuristic
based in the game score. Moreover, the concepts
presented in this paper can be used with different learning
techniques, as long as an order relation for the actions can
be defined in each game state. Finally, the need for user
adaptation is also a major concern in applications such as
computer aided instruction [Beck et al., 1997]. In general,
the present work is useful when the skill or knowledge of
the user must be continuously assessed to guide the
choice of the adequate challenges (e.g. missions,
exercises, questions, etc.) to be proposed.

We are now running systematic experiments with
around 50 human players, who are playing against
different types of agents, including our adaptive one, to
check which one is really entertaining. The first results
are encouraging, but the study is ongoing.

References
[Andrade et al., 2004] Gustavo Andrade, Hugo Santana,

André Furtado, André Leitão, and Geber Ramalho.
Online Adaptation of Computer Games Agents: A
Reinforcement Learning Approach. In Proceedings of
the 3rd Brazilian Workshop on Computer Games and
Digital Entertainment, Curitiba, 2004.

[Beck et al., 1997] Joseph Beck., Mia Stern, and Beverly
Woolf. Using the Student Model to Control Problem
Difficulty. In Proceedings of Sixth International
Conference on User Modeling, pages 277-288,
Vienna, 1997.

[Demais and Cruz, 2002] Pedro Demasi and Adriano
Cruz. Online Coevolution for Action Games. In

Proceedings of the 3rd International Conference on
Intelligent Games and Simulation, pages 113-120,
London, 2002.

[Falstein, 2004] Noah Falstein. The Flow Channel. Game
Developer Magazine, May Issue, 2004.

[Hunicke and Chapman, 2004] Robin Hunicke and
Vernell Chapman. AI for Dynamic Difficulty
Adjustment in Games. Challenges in Game Artificial
Intelligence AAAI Workshop, pages 91-96, San Jose,
2004.

[Kaelbling et al., 1996] Leslie Kaelbling, Michael
Littman, and Andrew Moore. Reinforcement
Learning: A Survey. Journal of Artificial Intelligence
Research, pages 4:237-285, 1996.

[Koster, 2004] Raph Koster. Theory of Fun for Game
Design, Paraglyph Press, Phoenix, 2004.

[Langley, 1997] Pat Langley. Machine Learning for
Adaptive User Interfaces. Kunstiche Intellugenz,
pages 53-62, 1997.

[Madeira et al., 2004] Charles Madeira, Vincent
Corruble, Geber Ramalho and Bohdana Ratitch.
Bootstrapping the Learning Process for the Semi-
automated Design of a Challenging Game AI.
Challenges in Game Artificial Intelligence AAAI
Workshop, pp. 72-76, San Jose, 2004.

[Manslow, 2003] John Manslow. Using Reinforcement
Learning to Solve AI Control Problems. In Steve
Rabin, editor, AI Game Programming Wisdom 2,
Charles River Media, Hingham, MA, 2003.

[Merke and Riedmiller, 2001] Artur Merke and Martin
Riedmiller. Karlsruhe Brainstormers - A
Reinforcement Learning Approach to Robotic Soccer.
RoboCup 2001. RoboCup-2000: Robot Soccer World
Cup IV, pages 435-440, London, 2001.

[Samuel, 1967] A.L. Samuel. Some studies in machine
learning using the game of checkers II-Recent
progress. IBM Journal on Research and Development,
pages 11:601-617, 1967.

 [Spronck et al., 2004] Pieter Spronck, Ida Sprinkhuizen-
Kuyper and Eric Postma. Difficulty Scaling of Game
AI. In Proceedings of the 5th International
Conference on Intelligent Games and Simulation,
pages 33-37, Belgium, 2004

[Sutton and Barto, 1998] Richard Sutton and Andrew
Barto. Reinforcement Learning: An Introduction. The
MIT Press, Massachusetts, 1998.

[Tesauro, 1994] Garry Tesauro. TD-Gammon, a self-
teaching backgammon program, achieves master-level
play. Neural Computation, pages 6(2): 215-219, The
MIT Press, Massachusetts, 1994.

12

Best-Response Learning of Team Behaviour in Quake III

Sander Bakkes, Pieter Spronckand Eric Postma
Universiteit Maastricht

Institute for Knowledge and Agent Technology (IKAT)
P.O. Box 616, NL-6200 MD Maastricht, The Netherlands

{s.bakkes, p.spronck, postma}@cs.unimaas.nl

Abstract

This paper proposes a mechanism for learning
a best-response strategy to improve opponent in-
telligence in team-oriented commercial computer
games. The mechanism, called TEAM2, is an ex-
tension of the TEAM mechanism for team-oriented
adaptive behaviour explored in[Bakkes et al.,
2004] and focusses on the exploitation of rele-
vant gameplay experience. We compare the per-
formance of the TEAM2 mechanism with that of
the original TEAM mechanism in simulation stud-
ies. The results show the TEAM2 mechanism to
be better able to learn team behaviour. We argue
that the application as an online learning mecha-
nism is hampered by occasional very long learning
times due to an improper balance between exploita-
tion and exploration. We conclude that TEAM2 im-
proves opponent behaviour in team-oriented games
and that for online learning the balance between ex-
ploitation and exploration is of main importance.

1 Introduction
In recent years, commercial computer game developers have
emphasised the importance of high-quality game opponent
behaviour.Online learningtechniques may be used to signif-
icantly improve the quality of game opponents by endowing
them with the capability of adaptive behaviour (i.e., artifi-
cial creativity and self-correction). However, to our knowl-
edge online learning has never been used in an actual com-
mercial computer game (henceforth called ‘game’). In ear-
lier work [Bakkeset al., 2004], we have proposed a mecha-
nism named TEAM (Team-oriented Evolutionary Adaptabil-
ity Mechanism) for team-oriented learning in games. Our
experiments revealed TEAM to be applicable to commercial
computer games (such as Quake-like team-games). Unfortu-
nately, the applicability is limited due to the large variation in
the time needed to learn the appropriate tactics.

This paper describes our attempts to improve the efficiency
of the TEAM mechanism usingimplicit opponent models
[van den Heriket al., 2005]. We propose an extension of
TEAM called TEAM2. The TEAM2 mechanism employs
a data store of a limited history of results of tactical team
behaviour, which constitutes an implicit opponent model,

on which a best-response strategy[Carmel and Markovitch,
1997] is formulated. We will ague thatbest-response learn-
ing of team-oriented behaviour can be applied in games. We
investigate to what extent it is suitable for online learning.

The outline of this paper is as follows. Section 2 discusses
team-oriented behaviour (team AI) in general, and the ap-
plication of adaptive team AI in games in particular. The
TEAM2 best-response learning mechanism is discussed in
section 3. In section 4, an experiment to test the performance
of the mechanism is discussed. Section 5 reports our findings,
and section 6 concludes and indicates future work.

2 Adaptive Team AI in Commercial
Computer Games

We defined adaptive team AI as the behaviour of a team of
adaptive agents that competes with other teams within a game
environment[Bakkeset al., 2004]. Adaptive team AI consists
of four components: (1) the individual agent AI, (2) a means
of communication, (3) team organisation, and (4) an adaptive
mechanism.

Figure 1: Screenshot of the gameQUAKE III . An agent fires
at a game opponent.

13

The first three components are required for agents to es-
tablish team cohesion, and for team-oriented behaviour to
emerge. The fourth component is crucial for improving the
quality of the team during gameplay. The next sub-sections
discuss a mechanism for adaptive team AI, and its perfor-
mance.

2.1 The Team-oriented Evolutionary Adaptability
Mechanism (TEAM)

The observation that humans players prefer to play against
other humans over players against artificial opponents[van
Rijswijck, 2003], led us to design the Team-oriented Evolu-
tionary Adaptability Mechanism (TEAM). TEAM is an on-
line evolutionary learning technique designed to adapt the
team AI of Quake-like games. TEAM assumes that the be-
haviour of a team in a game is defined by a small number of
parameters, specified per game state. A specific instance of
team behaviour is defined by values for each of the parame-
ters, for each of the states. TEAM is defined as having the
following six properties: 1) state-based evolution, 2) state-
based chromosome encoding, 3) state-transition-based fitness
function, 4) fitness propagation, 5) elitist selection, and 6)
manually-designed initialisation[Bakkeset al., 2004].

For evolving successful behaviour, typical evolutionary
learning techniques need thousands of trials (or more). There-
fore, at first glance such techniques seem unsuitable for the
task of online learning. Laird[2000] is skeptical about the
possibilities offered by online evolutionary learning in games.
He states that, while evolutionary algorithms may be ap-
plied to tune parameters, they are “grossly inadequate when
it comes to creating synthetic characters with complex be-
haviours automatically from scratch”. In contrast, the results
achieved with the TEAM mechanism in the gameQUAKE III
show that it is certainly possible to use online evolutionary
learning in games.

2.2 Enhancing the Performance of TEAM

Spronck[2005] defines four requirements for qualitatively
acceptable performance were defined: speed, robustness, ef-
fectiveness, and efficiency. For the present study, the require-
ment of efficiency is of main relevance. Efficiency is defined
as the learning time of the mechanism. In adaptive team AI,
efficiency depends on the number of learning trials needed to
adopt effective behaviour. Applied to theQUAKE III capture-
the-flag (CTF) team game, the TEAM mechanism requires
about2 hours of real-time play to significantly outperform
the opponent. SinceQUAKE III matches take on average half
an hour, the TEAM mechanism lacks efficiency to enable suc-
cessful online learning in games such asQUAKE III .

When one aims for efficient adaptation of opponent be-
haviour in games, the practical use of evolutionary online
learning is doubtful[Spronck, 2005]. Therefore, the design
of TEAM needs to be enhanced with a different approach
to learning team-oriented behaviour. The enhanced design,
named TEAM2, is discussed next.

3 Best-Response Learning of Team-oriented
Behaviour

The design of TEAM2, aimed at efficiently adapting op-
ponent behaviour, is based on a best-response learning ap-
proach (instead of evolutionary learning)1. This section dis-
cusses the properties of the enhanced design: (1) a symbiotic
learning concept, (2) learning a best-response team strategy,
(3) a state-transition-based fitness function, and (4) a scaled
roulette-wheel selection. The popularQUAKE III CTF game
[van Waveren and Rothkrantz, 2001], is used for illustrative
purposes.

3.1 Symbiotic Learning
Symbiotic learning is a concept for learning adaptive behav-
iour for a team as a whole(rather than learning adaptive be-
haviour for each individual). The TEAM mechanism suc-
cessfully applied the concept for the purpose of adapting op-
ponent behaviour in team-oriented games. The onset of the
design of TEAM was the observation that the game state of
team-oriented games can typically be represented as a finite
state machine (FSM). By applying an instance of an adaptive
mechanism to each state of the FSM, one is able to learn rela-
tively uncomplicated team-oriented behaviour for the specific
state. Cooperatively, from all instances of the applied adap-
tive mechanism, relatively complex team-oriented behaviour
emerges in a computationally fast fashion. The concept of
symbiotic learning is illustrated in figure 2. The figure exem-
plifies how instances of an adaptive mechanism cooperatively
learn team-oriented behaviour, which is defined as the combi-
nation of the local optima for the states (in this example there
are four states).

An instance of the adaptive mechanism automatically gen-
erates and selects the best team-configuration for the specific
state. A team-configuration is defined by a small number of
parameters which represent team behaviour (e.g. one team-
configuration can represent an offensive tactic, whereas an-
other team-configuration can represent a defensive tactic).

 T E A M i n s t a n c e f o r s t a t e # 1 T E A M i n s t a n c e f o r s t a t e # 2

L o c a l o p t i m u m
f o r s t a t e # 1

L o c a l o p t i m u m
f o r s t a t e # 2

O p t i m a l s t r a t e g y
f o r a l l s t a t e s

T E A M i n s t a n c e f o r s t a t e # 3

T E A M i n s t a n c e f o r s t a t e # 4

L o c a l o p t i m u m
f o r s t a t e # 3

L o c a l o p t i m u m
f o r s t a t e # 4

TEAM2 instance for state #1

TEAM2 instance for state #3

TEAM2 instance for state #2

TEAM2 instance for state #4

Figure 2: Symbiotic learning.

1Since TEAM2 is not inspired by evolutionary algorithms, we
let the reader imagine that the letter ‘E’ is an abbreviation for ‘Ex-
ploitative’ (instead of ‘Evolutionary’).

14

3.2 Learning a Best-Response Team Strategy
Adaptation to the opponent takes place via an implicit oppo-
nent model, which is built and updated when the team game
is in progress. Per state of the game, the sampled data merely
concerns the specific state and represents all possible team-
configurations for the state. The implicit opponent model
consists of historic data of results per team-configuration
per state. An example of the structure of an implicit oppo-
nent model is given in table 1. In the example, the team-
configuration represents the role division of a team with four
members. Each of which has either an offensive, a defensive
or an roaming role. The history can anything from a store of
fitness values, to a complex data-structure.

Team configuration History Fitness
(0,0,4) [0.1,0.6,...,0.5] 0.546
(0,1,3) [0.3,0.1,...,0.2] 0.189

...
...

...
(4,0,0) [0.8,0.6,...,0.9] 0.853

Table 1: Example of an implicit opponent model for a specific
state of theQUAKE III capture-the-flag game.

On this basis, a best-response strategy is formulated when
the game transits from one state to another. For reasons of
efficiency and relevance, only recent historic data are used
for the learning process.

3.3 State-transition-based Fitness Function
The TEAM2 mechanism uses a fitness function based on state
transitions. Beneficial state transitions reward the tactic that
caused the state transition, while detrimental state transitions
penalise it. To state transitions that directly lead to scoring (or
losing) a point, the fitness function gives a reward (or penalty)
of 4. Whereas to the other state transitions, the fitness func-
tion gives a reward (or penalty) of1. This ratio is empirically
decided by the experimenters. In figure 3, an example of an-
notations on the FSM of theQUAKE III CTF game is given.

Usually, judgement whether a state transition is beneficial
or detrimental cannot be given immediately after the transi-
tion; it must be delayed until sufficient game-observations are
gathered. For instance, if a state transition happens from a
state that is neutral for the team to a state that is good for the
team, the transition seems beneficial. However, if this is im-
mediately followed by a second transition to a state that is bad
for the team, the first transition cannot be considered benefi-
cial, since it may have been the primary cause for the second
transition.

3.4 Scaled Roulette-Wheel Selection
The best-response learning mechanism selects the preferred
team-configuration by implementing a roulette wheel method
[Nolfi and Floreano, 2000], where each slot of the roulette
wheel corresponds to a team-configuration in the state-
specific solution space, and the size of the slot is proportional
to the obtained fitness-value of the team-configuration. The
selection mechanism quadratically scales the fitness values
to select the higher-ranking team-configurations more often,

 (1)

B o t h
 f l a g s

a t
 t h e i r b a s e

(2)

B a s e
 f l a g

s t o l e n

(3)

E n e m y
 f l a g

s t o l e n

(4)

B o t h
 f l a g s

s t o l e n

+
 f r i e n d l y f l a g r e c o v e r e d b y t e a m

 -
 o p p o n e n t c a r r i e s f l a g t o h i s b a s e (o p p o n e n t s c o r e s)

-

+
 f r i e n d l y f l a g r e c o v e r e d b y t e a m

 -
 o p p o n e n t c a r r i e s f l a g t o h i s b a s e (o p p o n e n t s c o r e s)

-

+
 +

 f l a g c a r r i e r r e t u r n s t o b a s e (f r i e n d l y t e a m
 s c o r e s) -

 e n e m y
 f l a g r e c o v e r e d b y o p p o n e n t

+
 e n e m y

 f l a g i s r e t u r n e d b y f l a g c a r r i e r (f r i e n d l y t e a m
 s c o r e s) +

e n e m y
 f l a g r e c o v e r e d b y o p p o n e n t -

--

--

++

++

Figure 3: Annotated finite state machine ofQUAKE III CTF.
Highly beneficial and beneficial transitions are denoted with
“++” and “+” respectively, whereas detrimental and highly
detrimental state transitions are denoted with “−” and “−−”
respectively.

acknowledging that game opponent behaviour must be non-
degrading. In acknowledgement of the inherent randomness
of a game environment, the selection mechanism protects
against selecting inferior top-ranking team-configurations.

4 Experimental Study of the TEAM2
Mechanism

To assess the efficiency of the TEAM2 mechanism, we in-
corporated it in theQUAKE III CTF game. We performed
an experiment in which an adaptive team (controlled by
TEAM2) is pitted against a non-adaptive team (controlled
by theQUAKE III team AI). In the experiment, the TEAM2
mechanism adapts the tactical behaviour of a team to the op-
ponent. A tactic consists of a small number of parameters
which represent the offensive and defensive division of roles
of agents that operate in the game.

The inherent randomness in theQUAKE III environment
requires the learning mechanism to be able to successfully
adapt to significant behavioural changes of the opponent.
Both teams consist of four agents with identical individual
agent AI, identical means of communication and an identical
team organisation. They only differ in the control mechanism
employed (adaptive or non-adaptive).

4.1 Experimental Setup

An experimental run consists of two teams playingQUAKE
III CTF until the game is interrupted by the experimenter.
On average, the game is interrupted after two hours of game-
play, since the original TEAM mechanism typically requires
two hours to learn successful behaviour, whereas the TEAM2
mechanism should perform more efficiently. We performed
20 experimental runs with the TEAM2 mechanism. The re-
sults obtained will be compared to those obtained with the
TEAM mechanism (15 runs, see[Bakkeset al., 2004]).

15

4.2 Performance Evaluation
To quantify the performance of the TEAM2 mechanism, we
determine the so-called turning point for each experimental
run. The turning point is defined as the time step at which the
adaptive team takes the lead without being surpassed by the
non-adaptive team during the remaining time steps.

We defined two performance indicators to evaluate the ef-
ficiency of TEAM2: the median turning point and the mean
turning point. Both indicators are compared to those obtained
with the TEAM mechanism. The choice for two indicators is
motivated by the observation that the amount of variance in-
fluences the performance of the mechanism[Bakkeset al.,
2004].

To investigate the variance of the experimental results, we
defined an outlier as an experimental run which needed more
than91 time steps to acquire the turning point (the equivalent
of two hours).

4.3 Results
In table 2 an overview of the experimental results of the
TEAM2 experiment is given. It should be noted that in two
tests, the run was prematurely interrupted without a turning
point being reached. We incorporated these two test as having
a turning as high as the highest outlier, which is 358. Interim
results indicate that, should the runs be not prematurely in-
terrupted, their turning points would have been no more than
half of this value.

The median turning point acquired is 38, which is signif-
icantly lower that the median turning point of the TEAM
mechanism, which is 54. The mean turning point acquired
with TEAM2, however, is significantly higher than the mean
turning point acquired with the TEAM mechanism (102 and
71, respectively). The percentage of outliers in the total num-
ber of tests is about equal. However, the range of the outliers
has significantly increased for TEAM2.

To illustrate the course of an experimental run, we plotted
the performance for a typical run in figure 4. The perfor-
mance is expressed in terms of the lead of the adaptive team,
which is defined as the score of the adaptive team minus the
score of the non-adaptive team. The graph shows that, ini-

TEAM TEAM2
Experiments Total 15 20

Outliers 4 6
Outliers in% 27% 30%

Mean 71.33 102.20
Std. Deviation 44.78 125.29
Std. Error of Mean 11.56 28.02

Median 54 38
Range 138 356
Minimum 20 2
Maximum 158 358

Table 2: Summary of experimental results. With TEAM2 the
median turning point is significantly lower, yet, outliers have
a negative effect on the mean turning point.

-25

0

25

50

75

100

125

150

175

200

225

250

275

300

325

350

1 51 101 151 201 251 301 351 401 451 501

Point #

L
ea

d
 o

f
ad

ap
ti

ve
 t

ea
m

Figure 4: Illustration of typical experimental results obtained
with the TEAM2 mechanism. The graph shows the lead of
the adaptive team over the non-adaptive team as a function of
the number of scored points.

tially, the adaptive team attains a lead of approximately zero.
At the turning point (labeled 38 in figure 4), the adaptive
team takes the lead over the non-adaptive team. Addition-
ally, the graph reveals that the adaptive team outperforms the
non-adaptive team without any significant degradation in its
performance.

4.4 Evaluation of the Results

The experimental results show that TEAM2 is able to suc-
cessfully adapt game opponent behaviour in an highly non-
deterministic environment, as it challenged and defeated the
fine-tunedQUAKE III team AI.

The results listed in table 1 show that the TEAM2 mecha-
nism outperforms the TEAM mechanism in terms of the me-
dian turning point. However, the mean turning point is larger
for TEAM2 than for TEAM, which is explained by the in-
creased range of the outliers. The median turning point indi-
cates that the TEAM2 best-response learning mechanism is
more efficient than the TEAM online evolutionary learning
mechanism, as the adaptation to successful behaviour pro-
gresses more swiftly than before; expressed in time only 48
minutes are required (as compared to 69 minutes).

Therefore, we may draw the conclusion that the TEAM2
mechanism exceeds the applicability of the TEAM mecha-
nism for the purpose of learning in games. The qualitative
acceptability of the performance is discussed next.

5 Discussion

Our experimental results show that the TEAM2 mechanism
succeeded in enhancing the learning performance of the
TEAM mechanism with regard to its median, but not mean,
efficiency. In sub-section 5.1 we give a comparison of the
learned behaviour of both mechanisms. Sub-section 5.2 dis-
cusses the task of online learning in a commercial computer
game environment with regard to the observed outliers.

16

5.1 Comparison of the Behaviour Learned by
TEAM and TEAM2

In the original TEAM experiment we observed that the adap-
tive team would learn so-called “rush” tactics. Rush tac-
tics aim at quickly obtaining offensive field supremacy. We
noted that theQUAKE III team AI, as is was designed by
the QUAKE III developers, uses only moderate tactics in
all states, and therefore, it is not able to counterany field
supremacy.

The TEAM2 mechanism is inclined to learn rush tactics
as well. Notably, the experiment showed that if the adap-
tive team uses tactics that are slightly more offensive than the
non-adaptive team, it is already able to significantly outper-
form the opponent. Besides the fact that theQUAKE III team
AI cannot adapt to superior player tactics (whereas an adap-
tive mechanism can), it is not sufficiently fine-tuned; for it
implements an obvious and easily detectable local-optimum.

5.2 Exploitation versus Exploration

In our experimental results we noticed that the exploita-
tive TEAM2 mechanism obtained a significant difference be-
tween the relatively low median and relatively high mean
performance, whereas the original, less exploitative, TEAM
mechanism obtained a moderate difference between the me-
dian and mean performance. This difference is illustrated
in figure 5. It reveals that the exploitative TEAM2 mecha-
nism obtained a significant difference between the relatively
low median and relatively high mean performance, whereas
the original, less exploitative, TEAM mechanism obtained a
moderate difference between the median and mean perfor-
mance.

An analysis of the phenomenon revealed that it is due
to a well-known dilemma in machine learning[Carmel
and Markovitch, 1997]: the exploitation versus exploration
dilemma. This dilemma entails that a learning mechanism re-
quires the exploration of derived results to yield successful
behaviour in the future, whereas at the same time the mecha-
nism needs to directly exploit the derived results to yield suc-
cessful behaviour in the present. Acknowledging the need for
an enhanced efficiency, the emphasis of the TEAM2 mecha-
nism lies on exploiting the data represented in a small amount
of samples.

In the highly non-deterministicQUAKE III environment, a
long run of fitness values may occur that, due to chance, is
not representative for the quality of the tactic employed. Ob-
viously, this problem results from the emphasis on exploiting
the small samples taken from the distribution of all states.
To increase the number of samples, an exploration mecha-
nism can be added. The TEAM online evolutionary learning
mechanism employed such an exploration mechanism with a
fitness propagation technique, which led to loss of efficiency.
We tested several exploration mechanisms in TEAM2, which
we found also led to loss of efficiency. However, since it
is impossible to rule out chance runs completely, an online
learning mechanism must be balanced between an exploita-
tive and explorative emphasis.

Performance histogram of TEAM

0

1

2

3

4

5

6

7

8

9

10

0 25 50 75 100 125 150 175 200 225 250 275 300 325 350 375

Category

T
ur

ni
ng

 p
oi

nt
s

Performance histogram of TEAM2

0

1

2

3

4

5

6

7

8

9

10

0 25 50 75 100 125 150 175 200 225 250 275 300 325 350 375

Category

T
ur

ni
ng

 p
oi

nt
s

Figure 5: Histograms of the results of both the TEAM2 and
TEAM experiment. The graphs show the number of turning
points as a function of the value of the turning point, grouped
by a category value of25.

6 Conclusions and Future Work

The TEAM2 mechanism was proposed as an enhancement
to the novel Tactics Evolutionary Adaptability Mechanism
(TEAM), designed to impose adaptive behaviour on oppo-
nents in team-oriented games. The original TEAM mecha-
nism is capable of unsupervised and intelligent adaptation to
the environment, yet, its efficiency is modest. From the ex-
perimental results of the best-response learning experiment,
we drew the conclusion that the TEAM2 best-response learn-
ing mechanism succeeded in enhancing the median, but not
mean, learning performance. This reveals that in the cur-
rent experimental setup the exploitation and exploration are
not sufficiently well balanced to allow efficient and effective
online learning in an actual game. As the TEAM2 mecha-
nism is easily able to defeat a non-adaptive opponent, we may
therefore conclude that the mechanism is suitable for online
learning in an actual game if, and only if, a balance between
exploitation and exploration is found for that specific game.
Moreover, the TEAM2 mechanism can be used during game
development practice to automatically validate and produce

17

AI that is not limited by a designer’s vision.
Future research should investigate how an effective balance

between exploitation of historic data and exploration of alter-
natives can be achieved. We propose to create a data store of
gameplay experiences relevant to decision making processes,
and use it to build an opponent model. Thereupon, game AI
can either predict the effect of actions it is about to execute,
or explore a more creative course of action.

Acknowledgements
This research was funded by a grant from the Nether-
lands Organization for Scientific Research (NWO grant No
612.066.406).

References
[Bakkeset al., 2004] Sander Bakkes, Pieter Spronck, and

Eric Postma. TEAM: The Team-oriented Evolutionary
Adaptability Mechanism. In Matthias Rauterberg, edi-
tor, Entertainment Computing - ICEC 2004, volume 3166
of Lecture Notes in Computer Science, pages 273–282.
Springer-Verlag, September 2004.

[Carmel and Markovitch, 1997] David Carmel and Shaul
Markovitch. Exploration and adaptation in multiagent sys-
tems: A model-based approach. InProceedings of The
Fifteenth International Joint Conference for Artificial In-
telligence, pages 606–611, Nagoya, Japan, 1997.

[Laird, 2000] John E. Laird. Bridging the gap between de-
velopers & researchers.Game Developers Magazine, Vol
8, August 2000.

[Nolfi and Floreano, 2000] Stefano Nolfi and Dario Flore-
ano. Evolutionary Robotics. MIT Press, 2000. ISBN
0-262-14070-5.

[Spronck, 2005] Pieter Spronck.Adaptive Game AI. PhD
thesis, SIKS Dissertation Series No. 2005-06, Universiteit
Maastricht (IKAT), The Netherlands, 2005.

[van den Heriket al., 2005] Jaap van den Herik, Jeroen
Donkers, and Pieter Spronck. Opponent modelling and
commercial games. Universiteit Maastricht (IKAT), The
Netherlands, 2005.

[van Rijswijck, 2003] Jack van Rijswijck. Learning goals in
sports games. Department of Computing Science, Univer-
sity of Alberta, Canada, 2003.

[van Waveren and Rothkrantz, 2001] Jean-Paul van Waveren
and Leon Rothkrantz. Artificial player for Quake III
Arena. In Norman Gough Quasim Mehdi and David Al-
Dabass, editors,Proceedings of the 2nd International Con-
ference on Intelligent Games and Simulation GAME-ON
2001, pages 48–55. SCS Europe Bvba., 2001.

18

OASIS: An Open AI Standard Interface Specification to Support Reasoning,
Representation and Learning in Computer Games

Clemens N. Berndt, Ian Watson & Hans Guesgen
University of Auckland

Dept. of Computer Science
New Zealand

clemens.berndt@gmail.com, {ian, hans}@cs.auckland.ac.nz

Abstract
Representing knowledge in computer games in such a

way that reasoning about the knowledge and learning new
knowledge, whilst integrating easily with the game is a
complex task. Once the task is achieved for one game, it has
to be tackled again from scratch for another game, since
there are no standards for interfacing an AI engine with a
computer game. In this paper, we propose an Open AI
Standard Interface Specification (OASIS) that is aimed at
helping the integration of AI and computer games.

1. Introduction
Simulations with larger numbers of human participants

have been shown to be useful in studying and creating
human-level AI for complex and dynamic environments
[Jones, et al. 1999]. The premises of interactive computer
games as a comparable platform for AI research have been
discussed and explored in several papers [Laird, & Duchi,
2000; Laird & van Lent, 2001]. A specific example would
be Flight Gears, a game similar to Microsoft's Flight
Simulator, that has been used for research into agents for
piloting autonomous aircraft [Summers, et al. 2002].

If interactive computer games represent a great research
opportunity why is it that we still see so comparatively little
research being conducted with commercial grade games?
Why is most AI research confined to games of the FPS
genre and the mostly less complex open-source games? We
believe that the single most important reason for this
phenomenon is the absence of an open standard interface
specification for AI in interactive computer games.
2. Standard Interfaces

Standard interfaces allow a piece of software to expose
functionality through a common communication model that
is shared amongst different implementations with equivalent
or related functionality. The advantage of a common
communication model is that other software may request
similar services from different programs without being
aware of a vendor specific implementation. The usefulness
of standard interfaces has been widely acknowledged and
found widespread application in many computing
disciplines and especially within the software engineering

community.
Successful examples of open standard interfaces in the

industry are plentiful. They include TCP/IP, DOTNET CLI,
XML Web Services, CORBA, SQL, ODBC, OpenGL,
DirectX, the Java VM specifications and many others. We
suggest that applying the same principle to AI in computer
games would significantly reduce the effort involved in
interfacing AI tools with different games. In the absence of
a common communication model for interacting with the
virtual worlds of computer games, AI researchers have to
concern themselves with implementation specifics of every
game they would like to interface with. This usually entails
a significant amount of work especially with closed source
commercial games that do not expose a proprietary mod
interface.

Fig. 1 Non-Standard Game AI Interfaces

Games in the FPS segment have been a leader in
implementing proprietary mod interfaces to encourage third
parties to develop mods (i.e. modification or extensions) to
their games. These interfaces significantly reduce the effort
required to build custom extensions to the original game
engine. As a result of this FPS games have been used as a
platform for AI research [Laird, 2000; Khoo & Zubek,
2002; Gordon & Logan, 2004]. Application of similar
interfaces to real time strategy games has been suggested by
some researchers [van Lent, et al. 2004]. Others have
suggested game engine interfaces for supporting particular

19

areas of AI research such as machine learning [Aha &
Molineaux, 2004].
However, proprietary mod interfaces, whilst having the
potential to significantly reduce effort when working with a
particular game, do not provide AI developers with the
benefits associated with an open framework of standard
interfaces. An AI mod created for one game will still have
to be fitted with an additional interface module to be able to
support another game (Fig. 1). This makes it difficult for AI
researchers to validate their work across different computer
games.

Rather than implementing non-standard interfaces for
each and every computer game in the market, we believe it
would be useful to create a set of open standard interface
specification that are applicable to computer games of all
genres. In addition an open standard interface specification
for game AI would also have the potential of commercial
success as it could provide a means of both reducing AI
development costs by acting a guideline and boosting game
popularity through third party add-ons while allowing
intellectual property to be protected.
In brief, we are pursuing the following goals:
Simplicity: The interface specification should be simple, yet
powerful and flexible enough to cover the various aspects of
AI associated with computer games.
Extensibility: Modularity should be a core requirement, so
that further functionality can easily be added to the
framework as necessary.
Encapsulation: The interface specification should consist of
layers that provide access to the game engine with an
increasing degree of abstraction.
Cohesion: There should be a clear separation of function
and logic. Each component of the framework should either
play a functional (e.g. symbol mapping) or a logical role
(e.g. plan generation), but not both.

3. Related Work
Researchers active in different areas of AI have long

realised the importance of developing and employing
standards that alleviate some of the difficulties of
interfacing their research work with its area of application.
Even though work in this area has led to advances in
providing standardised tools for AI researchers and
developers little work has been done in the area of standard
interfaces. One of the main reasons for this is probably the
heterogeneous nature of AI research. Computer games,
however, represent a comparatively homogenous area of
application and thus may see a more profound impact from
standard interface specifications.

Past standardisation efforts in the area of AI can be
roughly grouped into two categories:

1. work on standard communication formats and,
2. the development of standard AI architectures.

The development of standard communication formats is
occupied primarily with the standardisation of expressive

representational formats that enable AI systems and tools to
flexibly interchange information. Work in this category
encompasses standards such as KIF [Genesereth & Fikes,
1992] and PPDL [McDermott, et al., 1998]. We will refer to
efforts in this category as information centric standards.
Although information centric standards play a crucial part in
the communication model of a standard interface
specification they by themselves are not a replacement for
such a framework. In addition, most of the information
centric standardisation work in the past, whilst being well
suited for most areas of AI, does not meet the performance
requirements of computer games.

The second category of work comprises the creation of
architecture standards for AI tools. Successful examples of
such standard architectures are SOAR [Tambe, et al., 1995]
and more recently TIELT, the Testbed for Integrating and
Evaluating Learning Techniques [Aha, & Molineaux,
2004]. Architecture standards are similar to standard
interface specifications in the sense that they involve similar
issues and principles and both represent service centric
standards. As such architectures like TIELT signify a
cornerstone in reducing the burden on AI researchers to
evaluate their AI methods against multiple areas of
application through the interface provided by the TIELT
architecture.

However, standard architectures cannot achieve the
same degree of flexibility and interoperability as an open
standard interface specification. The ultimate difference
between something like TIELT and a standard interface
specification is that a standard architecture functions as
middle-ware. As such it is not directly part of the
application providing the actual service, but acts as
translation layer. Therefore it in turn must interface with
each and every game engine that it is capable of supporting,
just like an AI engine had to previously be interfaced with
every game that it should be used with. This solution in its
very nature only pushes the responsibilities of creating the
actual interface to a different component – the underlying
issue, however, remains unsolved.

The need for both researchers and developers to address
the discussed issues with the present state of game AI and
their current solutions has been indicated by the recent
emergence of the game developer community’s own efforts.
These efforts, organised by the IDGA AI Special Interest
Group through the game developer conference round table
attempt to make some progress on AI interface standards for
computer games. The IDGA AI SIG has established a
committee with members from both industry and academia
to accelerate this process. However, at the time of writing
these efforts were still at a conceptual level and had not yet
resulted in any experimental results.

20

4. OASIS Architecture Design

Game Engine

Task Management

Domain Access

Object Abstraction

Object Access

Domain Abstraction

Logic Centric Layers

Function Centric Layers

OASIS Architecture

Knowledge Persistency Architecture

Artificial Intelligence Engine
4.1 OASIS Concepts and Overview

Standard interfaces become powerful only when
they are widely implemented by industry and other non-
commercial projects. OpenGL and DirectX would be
conceptually interesting, but fairly useless standard interface
frameworks, if video card developers had not implemented
them in practically all 3D acceleration hardware on the
market. The OSI networking model on the other hand is an
example of an academic conceptual pipe-dream. Viewed
purely from an interface point of view, the OSI networking
model is an incredibly flexible design that was in its original
specification already capable of delivering much of the
functionality that is nowadays being patched on to the
TCP/IP networking model. However, the OSI networking
model remains a teaching tool because it is too complicated
to be practicable. Firstly, the process of arriving at some
consensus was overly time-consuming because it involved a
very large international task force with members from both
academia and industry and attempted to address too many
issues at once. Secondly, when the standard was finally
released, it was prohibitively expensive for hardware
manufacturers to build OSI compliant devices, especially in
the low budget market segments. In comparison the TCP/IP
model was developed by a much smaller group of people, is
much simpler, and although failing to address several
problems, it is the most dominant networking standard
today [Forouzan, 2000].

Fig. 2 OSASIS Architecture

This is especially useful when some higher layer
functionality is either unnecessary due to simplicity of the
game or because resource constraints imposed by
computationally intensive games would not permit the use
of layers with greater performance penalties without
seriously impacting playability. Such implementation
flexibility reduces both financial and time pressure on
developers to comply with all specifications of the OASIS
framework. Since modularity is a core feature of OASIS,
compliance can be developed incrementally. This is not
only good software engineering practice, but would allow
game developers to provide patches after a game’s release
to add further OASIS compliance.

As a prototype design for the OASIS framework we
have conceived a simple five layer architecture comprising: Despite the shortcomings of TCP/IP, there is an easy

explanation for its success; TCP/IP is simple, yet modular
and extensible. The focus of TCP/IP is on necessity and
efficiency rather than abundance of features. This is what
makes it a successful standard interface. Thus we believe a
standard interface for AI in games should be modular,
extensible and simple while still fulfilling all core
requirements. An Open AI Standard Interface Specification
(OASIS) should feature a layered model that offers different
levels of encapsulation at various layers, allowing
interfacing AI modules to choose a mix between
performance and ease of implementation adequate for the
task at hand. Thus the lower layers of OASIS should
provide access to the raw information exposed by the game
engine, leaving the onus of processing to the AI module,
while higher layers should offer knowledge level [Newell,
1982] services and information, freeing the AI developer
from re-implementing common AI engine functionality.

1. an object access layer for direct manipulation of
the game engine,

2. an object abstraction layer to hide runtime details
from higher layers,

3. a domain access layer to expose the game domain
in a form accessible to reasoning tools,

4. a task management layer providing goal arbitration
and planning services, and

5. a domain abstraction layer that hides the
complexity of the underlying game engine domain
from more generic AI tools.

The bottom two layers of the architecture (i.e., 1 & 2)
are function centric; that is, they are concerned mainly with
the runtime specifics of single objects implemented in the
game engine. In contrast the top three layers of the OASIS
architecture (i.e., 3, 4 & 5) would be knowledge centric and
hence would be concerned with manipulation of the domain
at the knowledge level and are not directly interacting with
single run-time objects. Note, that different from middle-
ware architectures such as TIELT or SOAR, the OASIS
framework is actually a set of specifications rather then a
piece of software. The actual implementation details of the
OASIS architecture should not matter as long as the
interface specifications are complied with. This design
makes the AI engine of a game a separate and readily
interchangeable component.

We suggest there be a small number of layers in the
OASIS framework. Each layer ought to be highly cohesive;
that is, every layer, by itself, should have as few
responsibilities as possible besides its core functionality and
be completely independent of layers above it, thus allowing
layer based compliance with the OASIS framework. This
permits game developers to implement the OASIS
specifications only up to a certain layer.

The following sections discuss the suggested

21

functionality and responsibilities for each of the OASIS
layers and their respective components depicted in Figure 2.
All of this represents our initial ideas on how the OASIS
architecture design could be structured and what features it
might need to posses and should be considered neither final
nor complete.

Another function of this layer is compiling the object
metadata retrieved from the lower layer into logical
relations between objects that are directly usable for
example by an execution monitor to verify the progress of a
plan and recognise its failure or success. These object
semantics should also cover any object assemblies created
by the user. This might necessitate the specification of
metadata for object assemblies by the user if the metadata of
the assemblies’ components is insufficient to automatically
derive the semantics of the assembly.

4.2 Object Access Layer
The access layer directly exposes objects defined in the

game engine that may be manipulated by an interfacing AI
engine. Objects exposed by the object access layer include
everything from the tangible parts of the game environment
such as an infantry unit to more abstract components such as
the game state. For every object, the access layer specifies
properties, operations and events that may be used to
interact with the corresponding object in the game engine.

Lastly, the object abstraction layer is responsible for
object orchestration. This means that it verifies the validity
of execution of operations for both objects and assemblies
and informs higher layers of invalid requests. It also deals
with any runtime concurrency issues and processes events
received from the object abstraction layer into a semantic
format that may be used by higher layers for reasoning. This
should effectively insulate the function centric from the
logic centric layers of the OASIS framework.

At the object access layer speed should be the main
concern. Here the metadata should define information not
observable from the signature of the object’s operations and
events such as preconditions, post conditions, extended
effects and duration in terms of low-level descriptors. While
this is computationally efficient processing is required
before the information provided at this layer can be used to
establish the semantics of the objects. In order to not impair
performance each object would be a lightweight wrapper
around its counterpart in the game engine, simply passing
on the received messages with little or no intermediate
processing (Fig. 2).

The protocol suit required for communication with this
layer would probably need to be more diverse than that of
the object access layer. There are two main issues that need
to be addressed. Firstly, fast access to the functions of the
object access layer to allow for manipulating objects and
assemblies. Secondly, capabilities for creating and
programming of object assemblies. Although the focus of
protocols at this layer should be to provide more abstraction,
speed and lightweight remain a core requirement.

4.3 Object Abstraction Layer 4.4 Domain Access Layer
The object abstraction layer provides framing of the

resources provided by the object access layer into more
readily usable structures. The function of the object
abstraction layer is three fold, it manages all aspects of
object assemblies, it orchestrates objects and assemblies to
perform tasks and it compiles metadata from the data access
layer into object semantics that define the logical relations
between both objects in the game world exposed by the
object access layer and object assemblies derived from those
objects.

The domain access layer provides a high-level
abstraction of the game engine. This includes task execution
management and domain description services. Task
execution management is concerned with the execution of
the logical steps of a plan specified in some expressive
standard high level format. The task execution manager
functions much like an execution monitor for planners. It
translates the high level logical steps of a plan into an
instruction format understood by the object abstraction
layer, negotiates conflicts, monitors the execution results
and informs higher layers of irresolvable conflicts and
illegal instructions. The steps it executes may either
manipulate objects within the domain (e.g. move tank X
behind group of trees Y) or the domain description itself by
creating or manipulating object assemblies in the object
abstraction layer (e.g. add average unit life time property to
infantry type assembly). Concurrency issues between
competing plans executed in parallel need to be also
managed at this layer. In order to reduce overhead this
should occur as transparent as possible only making the AI
engine aware of conflicts that are irresolvable.

Object assemblies are essentially groupings of game
objects with additional properties and functions that allow
viewing and manipulating the underlying objects as a single
unit. These groupings should be allowed to be very flexible
for example it should be possible for an interfacing AI
engine to define all objects of a specific type as an object
assembly. Object assemblies themselves should in turn
permit aggregation thus providing for recursive hierarchies
of object assemblies. After creating a new assembly, the
interfacing AI engine might then specify additional
properties and operations that are not defined by the
underlying objects thus making the game engine
programmable without requiring access to the source code,
which often represents a problem with commercial games.
Since the behaviour and execution steps of user created
properties and operations need to be explicitly specified
some kind of high-level programming language must be part
of this layer’s protocol suite.

The domain description component of this layer
addresses two separate issues. First, it describes the
semantics and mechanics of the domain created by the game
engine in a standard high level knowledge representation.
Second, it is directly usable by planners and other AI
reasoning tools. The domain description provided should

22

include both native game objects and user created object
assemblies. The other task of the domain description is to
communicate to any interfacing AI engine the current state
of the objects defined in the game world and any changes
thereof.

The protocols used to communicate with this layer are
fairly high level in terms of the information content they
portrait. Optimally, the domain access layer should be able
to support different formats for specifying plans to the task
execution manager, so that AI engines using different types
of AI tools may directly interface with this layer. In terms of
protocols the domain description component is probably the
most complex to address in this layer since it should allow a
variety of AI tools to be able to directly interface with it.
The domain description needs to be probably communicated
in a variety of standards such as the planning domain
description language developed for the 1998/2000
international planning competitions [McDermott, et al.
1998]. One of the major challenges posed by the protocol
suite at this layer is to minimize the number of standards
that have to be supported by default without limiting the
nature of the AI tools interfacing to this layer. This could
potentially be achieved by providing support for certain
popular standards, while making the protocol suit pluggable
and allowing third parties to create their own plug-ins to
communicate with this layer. However, the feasibility of
such an approach would need to be studied.

4.4 Task Management Layer
The domain abstraction layer, unlike all of the other

layers, would not primarily serve the purpose of hiding the
complexity of the lower layers from the layers above, but
rather the provision of services that form an extension to the
functionality of the domain access layer. Therefore some
functions of the domain abstraction layer will not require
the services provided at this layer. Thus in some cases this
layer would be transparent to the top layer and simply pass
through requests to the domain access layer without any
further processing. Overall this layer should provide
planning related services such as, plan generation, heuristic
definition and goal management.

The plan generation capability of this layer is probably
the single most important service offered here. It provides
planning capabilities to the top layer as well as AI engines
that do not posses the required planning capabilities to
interact directly with the domain access layer. The plan
generation component of the task management layer outputs
a plan that is optimised using any heuristics given by the
user and achieves the specified goals. This output plan is fed
to the task execution management component in the layer
below for processing and execution. The plan generation
should be implemented very modular allowing third parties
to create pluggable extensions to this functionality to adjoin
different planning architectures to the OASIS framework
that might not have been part of it originally. This would
have two effects. First, this would enable AI researchers to
verify, test and benchmark new planning architectures using
OASIS. Second, it would provide an easy way to

complement the set of the OASIS planners should there be
shortcomings for certain kind of domains without needing to
release a new version of the OASIS specifications.

Heuristic definition and goal management complement
this planning capability. They allow AI engines to specify
goals to be achieved and heuristics to be honoured by the
planning component. The AI engine should be able to
specify these in terms of symbols from the domain
description provided by the domain access layer. The user
should be permitted to prioritise goals and mark them as
either hard goals that must be attained or soft goals that may
be compromised. A planner in this layer should be allowed
to re-shuffle the order of soft goals as long it does not
increase the overall risk of failure. Any heuristics supplied
by the AI engine are then applied to create a plan that will
satisfy all hard goals and as many soft goals as possible.

Communication at this layer should use high level
protocols describing both heuristics and goals in terms of
the symbols found in the domain description at the layer
below so that the planner does not need to support any
additional mapping capabilities and may operate pretty
much on the raw input provided. Excluding mapping and
transformation capabilities from the task management layer
will most definitely have a positive impact on performance.

4.5 Domain Abstraction Layer
The domain abstraction layer represents the top of the

OASIS layer hierarchy and hence provides the greatest
degree of abstraction from the implementation details of the
game engine and the lower layers of the OASIS framework.
High level functions such as domain model adaptation
services, the domain ontology and task management
services will be rooted at this layer. The main aim of this
layer is to provide a knowledge level access point for AI
reasoning tools that are either very limited in their low level
capabilities or highly generic in their application. The
interfaces provided by the domain abstraction layer and its
components are not primarily geared towards speed, but
much more towards interoperability and high level problem
representation and resolution.

The domain model adaptation service provided here
plays an important role in bridging the gap to generic
reasoning tools and agents that are designed to handle
certain tasks within a particular problem domain such as
choosing what unit to add next to a production queue. Such
problem description is very generic and will occur in
slightly different variants in many games, especially in the
real time strategy genre. Domain model adaptation will
allow symbols of the domain defined by the game engine to
be mapped to semantically equivalent symbols of the
agent’s domain model. In this way the agent can continue to
reason in the confines of his own generic view of the world
and is at the same time able to communicate with the game
engine using expressions built from its own set of domain
symbols. In order to facilitate this translation the domain
model adaptation module would have rely on the ontology
services provided by this layer and might in certain cases

23

require the interfacing AI engine to explicitly specify certain
mappings. The domain model adaptation component is
probably going to be by far the most complex and least
understood component in the entire OASIS architecture.
This is because domain model adaptation is still mainly a
research topic although there are a few successful practical
applications [Guarino et al. 1997].

The purpose of the ontology component of this layer is
to provide a semantically correct and complete ontology of
the symbols found in the domain description of the
underlying game. Although fairly straight forward this could
prove time intensive for developers to implement because it
almost certainly requires human input to create a useful and
comprehensive ontology for the game being built. Creating
a standardised ontology for similar games and genres will
be a key to successful implementation of this feature.

The second major service is task management. This
involves facilitating the specification of very high-level
tasks in terms of the elements contained in the ontology
exposed at this layer and their completion using the
functions provided by lower layers. Such task might in
terms of logic resemble assertions like “(capture red flag
OR kill all enemy units) AND minimize casualties)”. The
task management component would have to take such a task
description and transform it into a set of goals and heuristics
that may then be passed on to the task management layer. In
order to extract goals, heuristics, priorities, etc. from the
high-level task description, the interfacing AI engine would
be required to flag the description’s components. The task
management component should also be responsible for
tracking task progress and inform the AI engine of
completion or failure. Concurrency issues of any kind and
nature arising from competing tasks being executed in
parallel should be handled by the lower layers.

5. Conclusion
Obviously there is still much uncertainty about the

exact details of the OASIS framework and there are many
issues that this paper has left unsolved. In the future it
would probably be valuable to survey, document and
analyse in detail the requirements of both game developers
and AI researchers to form the basis of a formal
requirements analysis. This would provide a better
understanding of the problems being addressed and support
a better set of design specifications for the OASIS
framework. In the immediate future we will take advantage
of the modularity and extensibility requirement of OASIS
and implement a vertical prototype as a proof of concept.
During this process we will also explore the usefulness and
feasibility of some of the proposals made by the Artificial
Intelligence Interface Standards Committee (AIISC) of the
IDGA AI SIG. Potentially, a small number of diversified
vertical prototypes might help us gain a more accurate
understanding of the requirements for the framework that
could form the stepping stone for further work in this area.
We would also seek input and comments from other
researchers and developers working in this area.

References
Aha, D. and Molineaux, M. 2004, Integrating Learning in

Interactive Gaming Simulators, Challenges in Game
Artificial Intelligence – Papers from the AAAI
Workshop Technical Report WS-04-04

Forouzan, B. 2000, Data Communications and Networking
2nd Edition, McGraw-Hill

Gordon, E. and Logan, B. 2004, Game Over: You have been
beaten by a GRUE, Challenges in Game Artificial
Intelligence – Papers from the AAAI Workshop
Technical Report WS-04-04

Guarino N., et al. 1997, Logical Modelling of Product
Knowledge: Towards a Well-Founded Semantics for
STEP, In Proceedings of European Conference on
Product Data Technology

International Game Developers Association – Special
Interest Group on AI (IDGA – AI SIG),
http://www.igda.org/ai/

Jones, R., et al. 1999, Automated Intelligent Pilots for
Combat Flight Simulation, AI Magazine

Khoo, A. and Zubek R. 2002, Applying Inexpensive AI
Techniques to Computer Games, In Proceedings of
IEEE Intelligent Systems

Laird J. 2000, It knows what you’re going to do: Adding
anticipation to a quakebot, Artificial Intelligence and
Interactive Entertainment – Papers from the AAAI
Workshop Technical Report SS-00-02

Laird, J. and Duchi, J. 2000, Creating Human-like Synthetic
Characters with Multiple Skill Levels: A Case Study
using the Soar Quakebot, In Proceedings of AAAI Fall
Symposium: Simulating Human Agents

Laird, J. and van Lent, M. 2001, Human Level AI’s Killer
Application: Interactive Computer Games, AI
Magazine Volume 2 – MIT Press

McDermott, D., et al. 1998, PDDL - The Planning Domain
Definition Language, Yale Center for Computational
Vision and Control - Technical Report CVC TR-98-
003/DCS TR-1165

Newell, A. 1982, The Knowledge Level. Artificial
Intelligence, 18 (1)

Summers, P., et al. 2002, Determination of Planetary
Meteorology from Aerobot Flight Sensors, In
Proceedings of 7th ESA Workshop on Advanced Space
Technologies for Robotics and Automation

Tambe, M., et al. 1995, Intelligent Agents for Interactive
Simulation Environments, AI Magazine

van Lent, M., et al. 2004, A Tactical and Strategic AI
Interface for Real-Time Strategy Games, Challenges in
Game Artificial Intelligence – Papers from the AAAI
Workshop Technical Report WS-04-04

Genesereth, M. and Fikes, R. 1992, Knowledge Interchange
Format, Version 3.0 Reference Manual, Technical
Report Logic-92-1 – Computer Science Department
Stanford University

24

Colored Trails: A Formalism for Investigating Decision-making in Strategic
Environments

Ya’akov Gal and Barbara J. Grosz
Division of Engineering and

Applied Sciences
Harvard University

Cambridge, MA 02138

Sarit Kraus
Dept. of Computer Science

Bar Ilan University
Ramat Gan 52900

Israel

Avi Pfeffer and Stuart Shieber
Division of Engineering and

Applied Sciences
Harvard University

Cambridge, MA 02138

Abstract

Colored Trails is a research testbed for analyz-
ing decision-making strategies of individuals or
of teams. It enables the development and test-
ing of strategies for automated agents that oper-
ate in groups that include people as well as com-
puter agents. The testbed is based on a conceptu-
ally simple but highly expressive game in which
players, working individually or in teams, make
decisions about how to deploy their resources to
achieve their individual or team goals. The com-
plexity of the setting may be increased along sev-
eral dimensions by varying the system parameters.
The game has direct analogues to real-world task
settings, making it likely that results obtained using
Colored Trails will transfer to other domains. We
describe several studies carried out using the for-
malism, which investigated the effect of different
social settings on the negotiation strategies of both
people and computer agents. Using machine learn-
ing, results from some of these studies were used to
train computer agents. These agents outperformed
other computer agents that used traditional game
theoretic reasoning to guide their behavior, show-
ing that CT provides a better basis for the design of
computer agents in these types of settings.

1 Introduction
As heterogeneous group activities of computer systems and
people become more prevalent, it is important to understand
the decision-making strategies people deploy when interact-
ing with computer systems. Colored Trails (CT) is a test-bed
for investigating the types of decision-making that arise in
task settings where the key interactions are among goals (of
individuals or of groups), tasks required to accomplish those
goals, and resources. The CT architecture allows games to
be played by groups comprising people, computer agents, or
heterogeneous mixes of people and computers. The purpose
of the CT framework is to enable to design, learn and evaluate
players’ decision-making behavior as well as group dynamics
in settings of varying complexity.

The rules of CT are simple, abstracting from particular task
domains, thus enabling investigators to focus on decision-

making rather than the specification of domain knowledge. In
this respect CT is similar to the games developed in behav-
ioral economics[1]. However, unlike behavioral economics
games, CT provides a clear analog to multi-agent task set-
tings, can represent games that are larger in size, and provides
situational contexts and interaction histories in which to make
decisions.

The CT environment allows a wide range of games to be
defined. Games may be made simple or complex along sev-
eral dimensions including the number of players and size of
the game; information about the environment available to dif-
ferent players; information about individual agents available
publicly to all players, to subgroups, or only privately; the
scoring rules for agents; the types of communication possible
among agents; and the negotiation protocol between agents.

At the heart of CT is the ability of players to communicate
with each other, enabling them to commit to and retract bar-
gaining proposals and to exchange resources. The conditions
of these exchanges, group dynamics and players’ behavior
towards others are some aspects that can be investigated in
these types of settings.

1.1 Rules of the Game
CT is played by two or more players on a rectangular board of
colored squares with a set of chips in colors chosen from the
same palette as the squares. For each game of CT, any number
of squares may be designated as the goal. Each player’s piece
is located initially in one of the non-goal squares, and each
player is given a set of colored chips. A piece may be moved
into an adjacent square, but only if the player turns in a chip
of the same color as the square.

Players are removed from the game if they reach the goal
state or have been dormant for a given number of moves, as
specified by a game parameter. When all players have been
removed, the game is declared over and each player’s score
is computed. The scoring function of a CT game can de-
pend on the following criteria: the position of a player on the
board; the number of chips the player possesses; the number
of moves made by the player throughout the game; the score
of other players in the game. It is possible to vary the ex-
tent to which the scoring function depends on any of these
parameters.

The game controller makes available to each player a list
of suggested paths to the goal that are displayed in a panel

25

Figure 1: A snapshot of a two-player game

on the screen. These paths are optimized for a given chip
distribution and player, as queried by the player, such that
they represent the best route given a player’s objectives. The
ability to access this information is contingent on a player’s
ability to view the board and chips, as specified by the game
parameters.

A snapshot of a two-player game is presented in Figure 1.
Here, the Main Window panel shows the board game, player
icons and the goal state, as well as the chip distribution for
the players. In this game, bothmeandsunplayers lack chips
to get to the goal. Themeplayer has queried the Path Finder
panel and has chosen a path, outlined on the board, for which
it lacks a red and cyan chip. It is about to ask thesunplayer
for these chips, using the Propose Exchange panel.

Players in CT negotiate with each other during specified
communication phases. Each message has a list of fields con-
taining the information embedded in the message. Messages
may be of the following types.

1. Propose an exchange.

2. Commit to a proposal.

3. Retract a proposal (i.e., a previous commitment).

4. Request/suggest a path to the goal.

5. Send chips to a player.
Note that messages (1) through (4) pass information between
players while message (5) transfers chips between players.
By setting the game parameters, agreements reached during
the communication phase may or may not be binding. For
example, a player whose offer was accepted by another player
may need to initiate the sending of chips should it1 wish to
fulfill its commitment.

1.2 Analogy with Task Domains
There is a correspondence between CT play and the planning
and execution of tasks by a group of agents. Colors corre-
spond to agent capabilities and skills required by tasks: an

1we use gender neutral pronouns to refer to players in the game,
be they computer agents or people

agent’s possession of a chip of a certain color corresponds to
having a skill available for use at a time; not all agents get all
colors much as different agents have different capabilities and
availability. Paths through the board correspond to perform-
ing complex tasks, the constituents of which are individual
tasks requiring the skills of the corresponding color. Various
kinds of requirements on goals and paths followed correspond
to different types of group activities and collaborative tasks.
For instance, the degree to which an agent’s score depends
on the performance of other agents may be used to distin-
guish collaborative teamwork from situations in which group
members act in other ways. Also, requiring only that a cer-
tain number of agents get to a goal square might correspond
to the need for agents to allocate tasks to subgroups or form
coalitions to accomplish the actions in a recipe for a collab-
orative task. Varying the amount of the board an agent can
“see” corresponds to varying information about task recipes
or resource requirements.

In addition, the inter-dependence between players can be
varied. For example, the scoring function may stipulate are-
ward dependenceby having the scores of a player depend in
some way on the scores of other agents. Second, atask de-
pendencearises whenever players lack the chips they need to
reach their goals and must depend on other players supplying
those chips.

In this paper, we present several studies that were carried
out using the CT framework at Harvard and Bar Ilan Uni-
versities. Each study is presented in increasing order of the
complexity of the CT setting. All results are statistically sig-
nificant in the 95% confidence interval range. Three types of
players interacted in these studies: people, computer agents
designed by the experimenters, and computer agents designed
by human subjects.

Section 2 describes how a model of human behavior in one-
shot games was devised and evaluated using a machine learn-
ing approach in a simple CT setting. Section 3 describes a
model for negotiation between computer agents in a setting in
which agents were uncertain about others’ resources as well
as their level of helpfulness. Section 4 outlines a study which
investigated the effect of reward dependency on the behavior
of people and of agents.

2 Learning Social Preferences in One-shot
Games

Research in behavioral economics[1] has established that
a multitude of sociological factors affect people’s behavior
when they interact with others. In particular, people have
been shown to exhibit preferences for choices that affect oth-
ers as well as themselves and to vary in the extent to which
these factors affect their play. Traditional game-theoretic
models cannot naturally capture the diversity of this behav-
ior [5]. In a series of studies[3; 6], we showed that com-
puter agents that explicitly represented social preferences in
their model and learned their extent of influence on people’s
behavior were able to outperform traditional game-theoretic
models. In particular, they were able to generalize to new
situations in the game as well as to new players.

26

2.1 The CT set-up
We used a version of CT in which two players played on 4x4
boards with a palette of 4 colors. Each player had full view of
the board as well as the other player’s tiles. The distribution
of tiles at the onset of the game was designed such that (1)
at least one of the players could reach the goal after trading
with the other player; (2) it was not the case that both players
could reach the goal without trading.

The scoring function was chosen so that while getting to
the goal was by far the most important component, if a player
couldn’t get to the goal it was preferable to get as close to
the goal as possible. Furthermore, a player’s outcome was
determined solely by its own performance.

In each game, one player deemed theallocator was al-
lowed to propose an offer for exchange of tiles to the other
player, deemed thedeliberator. The deliberator could ei-
ther accept or reject the allocator’s offer. If the allocator did
not make an offer, then both players were left with their ini-
tial allocation of tiles. The deliberator was not allowed to
counter the allocator’s offer with another proposal. The score
that each player received if no offer was made was identi-
cal to the score each player received if the offer was rejected
by the deliberator. We referred to this event as theno ne-
gotiation alternative. The score that each player received if
the offer was accepted by the deliberator was referred to as
theproposed outcomescore. Under the conditions specified
above, each game consisted of a one-shot negotiation deal
between the two players, and a deliberator’s reply to the ex-
change proposed by the allocator completely determines the
final outcome of the game.

2.2 Model Construction
Our model predicted whether the deliberator will accept a
given proposal, given a CT game. The inputs to the model
areNNA andNND, the no-negotiation alternative scores for
the allocator and deliberator, andPOA andPOD, the pro-
posed outcome scores for the allocator and deliberator.

To develop the model, we introduced the following fea-
tures, which represented possible social preferences that
might affect the deliberator for a given deal. Each feature
was derived using the no-negotiation alternative and proposed
outcome scores.

• self interest POD −NND

• social welfare (POD + POA)− (NND + NNA)

• advantageous inequality POD − POA

• fair trade (POD −NND)− (POA −NNA)

Given any proposed exchangex, a particular deliberator’s
utility u(x) is a weighted sum of these features. The weights
measure the relative importance of each of the social prefer-
ences to the deliberator.

We captured the fact that people make mistakes by imple-
menting a noisy decision function for the deliberator. We de-
fined the probability of acceptance for a particular exchangex
by a deliberator asP (accept | x, t) = 1

1+e−u(x) . This proba-
bility converges to 1 as the utility from an exchange becomes
large and positive, and to 0 as the utility becomes large and
negative.

The model assumed that people reason about the same
types of social factors, but that individuals weigh them dif-
ferently. We used a mixture model over types of people, with
a probability distributionP (t) over the set of types. Each type
t was associated with its own set of social preference weights,
defining a utility functionut.

Given that we have a model describing the deliberator’s
behavior, the next step was to incorporate this model into a
computer agent that played with humans. In our framework,
the computer agent played the allocator and a human played
the deliberator. The strategy of the allocator was to propose
the deal that maximized its expected utility. The expected
utility was the sum of the allocator’s utility of the proposal
times the probability the proposal is accepted, plus the allo-
cator’s no-negotiation alternative score times the probability
the proposal is rejected. We took the expectation of this sum
with respect to all of the deliberator utility functions.

To learn the parameters of the model, we estimated the
distributionP (T) over deliberator types, and for each type
t ∈ T , we estimated the feature weights. We did this by in-
terleaving two optimization procedures, a version of the EM
algorithm[2] and the gradient descent technique. We began
by placing an arbitrary distribution over deliberator types and
setting the feature weights with particular parameter values.

2.3 Experimental Setup and Results
A total of 42 subjects participated in the experiment, 32 in the
data-collection phase and 10 in the evaluation phase. Each
phase was composed of playing a number of rounds of dif-
ferent games. A central server was responsible for matching
up the participants at each round and for keeping the total
score for each subject in all of the rounds of the experiment.
Participants were paid in a manner consistent with the scor-
ing function in the game. For example, a score of 130 points
gained in a round earned a $1.30 payment. We kept a running
score for each subject, revealed at the end of the experiment.

In the data-collection phase, 16 subjects played consecu-
tive CT games against each other Each subject played 24 CT
rounds, making for a total of 192 games played. The initial
settings (board layout, tile distribution, goal and starting point
positions) were different in each game. For each round of the
game, we recorded the board and tile settings, as well as the
proposal made by the allocator, and the response of the de-
liberator. The data obtained was then used to learn a mixture
model of human play, which included 2 types with probabil-
ities (0.36, 0.64). The feature weights learned for each type
were (3.00, 5.13, 4.61, 0.46) and (3.13, 4.95, 0.47, 3.30) for
individual-benefit, aggregate-utility, advantage-of-outcome
and advantage-of-trade. According to the learned model, both
types assigned high weights for social welfare, while still be-
ing competitive; one of the types cares more about advantage-
of-outcome, and the other type cares more about advantage-
of-trade.

The evaluation study consisted of two groups, each involv-
ing 3 human subjects and 3 computer players. At each round,
eight concurrent games of CT were played in which members
of the same group played each other. One of the human sub-
jects, designated as an allocator, played another human sub-
ject, designated as a deliberator; each computer player, des-

27

ignated as an allocator, played another human subject, desig-
nated as a deliberator.

The computer players, only playing allocators, were agents
capable of mapping any CT game position to some proposed
exchange. AgentSP proposed the exchange with the highest
expected utility, according to our learned social preferences
model. AgentNE proposed the exchange corresponding to
the Nash equilibrium strategy for the allocator. AgentNB
proposed the exchange corresponding to the Nash bargain-
ing strategy for the allocator, consisting of the exchange that
maximized the product of each player’s individual benefit.

The game settings, including board layout, start and goal
positions, and initial tile distributions, were the same for all of
the games played by members of the same group. Therefore,
at each round there were 4 matching CT games being played
by the eight members of each group.

The following table presents the results of the evalua-
tion phase for each of the models used in the experiment.

Model Total Reward Proposals Proposals No
Accepted Declined Offers

SP 2880 16 5 0
NE 2100 13 8 0
NB 2400 14 2 5
It lists the total monetary reward, the number of proposals

accepted, the number of proposals rejected, and the number
of times no offer was proposed. TheSP agent had achieved
a significantly higher utility than the other computer agents.
It also had the highest number of accepted proposals, along
with the allocations proposed by humans. The performance
of NE was the worst of the three. The computer allocator la-
beledNE always proposed the exchange that corresponded
to the allocator’s strategy in the (unique) sub-game perfect
Nash equilibrium of each CT game. This resulted to offering
the best exchange for the allocator, out of the set of all of the
exchanges that are not worse off to the deliberator. As a con-
sequence, many of the exchanges proposed by this agent were
declined. We hypothesize this was because they were not
judged as fair by the human deliberator. This result closely
follows the findings of behavioral game theory. The com-
puter allocator labeledNB consistently offered more to the
deliberator than theNE player did for the same game, when
the board and tile distribution enabled it. BecauseNB tended
to offer quite favorable deals to the deliberator, they were ac-
cepted more than the other computer players, provided that
an offer was made. but its overall reward was less thanSP .

While we have focused on one particular game for practi-
cal reasons, the learned models we used were cast in terms of
general social preferences, which did not depend on the spe-
cific features of the game and were shown to be exhibited by
people in many types of interactions.

3 Modeling Agents’ Helpfulness in Uncertain
Environments

When agents depend on each other to achieve their goals, they
need to cooperate in order to succeed, i.e. to perform actions
that mutually benefit each other. In open systems, there is no
central control for agents’ design, and therefore others’ will-
ingness to cooperate is unknown. To establish cooperative

relationships in such systems, agents must identify those that
are helpful and reciprocate their behavior, while staying clear
of those that are unhelpful. However, in open environments it
is difficult to identify the degree of helpfulness of other agents
based solely on their actions. This is further made difficult if
agents constantly change their strategies.

In this work [7], we built a model which explicitly repre-
sented and reasoned about agents’ level of helpfulness. The
model characterized helpfulness along two dimensions: co-
operation (the tendency to propose mutually beneficial ex-
changes of resources) and reliability (the tendency to fulfill
commitments).

We used a version of CT in which two or four players
played on boards of different sizes. Each player had knowl-
edge of the scoring function and full view of the board but
could not see the other player’s chips. Agreements reached
during the communication phase were not binding and thus
agents could deceive each other by not fulfilling their com-
mitments.

A player was declared “out-of-game” if it reached the goal
state or if it stayed dormant for 3 moves, at which point its
score was computed. Each player’s outcome depended solely
on its own performance.

3.1 Model Construction
We wanted the model to be able to generalize to environments
which varied the number of players, the size of the board-
game, and the task dependency between players. To do this,
the model explicitly reasoned about others’ level of helpful-
ness, rather than their utility functions.

We described agents’ helpfulness along two dimensions
with range[0, 1).
• Cooperation(c) - measured an agent’s willingness to

share resources with others in the game through initi-
ating and agreeing to beneficial proposals.

• Reliability (r) - measured agents’ willingness to keep
their commitments in the game through delivering the
chips they had agreed to.

Given some actiona, opponentj, and the state of the game
s, an agent’s utility function depended on the following fea-
tures.

• The helpfulness measure of agenti, denotedPi.

• Agent i’s estimate of the agentj’s helpfulness, denoted
Pj . This was estimated as the fraction of timesj was
cooperative and reliable when interacting withi in the
past, decayed by a discount factor.

• The expected value of taking actiona given the state of
the environments, denotedEVi(a | s). This quantity
estimated the likelihood of getting to the goal, negatively
correlated with the number of chips lacked by the agent.

• The expected cost of future ramifications of taking ac-
tion a, denotedECi(a). This function rewarded actions
that were beneficial to agentj and punished actions that
reneged on commitments.

We constructed a utility function that was a linear com-
bination of these features associated with weights that were

28

tuned empirically. Agents negotiated using this utility func-
tion at each communication phase in the game, by performing
each action in the subset of actions that fulfilled the follow-
ing conditions: there were no two actions in the subset that
conflicted (for example, two exchange proposals that offered
the same chips); the combined utility value for the agent from
each action in the subset was highest compared to any other
subset with non-conflicting actions. Using this utility func-
tion, agents’ behavior was contingent on their perception of
others, as well as their own helpfulness.

3.2 Experimental Design
We used two class of agents in our study. The first con-
sisted of two types: Multiple-Personality (MP) and Single-
Personality (SP) agents. Both MP and SP class agents use the
model described earlier to make their decisions. However, the
cooperation and reliability levels of an SP agent were con-
stant, whereas an MP agent adopted different measures of co-
operation and reliability for each personality type of its oppo-
nents based on a matching scheme, derived empirically. Both
MP and SP agents were adaptive: they changed their behavior
as a function of their estimate of others’ helpfulness, given the
history of their observations. However, the MP agent adopted
a unique measure of helpfulness for each player, whereas the
measure of helpfulness for the SP agent was constant.

Another class of agents was Peer-Designed (PD) agents,
created by graduate-level computer science students at Bar
Ilan University who were not given any explicit instructions
regarding agents’ strategies and reasoning processes.

We classified PD and SP agents as either “helpful” or “un-
helpful”. Helpful SP agents were those that engaged in coop-
erative exchanges more than 50% of the time and reneged on
their commitments less than 20% of the time. We expected
helpful agents to be able to realize opportunities for exchange
with each other more often than unhelpful agents and to ex-
ceed them in performance, as measured by the score in the
game. We also expected that in some cases, unhelpful agents
would be able to take advantage of the vulnerability of those
helpful agents that allow themselves to be exploited. We hy-
pothesized that the MP agent would be able to identify and re-
ciprocate helpful agents more quickly than SP or PD agents,
while staying clear of agents that are unhelpful. As a result,
the MP agent would perform better than all other agents in
the game.

We evaluated the MP agent by playing a series of repeated
games with the other agents in the systems. We allowed
agents to update their model of others from game to game.
Each agent’s final outcome was the aggregate of its scores in
all of the games it participated in.

In our experiment we executed 5,040 games, played in
1,080 rounds of three consecutive games each. The board
games we used in each round varied the task dependency re-
lationships between players. The players in each game in-
cluded a MP agent, two SP agents, and one of the PD agents.
Each group of four players played all possible task depen-
dency roles, to control for any effect brought about by depen-
dency relationships. Table 1 presents the average score for the
MP agent when playing against helpful and unhelpful agents
across all games. The scores reported in the table sum over

the other players in the game.

MP agent PD and SP agents
Helpful 170.6 114.8

Unhelpful 142.5 98.2

Table 1: Average performance of MP agent against help-
ful/unhelpful agents (3 repeated games)

The average score achieved by the MP agent was signifi-
cantly higher than all other agents, regardless of their level
of helpfulness. Also, the MP agent’s score when playing
against helpful agents (170.6) was higher than its score when
playing against unhelpful agents (142.5). Helpful agents also
benefited from cooperating with the MP agent: their perfor-
mance was significantly higher than their unhelpful counter-
parts (114.8 vs. 98.2).

Further investigation revealed that the MP agent engaged in
cooperative exchanges with helpful agents significantly more
often than the other agents, while the amount of time the MP
agent remained idle when dealing with unhelpful agents was
longer than the amount of time other agents remained idle.

Another hypothesis was that any group of agents would
increase its overall social welfare when playing with an MP
agent, because the MP agent would help them to realize more
beneficial exchanges. To evaluate this claim, we ran a se-
ries of 2-player repeated games that included SP and PD type
agents, but did not include MP agents, and compared it to the
performance of each agent type after after including an MP
agent in the group. The results are described in Figure 2. The
performance of helpful and unhelpful agents increased signif-
icantly when interacting with the MP agent. As expected, this
increase was more profound for helpful SP and PD agents.

0

20

40

60

80

100

120

Helpful PD
agents

Unhelpful PD
agents

Helpful SP
agents

Unhelpful SP
agents

With MP agent Without MP agent

Figure 2: Performance with/without MP agent

Exchange Helpful Unhelpful
Type agents agents

Reciprocal 60% 25%
Idle 20% 39%

Table 2: Percentage of exchange types proposed by MP agent

29

reached Private
goal score

People RD = 0 2.47 151.3
RD > 0 2.8 252.34

PD RD = 0 1.1 82.4

Table 3: Results for people vs. PD agents

4 The Influence of Reward Dependencies on
Decision Making

In the work presented here[4], we investigated the effect of
social dependencies on players’ behavior in CT. We varied the
social dependency between players by including a ”reward
dependency factor”RD in the scoring function; IfRD was
zero, a player’s score was independent of the performance
of other players; if it was non-zero, a player’s score was a
combination of that player’s individual score and a weighted
average of the individual scores of all the other players.

We hypothesized that (1) higherRD will increase the
amount of cooperation between agents. In particular, we ex-
pected agents to give other agents chips more frequently and
to ask for fewer chips in exchange whenRD is higher. (2)
whenRD weight is high, agents will score higher and reach
the goal more often.

The CT games were played by groups of four players, the
board was 6x6, the palette was 5 colors, and there was a sin-
gle goal square for all players. Players were able to see the
full board but not each others’ chips. This restriction sep-
arates decisions about chip exchanges from scoring informa-
tion, thereby making helpful behavior distinct from score op-
timization computations.

Two classes of experiments were performed, one involv-
ing 4-player groups of people and the other two involving 4-
player groups of computer agents. The human player groups
were drawn from a population of upperclass and master’s
computer science students at Bar Ilan University who were
not experts in negotiation strategies nor in economic theo-
ries directly relevant to agent design (e.g., game theory, de-
cision theory). We compared their performance with that of
Peer Designed (PD) agents, who were constructed in a similar
fashion as described in Section 3.

A comparison of the results in Table 3 for human players
whenRD = 0 with those whenRD > 0 supports this hy-
pothesis. The average private score of all games played by
people in whichRD > 0 was significantly higher than in
the games whereRD = 0 In addition, the number of human
players who reached the goal in games in whichRD > 0 was
significantly higher than for games withRD = 0 This shows
that people realized more opportunities for exchange when
their performance depended on others. Thus, the main hy-
potheses regardingRD are supported by the results of games
played by people. Interestingly, the PD designs were not in-
fluenced by the reward dependencies, and agents did not act
significantly different in either condition. This suggests that
implicit mention of reward-dependence in the design specifi-
cation may not affect behavior. In contrast, this same inciden-
tal mention ofRD in instructions to people playing the game
did engender different behavior as discussed below.

Another interesting discovery was that the average private
score for people was significantly higher than the average pri-
vate score of the PDs in these games. Furthermore, the aver-
age number of people reaching the goal in these games was
significantly higher than the average number of PDs reaching
the goal. Further investigation revealed that this was because
people were significantly more likely to engage in coopera-
tive exchanges.

5 Conclusion and Future Work
In this paper, we have motivated the need for understanding
the decision-making strategies people deploy when computer
systems are among the members of the groups in which they
work. It has reviewed several studies, all using the CT frame-
work, which analyzed the effects of various social settings on
people’s behavior, and built computer agents to match peo-
ple’s expectations in these settings.

In the future, we plan to extend the CT formalism in sev-
eral realms. First, we are designing a system for evaluation
of CT models, which would be able to dynamically config-
ure dependent and independent variables, run a series of CT
games using an online database of game configurations, game
status, and results.

Second, we are constructing a model for repeated nego-
tiation between players which reasons about the reputation
of agents. This model will incorporate such features as re-
ward and punishment, and the affinity of players to each other
based on their actions. It will learn the extent to which these
features affect decision making through incorporating obser-
vations of people’s play.

References
[1] C.F. Camerer.Behavioral Game Theory: Experiments in

Strategic Interaction. Princeton University Press, 2003.

[2] A.P. Dempster, N.M. Laird, and D.B. Rubin. Maximum
likelihood from incomplete data via the EM algorithm.
Journal of the Royal Statistical Society, 39(1), 1977.

[3] Y. Gal, A. Pfeffer, F. Marzo, and B. Grosz. Learning
social preferences in games. InProc. 19th National Con-
ference on Artificial Intelligence (AAAI), 2004.

[4] B. Grosz, S. Kraus, S. Talman, and B. Stossel. The in-
fluence of social dependencies on decision-making. Ini-
tial investigations with a new game. InProc. 3rd Inter-
national Joint Conference on Multi-agent systems (AA-
MAS), 2004.

[5] J.H. Kagel and A.E. Roth, editors.The hanbook of exper-
imental economics. Princeton University Press, 1995.

[6] F. Marzo, Y. Gal, A. Pfeffer, and B. Grosz. Social prefer-
ences in relational contexts. InIV Conference on Collec-
tive Intentionality, 2004.

[7] S. Talman, Y. Gal, M. Hadad, and S. Kraus. Adapting to
agents’ personalities in negotiation. InProc. 4th Inter-
national Joint Conference on Multi-agent systems (AA-
MAS), 2005.

30

Unreal GOLOG Bots

Stefan Jacobs and Alexander Ferrein and Gerhard Lakemeyer
RWTH Aachen University

Computer Science Department
Ahornstr. 55, 52056 Aachen, Germany

{sjacobs,ferrein,gerhard}@cs.rwth-aachen.de

Abstract
Even though reasoning and, in particular, planning
techniques have had a long tradition in Artificial In-
telligence, these have only recently been applied
to interactive computer games. In this paper we
propose the use of READYLOG, a variant of the
logic-based action language GOLOG, to build game
bots. The language combines features from classi-
cal programming languages with decision-theoretic
planning. The feasibility of the approach is demon-
strated by integrating READYLOG with the game
UNREAL TOURNAMENT.

1 Introduction
Interactive computer games have come a long way since the
introduction of Pac-Man many years ago. In particular, the
availability of sophisticated graphics engines for regular PCs
has made it possibly to create complex realistic 3D scenar-
ios with multiple players controlled by either the computer or
by humans. Recent examples of such games are HALF LIFE
2 [Valve Corporation, 2005], MEDAL OF HONOR [Electronic
Arts Inc., 2005], or UNREAL TOURNAMENT [Epic Games
Inc., 2005], which is the focus of this paper. What makes
these games challenging for both humans and computers is
their fast pace and the fact that a player usually has only in-
complete or uncertain knowledge about the world.

Artificial Intelligence so far has had rather little impact on
the development of computer-controlled players, also called
game bots. In the commercial world, for example, simple and
easy-to-use scripting languages are often preferred to specify
games and agents [Berger, 2002], and finite state machines
are a popular means to specify reactive behavior [Fu and
Houlette, 2004]. To turn such agents into challenging op-
ponents for humans, they are often given more knowledge
about the game situation and more powerful capabilities than
are available to the human player.

Nevertheless, interactive games and, in particular, UN-
REAL TOURNAMENT have caught the attention of AI re-
cently. Kaminka et al. [Kaminka et al., 2002] have proposed
UNREAL TOURNAMENT 2004 as a framework for research
in multi-agent systems.1 Their own work has focused on ar-

1In the area of strategy games, Buro [Buro, 2003] is also devel-

eas like navigation, mapping and exploration. In [Munoz-
Avila and Fisher, 2004], hierarchical planning techniques
are used to devise long-term strategies for UNREAL TOUR-
NAMENT bots. Recently, Magerko at al. [Magerko et
al., 2004] have connected the powerful rule-based system
SOAR [Lewis, 1999] to Haunt II, an extension of UNREAL
TOURNAMENT.

Our own work fits into this line of work on symbolic
reasoning applied to UNREAL TOURNAMENT, with a fo-
cus on real-time decision-theoretic planning techniques.2 In
particular, we propose to use READYLOG [Ferrein et al.,
2004], a variant of the action language GOLOG [Levesque
et al., 1997], for the specification of game bots. GOLOG
has been applied to control animated characters before by
Funge [1998]. However, there the scenario was much simpler
with complete knowledge about the world and no uncertainty.

Roughly, READYLOG is a high-level programming lan-
guage with the usual constructs found in imperative program-
ming languages and additional ones which allow agents to
choose among alternative actions. Here, actions are under-
stood as in AI planning, with effects and preconditions spec-
ified in a logical language. Built into the language is also a
decision-theoretic planning component, which can deal with
uncertainty in the form of stochastic actions. In general,
decision-theoretic planning can be very time consuming. As
we will see, combining it with explicit programming of be-
havior, the user can control the amount of planning so that it
becomes feasible for real-time applications. We have demon-
strated this already by using READYLOG to control soccer
playing robots [Ferrein et al., 2004], and we are using the
same highly-optimized Prolog implementation for the work
described in this paper.

The rest of the paper is organized as follows. In the next
section we give a brief introduction to UNREAL TOURNA-
MENT 2004, followed by a very brief discussion of READY-
LOG and its foundations. In Section 4 we discuss how UN-
REAL TOURNAMENT can be modelled in READYLOG. We
then present some experimental results and conclude.

oping an open-source game to serve as a testbed for AI techniques.
2Real-time planning is also considered in [Orkin, 2004], but

without the decision-theoretic aspect.

31

2 UNREAL TOURNAMENT 2004
UNREAL II and UNREAL TOURNAMENT 2004 [Epic Games
Inc., 2005] are two state-of-the-art interactive computer
games. While the former is mainly a single-player game, the
latter is a multi-player game. Here we focus on using and
modifying the bot framework of UNREAL TOURNAMENT
2004 because the bots available therein are programmed to
behave like human adversaries for training purposes.

The engine itself is mainly written in C++ and it cannot
be modified. In contrast the complete Unreal Script (in the
following USCRIPT) code controlling the engine is publicly
available and modifiable for each game. For instance, intro-
ducing new kinds of game play like playing soccer in teams or
the game of Tetris have been implemented on the basis of the
Unreal Engine. All this can be defined easily in USCRIPT, a
simple, object-oriented, Java-like language which is publicly
available.

In UNREAL TOURNAMENT 2004 ten types of gameplay
or game modes have been implemented and published. For
our work the following game types are of interest:

• Deathmatch (DM) is a game type where each player is
on its own and struggles with all other competitors for
winning the game. The goal of the game is to score
points. Scoring points is done by disabling competitors
and secondary goal is not getting disabled oneself. If
the player gets disabled he can choose to re-spawn3 in a
matter of seconds and start playing again. To be success-
ful in this type of game one has to know the world, react
quickly, and recognize the necessity to make a strate-
gic withdrawal to recharge. An interesting subproblem
here is the games where only two players or bots com-
pete against each other in much smaller arenas. In this
setting one can compare the fitness of different agents
easily.

• Team Deathmatch (TDM) is a special kind of Death-
match where two teams compete against each other in
winning the game with the same winning conditions
as in Deathmatch. This is the most basic game type
where team work is necessary to be successful. Protect-
ing teammates or cooperating with them to disable com-
petitors of the other team are examples of fundamental
strategies.

• Capture the Flag (CTF) is a strategical type of game
play. The game is played by two teams. Both teams try
to hijack the flag of the other team to score points. Each
flag is located in the team base. In this base the team
members start playing. Scoring points is done by taking
the opposing team’s flag and touching the own base with
it while the own flag is located there. If the own flag is
not at the home base no scoring is possible and the flag
has to be recaptured first. If a player is disabled while
carrying the flag he drops it and if it is touched by a
player of an opponent team, the flag is carried further
to the opponents home base. If the flag is touched by a

3’Re-spawning’ means the reappearance of a player or an item
such that it becomes active again.

teammate who owns the flag it is teleported back to its
base.
To win such a game the players of a team have to co-
operate, to delegate offensive or defensive tasks, and to
communicate with each other. This game type is the first
one which rewards strategic defense and coordinated of-
fense maneuvers.

Note that the above game types include similar tasks. A
bot being able to play Team Deathmatch has to be able to
play Deathmatch just in case a one-on-one situation arises.
Furthermore Capture the Flag depends on team play just like
the Team Deathmatch.

3 READYLOG
READYLOG is an extension of the action language GOLOG,
which in turn is based on the situation calculus. We will
briefly look at all three in turn.

The situation calculus, originally proposed in [McCarthy,
1963], is a dialect of first-order logic intended to represent
dynamically changing worlds. Here we use the second-order
variant of the situation calculus proposed by Reiter [Reiter,
2001].4 In this language the world is seen as a sequence of
situations connected by actions. Starting in some initial situa-
tion called S0, each situation is characterized by the sequence
of actions that lead to it from S0. Given a situation s, the situ-
ation which is reached after performing an action a is denoted
as do(a, s). Situations are described by so-called relational
and functional fluents, which are logical predicates and func-
tions, respectively, that have as their last argument a situation
term.

Dynamic worlds are described by so-called basic action
theories. From a user’s point of view their main ingredients
are a description of the initial situation, action precondition
axioms and successor state axioms, which describe when an
action is executable and what the value of a fluent is after
performing an action. For example,

Poss(moveto(r, x), s) ≡ HasEnergy(r, s)5

may be read as agent r can move to position x if it has enough
energy. A simple successor-state axiom for the location of r
could be

loc(r, do(a, s)) = x ≡ a = moveto(r, x)∨
loc(r, s) = x ∧ ¬(moveto(r, y) ∧ x 6= y)

Roughly, this says that the location of r is x after some ac-
tion just in case the action was a move-r-to-x action or r was
already there and did not go anywhere else. We remark that
successor state axioms encode both effect and frame prob-
lems and were introduced by Reiter as a solution to the frame
problem [Reiter, 2001]. Furthermore, a large class of precon-
dition and successor state axioms can easily be implemented
in Prolog, just like GOLOG which we now turn to.

GOLOG [Levesque et al., 1997] is a logic programming
language based on the situation calculus. GOLOG offers con-
trol structures familiar from imperative programming lan-
guages like conditionals, loops, procedures, and others:

4Second-order logic is needed to define while-loops of programs,
among other things.

5All free variables are assumed to be universally quantified.

32

primitive actions: α denotes a primitive action, which is
equivalent to an action of the situation calculus.

sequence: [e1, e2, . . . , en] is a sequence of legal GOLOG
programs ei.

test action: ?(φ) tests if the logical condition φ holds.
nondeterministic choice of actions: e1|e2 executes either

program e1 or program e2.
nondeterministic choice of arguments: pi(v, e) chooses a

term t, substitutes it for all occurrences of v in e, and
then executes e;

conditionals: if(φ, e1, e2) executes program e1 if φ is true,
otherwise e2;

nondeterministic repetition: star(e) repeats program e an
arbitrary number of times;

while loops: while(φ, e) repeats program e as long as con-
dition φ holds:

procedures: proc(p, e) defines a procedure with name p and
body e. The procedure may have parameters and recur-
sive calls are possible.

We remark that the semantics of these constructs is fully
defined within the situation calculus (see [Levesque et al.,
1997] for details). Given a GOLOG program, the idea is,
roughly, to find a sequence of primitive actions which cor-
responds to a successful run of the program. These actions
are then forwarded to the execution module of the agent like
moving to a particular location or picking up an object.

READYLOG [Ferrein et al., 2004] extends the original
GOLOG in many ways. It integrates features like probabilistic
actions [Grosskreutz, 2000], continuous change [Grosskreutz
and Lakemeyer, 2000], on-line execution [De Giacomo and
Levesque, 1998], decision-theoretic planning [Boutilier et
al., 2000], and concurrency [De Giacomo et al., 2000;
Grosskreutz, 2002]. Its primary use so far has been as the
control language of soccer playing robots in the ROBOCUP
middle-size league.

For the purpose of controlling UNREAL game bots, perhaps
the most interesting feature of READYLOG is its decision-
theoretic component. It makes use of nondeterministic as
well as stochastic actions, which are used to model choices
by the agent and uncertainty about the outcome of an action.
To make a reasoned decision about which actions to choose,
these are associated with utilities and the decision-theoretic
planner computes the optimal choices (also called policies)
by maximizing the accumulated expected utility wrt a (finite)
horizon of future actions. This is very similar to computing
optimal policies in Markov decision processes (MDPs) [Put-
erman, 1994].6

4 Modelling UNREAL in READYLOG
The UNREAL bots are described by a variety of fluents which
have to be considered while playing the game. All of the

6What makes READYLOG different from ordinary MDPs is that
the state space can be represented in a compact (logical) form and
the control structure of a program allow a user to drastically reduce
the search space.

fluents have a time stamp associated such that the bot is able
to know how old and how precise his state information are.
Identifier fluents: In the set of identifier fluents the bots

name, the currently executed skill, together with unique
ids describing the bot and the skill can be found, among
others.

Location fluents: The location fluents represent the bots lo-
cation in a level, its current orientation, and its velocity.

Bot Parameter fluents: Health, armor, adrenaline, the cur-
rently available inventory in which the items are stored,
and the explicit amount of each inventory slot is saved
in this set of fluents. In the inventory additional game
objective items can be found such as a flag in CTF.

Bot Visibility fluents: Here information about the objects in
the view range of the agent are found. These informa-
tion are distinguished in a teammate and an opponent
set. They contain the bots identifier and its current loca-
tion. In games without team play the set of friends stays
always empty during gameplay.

Item Visibility fluents: Here the information about the cur-
rently visible and non visible items can be found. If an
item is not visible at its expected position a competitor
took it away and it reappears after a specific time. The
definite re-spawn time of the item is unknown in gen-
eral. The explicit re-spawn time is only available, if the
bot itself took the item.

Bots in UNREAL TOURNAMENT 2004 are able to use the
skills stop, celebrate, moveto, roam, attack, charge, moveat-
tack, retreat, and hunt. All actions from UNREAL are mod-
elled in the READYLOG framework as stochastic actions and
successor state axioms are defined for all the fluents. Details
are left out for space reasons.

Our framework is very flexible and allows for modelling
different tasks in various ways, combining decision-theoretic
planning with explicit programming. We begin by showing
two extreme ways to specify one task of the bot, collecting
health items. One relies entirely on planning, where the agent
has to figure out everything by itself, and the other on pro-
gramming without any freedom for the agent to choose.

The example we use for describing the different ap-
proaches, their benefits, and their disadvantages is the col-
lection of health items in an UNREAL level. Because collect-
ing any one of them does not have a great effect the agent
should try to collect as many as possible in an optimal fash-
ion. Optimal means that the bot takes the optimal sequence
which results in minimal time and maximal effect. Several
constraints like the availability have to be taken into account.

The first and perhaps most intuitive example in specify-
ing the collection of health packs is the small excerpt from a
READYLOG program shown in Program 4.1. Using decision-
theoretic planning alone, the agent is able to choose in which
order to move to the items based upon the reward function.
The search space is reduced by only taking those navigation
nodes into account which contain a health item.

The first action of the excerpt is a test action which binds
the list of all health node in the current level to the free vari-
able HealthNodeList . The solve statement initiates the plan-

33

Program 4.1 READYLOG program to collect health powerups by
setting up an MDP to solve. We scale down the search space by
regarding the health nodes only. The reward function rewards low
time usage and higher bot health.

...
?(getNavNodeHealthList(HealthNodeList)),
solve(while(true,

pickBest(healthnode, HealthNodeList,
moveto(epf_BotID, healthnode))),

Horizon, f_HealthReward),
...

function(f_HealthReward, Reward,
and([CurrentTime = start,

TmpReward = epf_BotHealth - CurrentTime,
Reward = max([TmpReward, 0])])

). % of simple_reward

ning process. Up to the horizon Horizon the loop is op-
timized using the reward function f HealthReward which
simply awards the health status of the bot discounted over the
planning time. Note that we assume a continuously chang-
ing world during plan generation. The pickBest statement
projects the best sequence of moveto actions for each possi-
ble ordering of health nodes. This results in the optimal ac-
tion sequence given the bot’s current location as health nodes
which are far away are honored a lower reward.

Note that in this first basic example all calculations are up
to the agent. Information about availability of items, the dis-
tance or the time the agent has to invest to get to the item
become available to the agent as effects of the moveto ac-
tion. While easy to formulate, the problem of Program 4.1
is its execution time. With increasing horizon the computa-
tion time increases exponentially in the size of the horizon.
All combinations of visiting the nodes are generated and all
stochastic outcomes are evaluated. For example, in a setting
with Horizon = 3 and #HealthNodes = 7 the calculation
of the optimal path from a specific position takes about 50
seconds,7 which makes this program infeasible at present.

The next idea in modelling the health collection is to fur-
ther restrict the search by using only a subset of all available
health nodes. The example shown previously took all health
navigation nodes of the whole map into account, whereas a
restriction of those nodes is reasonable. Items which are far
away are not of interest to the agent. Because of this restric-
tion the real-time demands are fulfilled in a better way but
they are still not acceptable for the UNREAL domain. In the
same setting as above (Horizon = 3 and #HealthNodes =
7 from which only Horizon+1 = 4 health navigation nodes
are chosen) the calculation of the optimal path lasts about 8
seconds.

A much more efficient way to implement this action se-
quencing for arbitrary types is to program the search explic-
itly and not to use the underlying optimization framework.
For example, filtering the available nodes and ordering them
afterwards in an optimal way by hand is a much better way
to perform on-line playing. The example described above is
depicted in Program 4.2.

7The experiments were carried out on a Pentium 4 PC with
1.7GHz and 1GB main memory.

Program 4.2 READYLOG program to collect health items which
is able to be applied on-line. The method getNextVisNavNodes
returns a list of navigation nodes with length Horizon which are of
type Type ordered with increasing distance from location Loc and a
minimal confidence of availability of either 0.9 or 0.5. The ordering
is done by the underlying Prolog predicate sort. If one item matches
the mentioned requirements, the agent travels there, and recursively
calls the collect method again until Horizon is reached.

proc(collect(Type, Horizon),
if(neg(Horizon = 0),

[
?(and([Loc = epf_BotLocation,

getNextVisNavNodes(Loc, Horizon, Type,
0.9, TmpVisList),

lif(TmpVisList = [],
getNextVisNavNodes(Loc, Horizon, Type,

0.5, VisList),
VisList = TmpVisList),

lif(neg(VisList = []),
VisList = [HeadElement|_TailElements],
HeadElement = nothing),

NewHorizon = Horizon - 1
])),

if(neg(VisList = []),
[moveto(epf_BotID, HeadElement),

collect(Type, NewHorizon)
])

])
). % of collect(Type, Horizon)

This example of how modelling health collection can be
done is far from optimal from a decision-theoretic point of
view. There are no backup actions available if something goes
wrong and no projection of outcomes is applied during exe-
cution. On the other hand, the execution of Program 4.2 is
computationally inexpensive. Arbitrary horizons for collect-
ing an item can be given to the program without an exponen-
tial blow-up.

Given the pros and cons of the two examples above, it
seems worthwhile to look for a middle ground. The idea is to
allow for some planning besides programmed actions and to
further abstract the domain so that the search space becomes
more manageable. Instead of modelling each detail for every
action simpler models are introduced which do not need that
much computational effort when planning.

To illustrate this we use an excerpt from our actual imple-
mentation of the deathmatch agent (Program 4.3). Here an
agent was programmed which chooses at each action choice
point between the outcomes of a finite set of actions. It has
the choice between collecting a weapon, retreating to a health
item, and so on based on a given reward function. The main
part of the agent is the non-deterministic choice which repre-
sents the action the agent performs next. It has the choice be-
tween roaming and collecting items, attacking an opponent,
or collecting several specific items. The decision which ac-
tion to take next is performed based on the reward of the re-
sulting state. Note also that the non-deterministic choices are
restricted by suitable conditions attached to each choice. This
way many choices can be ruled out right away, which helps
prune the search space considerably.

5 Experimental Results
In our implementation we connected READYLOG and UN-
REAL via a TCP connection for each game bot. With this

34

Program 4.3 Part of READYLOG program implementing an agent
which is able to play Deathmatch games in UNREAL. The agent has
several choices available and projects to choose the best action to
execute. The results of this agent are presented in table 1.

proc(agent_dm(Horizon),
[while(true,

[solve([nondet([if(f_SawOpponent = false,
roam(epf_BotID)),

if(f_SawOpponent = true,
moveattack(epf_BotID,

f_GetNextOppBot)),
.....
if(f_ItemTypeAvailable(health),

collect(health, 1)),
if(and([f_BotHasGoodWeapon = false,

f_ItemTypeAvailable(weapon) = true
]),

collect(weapon, 1))
])

], Horizon, f_DMReward)
])

]). % of agent_dm(Horizon)

function(f_DMReward, Reward,
and([.....

lif(epf_BotHealth < 150, RewardHealth1 = -1),
lif(epf_BotHealth < 100, RewardHealth2 = -5),
.....
lif(epf_BotArmor > 135, RewardArmor4 = 20),
.....
RewardScore = -200*(CurrentMaxScore-MyScore),
.....
Reward = RewardHealth1 + RewardHealth2 + . + RewardScore
])). % of f_DMReward

connection the programs transmit all information about the
world asynchronously to provide the game-bot with the latest
world information and receive the action which the bot shall
perform next until a new action is received. With this setup
and after implementing an agent to play different styles of
play, we conducted several experiments.

The most important thing to be mentioned before attending
to the explicit results is that the game is highly influenced by
luck. Letting two original UNREAL bots compete in the game
can result in a balanced game which is interesting to observe
or in an unbalanced game where one bot is much more lucky
than the others and wins unchallenged with healthy margin.
Because of that we did run every test several times to substan-
tiate our results.

Table 1 shows the results of the deathmatch agent which
we described in the last section. In this and the next table
the first column contains the name of the level we used for
testing. The second column shows the total number of players
competing in this level. In the following columns the results
of different settings of the game are represented. The token
UB stands for the original UNREAL bot. RB represents the
READYLOG bot. “RB only” means that only READYLOG
bots competed. “RB vs. UB” means that the READYLOG
bots compete against the UNREAL bots. The entries in line
3 and 5 mean the total ranking of the four competing bots,
i.e. the winning bot got a score of 9, the second a score of
8, the third a score of 5, and the fourth a score of 3. In the
column “RB vs. UB” the first two entries show the results of
the READYLOG bots against the two UNREAL bots.

Next we consider the capture-the-flag agent, which was im-
plemented based on the team deathmatch agent. Here we fo-
cused on the implementation of a multi-agent strategy to be
able to play Capture the Flag on an acceptable level.

We introduced two roles to implement a strategy for this

Table 1: UNREAL deathmatch results generated in our frame-
work. The setting was as follows: GoalScore = 9, Level-
Time = 6 min, SkillLevel = skilled. We present the median
result of five experiments for each entry here.

Level Name #Player RB only RB vs. UB
Training Day 2 9:6 8 : 9
Albatross 2 9:5 8 : 9
Albatross 4 9:8:5:3 8:1 : 9:5
Crash 2 8:7 7 : 8
Crash 4 9:7:5:3 8:5 : 9:6

Table 2: UNREAL Capture the Flag results generated in our
framework. The setting was as follows: GoalScore = 5, Lev-
elTime = 6 min, SkillLevel = skilled. We present here the
median result of five experiments for each entry.

Level Name #Players RB only RB vs. UB Mixed
Joust 2 5:3 5:3 -
Maul 4 1:0 0:1 2:1
Face Classic 6 2:1 0:1 2:1

type of game which we called attacker and defender. The at-
tacker’s task is to try to catch the opponents flag and to hinder
the opponents from building up their game. The defender’s
task is to stay in the near vicinity of the own flag and to guard
it. If the own flag is stolen its job is to retrieve it as fast as
possible.

Each role was implemented based on a simple set of rules
based on the state of each team’s flag: the two flags can each
be in three states, at home, carried, or dropped. For each of
the resulting nine combinations of the two flags we imple-
mented a small program for each role. E.g. if the own flag is
in the state dropped the defender’s task is to recapture it by
touching the flag.

For several states we introduced nondeterministic choices
for the agent. It is able to choose between collecting several
items or trying to do its role-related tasks.

The results can be interpreted as follows: In the one-on-
one level Joust the READYLOG bot is surprisingly strong in
gameplay. We confirmed those results in other one-on-one
levels. We think this is due to the goal directed behavior of
our attacker. The agent does not care much about items and
mainly fulfills its job to capture the flag and recapture the
own flag. The column titled “Mixed” in Table 2 shows the
result where READYLOG and UNREAL bots together made
up a team.

There exist several problems which we describe here but
could not attend to because of time constraints. First of all
the bots always choose the same paths in the map. This is not
a big problem in games against UNREAL bots but humans
observe and learn this behavior fast and are able to use this to
their advantage.

35

6 Conclusions
We implemented a framework which enables us to control
UNREAL game bots using the logic-based action language
READYLOG, which enables the user to mix programmed ac-
tions decision-theoretic planning for intelligent game play.
Different game types were implemented and experiments
were carried out, where READYLOG bot is able to compete
with the original UNREAL bot.

One can argue that the difficulties of our approach lie in
the modeling of the domain instead of modeling the behavior
of the bots. On the one hand, this is true because design-
ing a good reward functions is a subtle issue. On the other
hand, it is easier to model the effects of actions and letting
the agent decide to choose the appropriate actions. Find-
ing a middle ground between full decision-theoretic planning
and programming leaves some choices by the bot resulting in
more flexible behavior.

While our current bots can certainly be improved in many
ways, perhaps the most important message of this paper is
that logic-based action languages, which for the most part
have only been considered in the theoretical KR community,
can actually be used in challenging environments like inter-
active computer games.

References
[Berger, 2002] L. Berger. Scripting: Overview and Code

Generation. In AI Game Programming Wisdom, volume 1,
pages 505–510. Charles River Media, 2002.

[Boutilier et al., 2000] C. Boutilier, R. Reiter, M. Soutchan-
ski, and S. Thrun. Decision-Theoretic, High-Level Agent
Programming in the Situation Calculus. In Proceedings
of the 7th Conference on Artificial Intelligence (AAAI-00)
and of the 12th Conference on Innovative Applications of
Artificial Intelligence (IAAI-00), pages 355–362, Menlo
Park, CA, USA, July 2000. AAAI Press.

[Buro, 2003] M. Buro. Real Time Strategy Games: A new
AI Research Challenge. In Proceedings of the Interna-
tional Joint Confercence on AI, Acapulco, Mexico, 2003.
AAAI Press.

[De Giacomo and Levesque, 1998] G. De Giacomo and H. J.
Levesque. An Incremental Interpreter for High-Level
Programs with Sensing. Technical report, Department
of Computer Science, University of Toronto, Toronto,
Canada, 1998.

[De Giacomo et al., 2000] G. De Giacomo, Y. Lesperance,
and H. J. Levesque. Congolog, a concurrent program-
ming language based on the situation calculus. Artif. In-
tell., 121(1-2):109–169, 2000.

[Electronic Arts Inc., 2005] Electronic Arts Inc.
http://www.ea.com/, last visited in January 2005.

[Epic Games Inc., 2005] Epic Games Inc.
http://www.unrealtournament.com/, last visited in
February 2005.

[Ferrein et al., 2004] A. Ferrein, C. Fritz, and G. Lakemeyer.
On-line decision-theoretic golog for unpredictable do-
mains. In Proc. of 27th German Conference on AI, 2004.

[Fu and Houlette, 2004] D. Fu and R. Houlette. The Ulti-
mate Guide to FSMs in Games. In AI Game Program-
ming Wisdom, volume 2, pages 3–14. Charles River Me-
dia, 2004.

[Funge, 1998] J. Funge. Making Them Behave: Cognitive
Models for Computer Animation. PhD thesis, University
of Toronto, Toronto, Canada, 1998.

[Grosskreutz and Lakemeyer, 2000] H. Grosskreutz and
G. Lakemeyer. cc-Golog: Towards More Realistic
Logic-Based Robot Controllers. In AAAI-00, 2000.

[Grosskreutz, 2000] H. Grosskreutz. Probabilistic Projec-
tion and Belief Update in the pGOLOG Framework. In
CogRob-00 at ECAI-00, 2000.

[Grosskreutz, 2002] H. Grosskreutz. Towards More Realis-
tic Logic-Based Robot Controllers in the GOLOG Frame-
work. PhD thesis, RWTH Aachen University, Knowledge-
based Systems Group, Aachen, Germany, 2002.

[Kaminka et al., 2002] G. A. Kaminka, M. M. Veloso,
S. Schaffer, C. Sollitto, R. Adobbati, A. N. Marshall,
A. Scholder, and S. Tejada. Game Bots: A Flexible Test
Bed for Multiagent Research. Communications of the
ACM, 45(2):43–45, 2002.

[Levesque et al., 1997] H. Levesque, R. Reiter,
Y. Lespérance, F. Lin, and R. Scherl. GOLOG: A
Logic Programming Language for Dynamic Domains.
Journal of Logic Programming, 31:59–84, April-June
1997.

[Lewis, 1999] R. L. Lewis. Cognitive modeling, symbolic.
In The MIT Encyclopedia of the Cognitive Sciences. MIT
Press, Cambridge, Massachusetts, USA, 1999.

[Magerko et al., 2004] B. Magerko, J. E. Laird, M. Assanie,
A. Kerfoot, and D. Stokes. AI Characters and Directors for
Interactive Computer Games. In Proceedings of the 2004
Innovative Applications of Artificial Intelligence Confer-
cence, San Jose, CA. AAAI Press, 2004.

[McCarthy, 1963] J. McCarthy. Situations, Actions and
Causal Laws. Technical report, Stanford University, 1963.

[Munoz-Avila and Fisher, 2004] H. Munoz-Avila and
T. Fisher. Strategic Planning for Unreal Tournament Bots.
In AAAI Workshop on Challenges in Game AI, San Jose,
CA, USA, July 2004.

[Orkin, 2004] J. Orkin. Symbolic Representation of Game
World State: Toward Real-Time Planning in Games. In
AAAI Workshop on Challenges in Game AI, San Jose, CA,
USA, July 2004.

[Puterman, 1994] M. Puterman. Markov Decision Pro-
cesses: Discrete Dynamic Programming. Wiley, New
York, USA, 1994.

[Reiter, 2001] R. Reiter. Knowledge in Action. Logical Foun-
dations for Specifying and Implementing Dynamical Sys-
tems. MIT Press, 2001.

[Valve Corporation, 2005] Valve Corporation.
http://www.valvesoftware.com/, last visited in January
2005.

36

Knowledge Organization and Structural Credit Assignment

Joshua Jones and Ashok Goel
College of Computing

Georgia Institute of Technology
Atlanta, USA 30332

{jkj, goel}@cc.gatech.edu

Abstract

Decomposition of learning problems is important
in order to make learning in large state spaces
tractable. One approach to learning problem de-
composition is to represent the knowledge that will
be learned as a collection of smaller, more indi-
vidually manageable pieces. However, such an ap-
proach requires the design of more complex knowl-
edge structures over which structural credit assign-
ment must be performed during learning. The spe-
cific knowledge organization scheme chosen has a
major impact on the characteristics of the structural
credit assignment problem that arises. In this paper,
we present an organizational scheme called Exter-
nally Verifiable Decomposition designed to facili-
tate credit assignment over composite knowledge
representations. We also describe an experiment
in an interactive strategy game that shows that a
learner making use of EVD is able to improve per-
formance on the studied task more rapidly than by
using pure reinforcement learning.

1 Introduction
The need for decomposition in learning problems has been
widely recognized. One approach to making learning in large
state spaces tractable is to design a knowledge representation
composed of small pieces, each of which concerns a more
compact state space than the overall problem. Techniques
that would be intractable for the problem as a whole can then
be applied successfully to each of the learning subproblems
induced by the set of components.

Such composite knowledge representations, however, re-
quire the design of top-level structures that combine the
knowledge that will be stored at individual components into
a usable whole that encodes knowledge about the complete
problem. These structures raise new issues for credit assign-
ment. Specifically, there is a need to perform structural credit
assignment over the top-level structure during learning.

The temporal credit assignment problem takes as input the
outcome of a sequence of actions by an agent and gives as
output a distribution over the actions in the sequence, where
the output distribution specifies the relative responsibility of
the actions for the outcome. In contrast, the structural credit

assignment problem takes as input the outcome of a single
action by an agent and gives as output a distribution over the
components of the agent, where the output distribution spec-
ifies the relative responsibility of the components for the out-
come. In this work, we are interested (only) in the structural
credit assignment problem as it pertains to a learning agent’s
knowledge. In particular, we are interested in specifying and
organizing knowledge components so as to enable accurate
and efficient structural credit assignment over the resulting
structure.

The question then becomes what might be the design prin-
ciples for organizing knowledge and what additional knowl-
edge might be encoded with each component to facilitate
structural credit assignment? In this paper, we present an
organizational and encoding scheme that we call Externally
Verifiable Decomposition (or EVD). We also describe exper-
imental results in an interactive strategy game, comparing re-
inforcement learning with EVD.

2 Externally Verifiable Decomposition
We begin by informally describing the EVD scheme with an
illustrative example from an interactive strategy game called
Freeciv (http://www.freeciv.org). We provide a formal de-
scription of EVD later in the paper.

2.1 Freeciv

FreeCiv is an open-source variant of a class of Civilization
games with similar properties. The aim in these games is
to build an empire in a competitive environment. The major
tasks in this endeavor are exploration of the randomly ini-
tialized game environment, resource allocation and develop-
ment, and warfare that may at times be either offensive or
defensive in nature. Winning the game is achieved most di-
rectly by destroying the civilizations of all opponents. We
have chosen FreeCiv as a domain for research because the
game provides challenging complexity in several ways. One
source of complexity is the game’s goal structure, where clean
decomposition into isolated subgoals is difficult or impossi-
ble. The game is also partially observable. The map is ini-
tially largely hidden, and even after exploration does not re-
flect state changes except in portions directly observed by a
player’s units. A consequence is that the actions of opponents
may not be fully accessible. Also, the game provides a very

37

large state space, making it intractable to learn to play well
without decomposition.

It is not necessary to understand the game completely for
the purpose of understanding this study, but some specifics
are in order. The game is played on a virtual map that is
divided into a grid. Each square in this grid can be character-
ized by the type of terrain, presence of any special resources,
and proximity to a source of water such as a river. In ad-
dition, each square in the grid may contain some improve-
ment constructed by a player. One of the fundamental actions
taken while playing FreeCiv is the construction of cities on
this game map, an action that requires resources. In return for
this expenditure, each city produces resources on subsequent
turns that can then be used by the player for other purposes,
including but not limited to the production of more cities. The
quantity of resources produced by a city on each turn is based
on several factors, including the terrain and special resources
surrounding the city’s location on the map, the construction
of various improvements in the squares surrounding the city,
and the skill with which the city’s operations are managed. As
city placement decisions are pivotal to success in the game,
an intelligent player must make reasoned choices about where
to construct cities.

2.2 Learner Design
We have designed an agent that plays FreeCiv. In this study,
we are focused on evaluating EVD for a relatively small but
still challenging part of the game. To that end, we have ap-
plied both EVD and Q-learning[Watkins, 1989] to a part of
the module responsible for making decisions about city place-
ment, specifically a part responsible for estimating the ex-
pected resource production over time if a city were built at a
particular map location. This estimate is a state abstraction
that can be used by a higher level reasoner to make decisions
about where to place cities. In the experiment described in
this paper, we are not concerned with the success of a higher
level reasoner, but only in acquiring the knowledge needed
to produce state abstractions that accurately project resource
production.

EVD Learner Design
Informally, the EVD scheme for organizing an agent’s
decision-making process has the following characteristics
(we provide a formal description of EVD later). Firstly, from
a top-level perspective, knowledge is organized in a state-
abstraction hierarchy, progressively aggregating and abstract-
ing from inputs. Figure 1 illustrates the hierarchy used to ap-
ply EVD in our chosen problem setting. This decomposition
is a simplification of actual game dynamics, but is sufficient
for the purposes of this study. The output of this structure is
one of nine values representing the expected resource produc-
tion of the terrain surrounding the map tile represented by the
inputs. Specifically, the value represents the (short and long
term) estimated resource production on each turn relative to a
baseline function. The baseline is computed as a function of
the number of turns for which the city in question has been
active. This baseline accounts for the fact that absolute re-
source production is expected to increase over time. Note
that no single estimate value may be correct for a given set

Figure 1: City Estimate Decomposition

of inputs, so the goal of learning is to minimize rather than
eliminate error in these estimates.

The leaf nodes in the hierarchy discretize raw features of
the world. For example,food start takes as input a raw per-
ception available from the environment (a set of numbers)
that represents the food production value of game tiles in the
inspected area. This leaf node produces as output an inte-
gral value from 1 to 5, representing the food resources ini-
tially available to the prospective city in a form usable by the
parent node. These discretization functions in leaf nodes are
hard-coded in this study.

Nodes at any level higher than leaf nodes in the hierarchy
view the outputs of child nodes as features and aggregate and
abstract them into states at their level. These abstractions
made at intermediate nodes are learned; that is, each node
contains a learner (the specific type of which is not specified
by EVD) capable of mapping the vector of inputs to an output
value. In this work, we use a simple table-lookup procedure
within each node to perform the mapping, where learning is
performed via a simple scheme that gradually changes table
entries as examples are presented. For example, thepopu-
lation growth component contains a three dimensional table
indexed by the output values offood start, sufficientsquares
andfood growth, and produces an integral output value from
1 to 5, abstractly representing the expected population growth
for the prospective city.

The most important feature of EVD is the association of
predictive knowledge with each non-leaf component. Specif-
ically, this knowledge establishes failure (success) conditions
for each output value available to the component with which
it is associated. In general these conditions could indicate
”hard” success or failure, or values along some gradient be-
tween success and failure, interpretable as severity of failure
and/or confidence in local failure. Here, we deal only with

38

digital success or failure. The predictive knowledge asso-
ciated with a component can be thought of as encoding the
semantics of the state abstraction knowledge acquired by the
learner within the component.

This predictive knowledge is encoded in structural credit
assignment functions, one of which is associated with each
agent component. These functions are used to reflect upon
the correctness of each component’s action as information be-
comes available through perception subsequent to value pro-
duction. The set of values produced by each component’s
function form an (unnormalized) distribution over the agent
structure, as required for structural credit assignment. As an
example, thepopulationgrowthnode has an associated func-
tion that takes as input the actual population of a city, the
number of turns that have passed since the city was built, and
the value that was produced by thepopulationgrowthnode’s
table during previous inference, and returns a boolean value
indicating whether the value produced is correct in light of
the first two parameters. This function was hand coded dur-
ing the design phase, representing the intended semantics of
the state abstraction to be produced by the node.

We term the property of a decomposition that is con-
structed to allow the encoding of this type of predictive
knowledge ”external verifiability” because each of the com-
ponents is designed to have semantics that can be verified
based on available percepts. Note that the technique is use-
ful only when values produced by components can be veri-
fied in retrospect, when percepts become available after ac-
tion selection – if they could be verified with certainty at the
time values are produced, there would be no need for learning
within components. Instead, the knowledge used for verifica-
tion could simply be used to produce values directly.

This principle of external verifiability is used when design-
ing a problem decomposition, guiding the choices that are
made in terms of problem framing and the definition of agent
components. The prescription of EVD is that these choices
must be made so that the necessary predictive knowledge can
be defined for each component. Beyond the facilitation of
credit assignment during learning, this type of decomposition
also has the advantage that agent components have meaning-
ful, known semantics, allowing the results of learning to be
easily interpreted.

Inference over an EVD structure is straightforward. In or-
der to produce an output, each component recursively queries
its children to obtain its inputs, and then uses its learner to
map these inputs into an output value. This recursion is ter-
minated at the leaves, at each of which a feature of raw input
state is discretized and returned.

Q-Learning Agent Design
A separate Q-learning agent was also implemented for the
purposes of comparison. The outputs of the EVD learner’s
input mappers are composed into a feature vector that is used
as the input state description for the Q-learner. The set of
values that can be produced as outputs by the EVD learner
form the set of actions available to the Q-learner. This setup
is intended to provide an I/O environment for the Q-learner
that matches that of the EVD learner closely. Each time the
action selected by the Q-learner corresponds to an incorrect

resource production estimate for the current turn, a reward of
-1 is given. If the action corresponds to a correct value for the
current turn, a reward of 0 is given. Exploration is handled by
initializing the value of all state-action pairs to 0, the highest
value possible under this reward scheme.

3 EVD Credit Assignment Procedure
While predictive knowledge forms the basis for credit assign-
ment over structures resulting from the application of EVD, it
is not sufficient in and of itself. Predictive knowledge estab-
lishes failure conditions for each component. However, this
knowledge does not capture the dependencies among agent
components, and these dependencies are also significant in
determining the failure status at each node. For this reason,
the failure conditions used for credit assignment must incor-
porate both the local predictive knowledge at each component
and some information about top-level knowledge structure.

This work focuses on decompositions with a hierarchical
structure, that progressively aggregate and abstract from raw
state features. For these state abstraction hierarchies, the ob-
servation necessary is that failure at a given component may
be due either to erroneous knowledge (mapping from inputs
to outputs) stored locally, or may be due to errors at the inputs
arising from faults nearer the leaves. This structural charac-
teristic, along with the functions enabling retrospective local
verification when feedback becomes available, forms the ba-
sis for the credit assignment process associated with this de-
composition technique.

Because the verification functions associated with each
agent component may in principle be arbitrarily complex, it
is advantageous to avoid evaluations whenever possible. In
order to limit the number of evaluations required during each
learning episode, we view incorrect behavior at a node as the
production of a value that is both registered as a failure by
the local verification function and that (recursively) results
in incorrect behavior at the parent. Only the first condition
is required for behavior at the root of the hierarchy to be
viewed as incorrect. Viewing error in this way means that
during some learning episodes, components that produce ac-
tions inconsistent with the local verification function may not
be given weight by the credit assignment process, if the er-
ror is not propagated to the root of the hierarchy. The neg-
ative repercussion of this choice is that some opportunities
for learning may not be fully exploited. However, if an ac-
tion taken by some agent component is truly to be seen as
incorrect, it is reasonable to require that there be some set of
circumstances under which the erroneous action contributes
to an overall failure. If such a situation exists, the credit as-
signment process will eventually recommend a modification
at the component. If no such situation exists, it is safe to
allow the component to continue with the ”erroneous” behav-
ior. The major benefit of this view is that when a component
is found to have chosen an action that agrees with the local
verification function, none of the components in the subtree
rooted at the evaluated component need to be examined.

Given this view of error, the set of local verification func-
tions associated with each component, and knowledge of
the hierarchical structure of the decomposition, the structural

39

bool EVD assign credit(EVD d, percepts P)

bool problem ← false

if d →F(d→a, P) == 1
return false

end

forall children c of d
if EVD assign credit(c, P) == true

problem ← true
end

end

if !problem
mark e

end
return true

end

Figure 2: Pseudo-code for EVD structural credit assign-
ment. Each node has an associated structural credit assign-
ment function as described above, denoted ’F’ here. Each
component is also expected to store its last action, ’a’.

credit assignment process is as shown in Figure 2. The func-
tion is called when new percepts become available from the
environment (here, on each new turn), and results in marking
the nodes identified as responsible for failure, if any. When
invoked, the procedure evaluates the verification function at
the root of the hierarchy based on the relevant value previ-
ously selected at that component. If the verification is suc-
cessful, no further action is taken. If an error is indicated,
each child is visited, where the procedure is recursively re-
peated. If and only if no error can be found at any child,
the current node is marked as being in error. The base case
for this recursive procedure is achieved by defining leaves
in the hierarchy as correct; that is, inputs representing raw
state are never considered to be a source of error, but are pro-
vided with ”dummy” verification functions that yield 1 for
all inputs. This procedure treats error as a digital property of
agent components, not making distinctions in degree of fail-
ure. Notice that this procedure also makes the commitment
that error is due either to local knowledgeor to erroneous in-
puts. Also note that this credit assignment procedure is purely
structural. That is, no temporal credit assignment is handled
by this algorithm. For this reason, the percepts ’P’ can be
directly attributed to the last action ’a’ taken by each compo-
nent. This is why cached last action values can be used in the
algorithm above. In order to address both structural and tem-
poral credit assignment, the method described here could be
used to distribute credit structurally after another technique
has distributed credit temporally.

Based on the result of structural credit assignment, learn-
ing is performed at each node that has been marked as er-
roneous, by whatever procedure is applicable to the type(s)
of learners used within the components. Note that the de-
composition method and accompanying method for structural
credit assignment make no prescription whatsoever in terms
of the knowledge format or learning procedure that is used
within each node. In this work, a simple table-update routine
was used within each component. However, in principle any
other type of learning technique desired could exist within

each component.

4 Experiments
In order to provide evidence that the decomposition tech-
nique and associated structural credit assignment method out-
lined above provide advantages over learning in a flat prob-
lem space, we have applied the technique to a problem within
a strategy game playing agent, and compared the results with
an RL implementation, specifically Q-learning, as discussed
previously.

4.1 Procedure
Because we train and evaluate the learners in an on-line,
incremental fashion, we cannot apply the standard train-
ing set/test set approach to evaluation. Rather, we evaluate
the learners’ performance improvement during training by
segmenting the sequence of games played into multi-game
blocks, and comparing overall error rate between blocks. In
this way, we are able to compare error rate around the begin-
ning of a training sequence with the error rate around the end
of that sequence.

Errors are counted on each turn of each game by produc-
ing a value (equivalently, selecting an action), finishing the
turn, perceiving the outcome of the turn, and then determin-
ing whether the value produced correctly reflects the resource
production experienced on that turn. If the value is incorrect,
an error is counted. Note that this error counting procedure
contrasts with another possibility; producing a value only at
the beginning of each game, and counting error on each turn
of the game based on this value, while continuing to learn on
each turn. While this alternative more closely matches the
intendeduseof the learned knowledge, we chose to instead
allow a value to be produced on each turn in order to reflect
the evolving state of knowledge as closely as possible in the
error count. A negative consequence of this choice is that
some overfitting within games may be reflected in the error
count. However, a decrease in error rate between the first and
last block in a sequence can be seen as evidence of true learn-
ing (vs. overfitting), since any advantage due to overfitting
should be as pronounced in the first group of games as in the
last. Also note that error counting was consistent for both the
EVD-based learner and the Q-learner.

In each trial, a sequence of games is run, and learning
and evaluation occurs on-line as described above. The EVD-
based learner is trained on sequences of 175 games, while
the Q-learner is allowed to train on sequences of 525 games.
We trained the Q-learner on sequences three times longer
than those provided to the EVD learner to determine whether
the Q-learner’s performance would approach that of the EVD
learner over a longer training sequence. As described above,
we segment these sequences of games into multi-game blocks
for the purpose of evaluation; the block sized used is 7 games.
Each game played used a (potentially) different randomly
generated map, with no opponents. The agent always builds a
city on the first occupied square, after making an estimate of
the square’s quality. Building in the first randomly generated
occupied square ensures that the learners will have opportu-
nities to acquire knowledge in a variety of states. Though this

40

EVD agent Q-learning agent
7th block 7th block 21st block

Without city 24% (4%) 1%
improvements

With city 29% 7% 10%
improvements

Table 1: Average percent decrease (or increase, shown in
parentheses) in error for decomposition-based learning im-
plementation from block 1 to 7, and for the Q-learning agent
from block 1 to blocks 7 and 21.

setup is simpler than a full-fledged game, it was sufficient to
illustrate differences between the learners. In order to com-
pensate for variation due to randomness in starting position
and game evolution, results are averaged over multiple inde-
pendent trial sequences. Each result for the EVD learner is
an average of 60 independent trials. Each result for the Q-
learner is an average over 25 independent trials; each trial is
time consuming, as each trial for the Q-learner is three times
as long as for the EVD-learner, and it did not seem likely
that further trials with the Q-learner would offer significantly
more information.

To compare the speed with which learning occurs in the
two agents, we ran two separate sets of trials. The first set of
trials was run in an environment where no city improvements
were constructed in the area surrounding the city. The second
set of trials did allow for the construction of city improve-
ments, but had an identical environment in all other ways. For
each set of environmental conditions, we measure the qual-
ity of learning by comparing the average number of errors
counted in the first block of the sequences to the number of
errors counted in the last block. In the case of the Q-learner,
we make two comparisons. The first compares error in the
first block to the block containing the 175th game, illustrat-
ing decrease in error over the same sequence length provided
to the EVD learner. We also compare error in the first block
to error in the last block of the Q-learner’s sequences, to de-
termine whether the Q-learner’s improvement will approach
that of the EVD learner over sequences three times as long.
We perform this evaluation separately for each of the two en-
vironmental setups.

4.2 Results
The results of the experiment described above are summa-
rized in Table 1. The EVD based learner is able to pro-
duce a greater improvement in error rate in each case, as
compared to the Q-learner, both after the same number of
games and after the Q-learner has played three times as many
games. For the two scenarios, the average improvement in
error rate is 26.5%, compared to only 1.5% after the same
number of training examples for Q-learning. The decrease
in error across a typical sequence was not strictly monotonic,
but did exhibit progressive decrease rather than wild fluctua-
tion. Even after three times as many games had been played
by the Q-learning agent, the decrease in error rate is signif-
icantly less than that achieved using EVD after only seven
blocks. In one case, it appears that learning has not yielded

an advantage in error rate in the Q-learning agent even after
525 games. Examining the complete set of results for inter-
vening blocks does mitigate this impression to some extent,
as an overall downward trend is observed, with some fluctu-
ations. However, given that the fluctuations can be of greater
magnitude than the decrease in error due to Q-learning, the
learning that has been achieved after this number of games
does not appear significant. Based on the significant differ-
ence in observed learning rate, these trials provide evidence
that the decomposed structure and accompanying structural
credit assignment capabilities of EVD do offer an advantage
in terms of allowing learning to occur more quickly in a large
state space.

5 Formal Description of EVD Structure
As has been discussed, this paper is focused on decomposi-
tions that progressively abstract away from raw state features
through a hierarchy of components. Abstraction hierarchies
can be viewed as handling a class of tasks, termed select-
1-out-of-n, in a way that has been identified and formally
described by Bylander, Johnson and Goel[Bylanderet al.,
1991]. We base our formal description of EVD structure on
this class of tasks. The select-1-out-of-n task is defined as
follows:

Definition 5.1 Let C be a set of choices. LetP be a set of
parameters. LetV be a set of values. Let an assignment of
values inV to the parametersP be represented by a function
d : P → V . Then letD be the set containing all possible pa-
rameter assignmentsd. Theselect-1-out-of-n task is defined
as a tuple,< P, V,C, s >, wheres is a functions : D → C.

In practice, each of the parameters inP may have a distinct
set of legal values. In this case,V is the union of the sets of le-
gal input values to each parameterp ∈ P , andD is restricted
to contain only functionsd that provide legal assignments of
values to parameters.

Before formally defining EVD structure, we need to define
an input mapper.

Definition 5.2 An input mapperis defined as a tuple
< p, V, C, T >, wherep is a single input parameter,V is the
set of values that can be taken by the parameter, andC is the
set of possible output values.T is a functionT : V → C
that implements the translation of input values to the choice
alphabet.

Now we can formally define EVD structure.

Definition 5.3 AnEVD is recursively defined as a tuple
< P, V,C,P,S,L, F >, whereP is the set of input parame-
ters,V is the set of values that can be taken by those param-
eters, andC is the set of choices that form the output of the
judgement.P is a tuple< P1, ..., Pr > such that{P1, ..., Pr}
is a partition of the parametersP of rankr. That is,P1, ..., Pr

are non-empty disjoint sets whose union isP . S is a tuple
< s1, ..., sr >, wheresi is anEVD with parametersPi, val-
uesV and choicesC if |Pi| > 1, or an input mapperwith
parameterp, p ∈ Pi, valuesV and choicesC if |Pi| = 1. L
is an arbitrary learner with domainCr and rangeC. F is a
functionF : e × C → {1, 0}, wheree is a representation of
feedback perceived from the environment.

41

Once again,V represents the union of the values taken by
all EVD parameters; value assignments and functions involv-
ing value assignments are restricted to handle legal assign-
ments only. This treatment ofV is for notational convenience.
Similarly, some subtrees may return only a subset ofC, and
L at the parent node need not handle outputs of a subtree that
cannot legally be produced. The functionF encodes predic-
tive knowledge about the knowledge encoded in the compo-
nent, as described above.

Evaluation of an EVD is handled in two steps. First, de-
termine the input toL by evaluating eachsi ∈ S, and then
produce as output the result of applyingL to the generated
input vector. Input mappers are evaluated by applyingT di-
rectly to the value of the sole parameterp. Learning over the
EVD structure as a whole proceeds by first using the credit
assignment technique described previously, and then apply-
ing feedback to the learner within each EVD component as
dictated by the outcome of credit assignment.

6 Discussion
The intended contribution of this work is in making explicit
the connection between structural credit assignment and de-
composition of learning problems via composite knowledge
representation, and in describing an approach that drives the
design of knowledge representations based on the needs of
structural credit assignment. The connection between decom-
position and structural credit assignment has been recognized
by Dietterich in his work on hierarchical reinforcement learn-
ing, where he refers to the problem as hierarchical credit as-
signment[Dietterich, 1998]. However, the MAXQ method
takes a different approach to decomposition that is not di-
rectly driven by the need to perform credit assignment over
the resulting structure, and focuses on temporal rather than
state abstractions.

Layered learning[Whitesonet al., 2005] makes use of de-
composition hierarchies to address large learning problems.
In layered learning, each component’s learner is trained in a
tailored environment specific to the component. The EVD
technique is more akin to what is called ”coevolution” of
components in work on layered learning, where all of the
learners in the decomposition hierarchy are trained as a com-
plete system in the actual target domain. Some notion of ex-
ternal verifiability is implicit in hierarchies built to be trained
with coevolution, as the evaluation functions used for each
component must be evaluable based on available percepts.
Here, we are explicit about the need to design decomposi-
tions specifically around this property, we allow the use of
arbitrary (possibly heterogeneous) learners within each com-
ponent, and provide a procedure for credit assignment over
the decomposition that can help to limit evaluations. An ad-
ditional distinction is that EVDs focus on state abstraction.
These decompositions aim to limit the number of inputs to
each component, ensuring a learning problem of manageable
dimensionality at each component. In contrast, layered learn-
ing focuses on temporal abstraction, where components re-
sponsible for selection of abstract actions are not necessarily
shielded from the need to consider many raw state features.

Work on Predictive State Representations (PSRs)[Littman

et al., 2001] outlines rationale for using state representations
that directly encode predictions about future events. In a gen-
eral way, the notion that knowledge should have a predictive
interpretation is central to this work as well. However, the
specific problems of decomposition and structural credit as-
signment that motivate this work are not the focus of PSRs,
and there are clearly significant differences between PSRs
and the work described here.

This work is an extension of our previous efforts[Jones
and Goel, 2004]. In addition to comparing the effectiveness
of EVD with reinforcement learning over a flat representa-
tion, this paper extracts and begins to formalize the key de-
sign principles from our previous work in the hopes that these
principles may be useful to researchers designing knowledge
representations for learning in other domains.

7 Conclusions
This paper presents an approach to designing a composite
knowledge representation for a learning agent that is directly
driven by the needs to perform structural credit assignment
over the resulting top-level structure. The experiment de-
scribed here provides evidence that the approach and accom-
panying credit assignment technique are sufficient for learn-
ing, and that the decomposition increases the tractability of
learning in a large state space. This means that if a prob-
lem framing and set of components can be defined according
to the principle of external verifiability for a given problem,
EVD-based knowledge structure and credit assignment may
be used to accelerate learning. In principle, this type of de-
composition should be compatible with a variety of learning
techniques within each component, and even with a hetero-
geneous set of techniques. Such combinations have the po-
tential to create learners for complex problems with varying
characteristics.

References
[Bylanderet al., 1991] T. Bylander, T.R. Johnson, and

A. Goel. Structured matching: a task-specific technique
for making decisions. Knowledge Acquisition, 3:1–20,
1991.

[Dietterich, 1998] T. Dietterich. The MAXQ method for hi-
erarchical reinforcement learning. InProc. 15th Interna-
tional Conf. on Machine Learning, pages 118–126. Mor-
gan Kaufmann, San Francisco, CA, 1998.

[Jones and Goel, 2004] J. Jones and A. Goel. Hierarchical
Judgement Composition: Revisiting the structural credit
assignment problem. InProceedings of the AAAI Work-
shop on Challenges in Game AI, San Jose, CA, USA, pages
67–71, 2004.

[Littmanet al., 2001] M. Littman, R. Sutton, and S. Singh.
Predictive representations of state, 2001.

[Watkins, 1989] C. J. Watkins. Learning from delayed re-
wards. PhD thesis, Cambridge university, 1989.

[Whitesonet al., 2005] S. Whiteson, N. Kohl, R. Miikku-
lainen, and P. Stone. Evolving keepaway soccer players
through task decomposition.Machine Learning, 59(1):5–
30, 2005.

42

Requirements for resource management game AI

Steven de Jong, Pieter Spronck, Nico Roos
Department of Computer Science, Universiteit Maastricht, Netherlands

Email: {steven.dejong, p.spronck, roos}@cs.unimaas.nl

Abstract

This paper examines the principles that de-
fine resource management games, popular and
challenging constructive computer games such
as SIM CITY and VIRTUAL U. From these
principles, it is possible to derive requirements
for intelligent programs designed to play such
games, as a replacement of a human player.
A first step for research in the domain of intel-
ligent programs playing resource management
games is presented, in the form of a hybrid
AI approach that combines abductive planning
with evolutionary learning. The results ob-
tained by this approach are promising.

1 Artificial intelligence in
interactive computer games

One of the main goals of AI research always has been
the development of artificial intelligence that is as ver-
satile as human intelligence. For many years, the game
of CHESS has been thedrosophila melanogasterof ar-
tificial intelligence research[McCarthy, 1990], but in
the last decades, it is argued that games such as CHESS
are not able to address all abilities of intelligence suffi-
ciently, because they are abstract and completely deter-
ministic [Pfeiffer and Scheier, 1999; Laird and van Lent,
2001]. Computers are good at calculation and therefore
inherently good at dealing with abstract and determin-
istic problems, but being good at calculation clearly is
not the same as being able to make intelligent decisions
[Pfeiffer and Scheier, 1999].

In recent years, the computer games industry has re-
ceived increasing attention from the artificial intelligence
community, because interactive computer games, while
being a closed world, can require a computer to perform
tasks that currently only humans are able to perform suf-
ficiently well. Interactive computer games are therefore
seen as an ideal testbed for alleged computer intelligence
[Laird and van Lent, 2001]. Potential tasks for AI in
computer games can vary from entertaining the human
player to actually being able to play an entire game.

Since designers of interactive computer games aim at
a commercial rather than a scientific goal, computer con-
trolled players for such games are rarely, if ever, designed
to explore the game autonomously to arrive at high-
quality decision making capabilities (i.e., high-quality
game AI). Therefore, if game AI is applied in practise,
it is often static and only encompasses the designers’ in-
sight on what the game constitutes. We observe three
problems here.

First of all, from a scientific perspective, we should
aim at developing AI methods that do not need designers’
insight in order to work well. A method that works well
because it reproduces knowledge programmed ahead of
time, may be able to play an intelligent game, but cannot
be considered to be intelligent itself. Moreover, human
designers may make mistakes, or fail to take into account
relevant information, which makes the game AI of infe-
rior quality.

Second, methods using knowledge programmed ahead
of time will not be able to adapt when a game’s para-
meters change, or when opponents are encountered that
follow strategies not taken into account. In commercial
computer games, the specifications are often changed to
resolve balance issues. Adaptive AI methods offer an
advantage here: if changes are needed, the methods can
adapt easily and do not need to be rebuilt.

Third, even if our only goal is to develop computer-
controlled players for commercial games, we must real-
ize that most human players expect that a computer plays
fairly (i.e., it does not use knowledge that human play-
ers do not have)[Scott, 2002]. For example, Garry Kas-
parov was furious with Deep Blue when the computer
had beaten him in CHESS, because the grandmaster was
convinced that it had been using information provided
during the game by a team of CHESS players[Jayanti,
2003].

In this paper, we examine the principles that define
resource management games, which are interactive com-
puter games with a constructive nature. These principles
lead to a list of requirements for intelligent programs de-
signed to play such games, as a replacement of a hu-
man player. Exploratory research in the domain of in-
telligent programs playing resource management games

43

shows that hybrid AI approaches, combining abductive
planning with evolutionary learning, are a possible way
of dealing with these requirements.

In section 2 of this paper, we address the relevance
of research in the domain of resource management
games. In section 3, we discuss the principles underlying
these games and derive the required capabilities of re-
source management game players (including computer-
controlled players). Section 4 presents a possible solu-
tion method that is able to deal with these capabilities,
and section 5 continues with a brief overview of experi-
ments that compare the performance of this method with
more conventional methods. In section 6, we conclude
and look at future work.

2 Relevance of research into
resource management games

We define resource management games as interactive
computer games where the main problem for the player1

is to use limited resources to construct and maintain a
complex virtual environment. These games have proved
to be challenging and entertaining, because of their many
layers of complexity, arising from a rather small and un-
derstandable set of actions. They usually require a player
to construct buildings and move units in a large grid
world. While playing a resource management game, the
player tries to reach a certain goal by carefully distrib-
uting limited resources. A famous example is the game
SIM CITY , in which the player builds and manages a city.

Resource management games share many ideas with
strategy games such as WARCRAFT [Laird and van Lent,
2001; Buro, 2004; Ponsen and Spronck, 2004], but their
nature and game play differ significantly from these
games, as explained below.

The main difference in nature is that in strategy games,
the player constructs buildings and controls units of a vir-
tual army in order to defeat opponent armies, whereas in
resource management games, the focus is on the con-
struction and long-term maintenance of buildings, trans-
port networks, et cetera. Due to this difference in nature,
strategy games are in use by many military organizations
as a source of inspiration[Laird and van Lent, 2001],
whereas resource management games receive more at-
tention from economists and managers[Sawyer, 2002].
One might summarize that strategy games have a de-
structive nature, whereas resource management games
have a constructive nature.

One of the two main differences in game play between
the genres is the fact that strategy games are always finite
games – once the enemy has been defeated, the game
ends – whereas resource management games do not need
to be finite, with goals such as ‘build and maintain a large
city’ or ‘transport many passengers’. A second differ-
ence in game play is that most strategy games progress in

1Henceforth, we will use the term ‘player’ to indicate both
a human player and a computer-controlled player, unless indi-
cated otherwise.

near-continuous time, hence the name real-time strategy
(RTS) games[Ponsen and Spronck, 2004], whereas most
resource management games progress in clearly observ-
able discrete time. Near-continuous games, such as real-
time strategy games, enable all players to move at the
same time, which entails that players must possess both
the capacity to respond quickly to urgent matters and the
capacity to think about strategic problems. Discrete or
turn-based games, such as resource management games,
are similar in pace to games such as CHESS: each player
takes his turn to perform a limited number of actions,
and is allowed to think about which actions to perform.
Because of this, the challenges posed by discrete games
often require more structured thinking and less intuitive
response than those posed by near-continuous games –
for example, a player has to construct a sound planning
towards some end goal.

There are three reasons why it is relevant to per-
form research in the area of AI for computer-controlled
players for resource management games. First, because
of the many challenges involved in playing interactive
computer games, a computer-controlled player for such
games must be able to deal with many aspects of human-
level intelligence[Laird and van Lent, 2001]. Resource
management games are able to address aspects such as
high-level planning, which are not often found in other
genres of interactive computer games, but rather in clas-
sical board games such as CHESS. Therefore, resource
management games can be said to bridge the gap be-
tween classical games and interactive computer games.
Second, problems found in many other domains (such as
other genres of computer games, management and eco-
nomics) closely resemble problems typically found in re-
source management games. Third, resource management
games are being developed not only as pure entertain-
ment, but also as educative tools. For example, Har-
vard’s Business School is known to use resource man-
agement games in its student training program[Sawyer,
2002]. AI techniques that are able to deal with educative
resource management games such as VIRTUAL U can
be valuable sources of strategic information for scientists
and students; in other words, the solutions AI techniques
come up with, can be analysed and used as inspiration
for people playing these games.

3 Game principles and players’ capacities
A typical resource management game is played in a sim-
ulated world, usually a grid that the player looks at in
bird’s eye view. As time passes, a player and/or the
game itself can place various kinds of structures on the
grid, for example roads and buildings. The content of the
grid defines the state of the game world, which is inter-
nally represented by a set of parameters. The game’s dy-
namics are defined by a set of actions that determine the
transition from the current state of the game into a new
state. Both the game itself and the player can execute
these actions. When playing the game, the player has to
cope with many temporary objectives that eventually en-

44

able him to reach the end goals of the game. Playing a
resource management game requires thorough planning:
the player must find out which actions to perform in or-
der to eventually reach the end goals of the game, given
the current state of the game world. To be able to do
this, he must take into account the fact that resources and
dynamical aspects play an important role2.

Resource management games use a set of principles
that lead to challenging and surprising game play for the
player. We will illustrate these principles with a basic
resource management game called FACTORY, in which
the player can build houses and factories in order to con-
trol unemployment rates in a city. Figure 1 illustrates a
possible state and interface for this game. The goal of
the game is to fill the entire grid and reach a stable un-
employment rate of 0%. A player can place houses and
factories on the grid using the buttonsBUILD HOUSE and
BUILD FACTORY. The game’s response to placing ob-
jects on the grid is a new value for the player’s money
and the current unemployment rate in the city.

The game’s actual progress is determined by one or
more of the principles outlined below. If we are aiming
at developing a computer-controlled player for resource
management games, we must keep in mind that such a
player must be able to address all of these principles.

1. Dependence on resources– Every resource man-
agement game contains this principle, which entails
that resources are limited and that there are depen-
dencies between some of them. If for example we
build one factory, for which we require 100,000 eu-
ros, at most 100 unemployed people will find a job
and will start paying taxes.

2. Dependence on location– This principle implies
that the location on the grid where we build objects
influences the effect on the game world. For exam-
ple, if we build a factory too close to a residential
area, people will start complaining about pollution
and decide to stop paying taxes, whereas if we build
the factory too far from the residential area, people
will refuse to go to work.

3. Dependence on time– This principle implies that in
some cases, the effect of a certain action is delayed.
For example, if we build a factory now, it will be
finished in 12 months (game time).

4. Need for planning– A player cannot execute all
possible actions immediately from the beginning of
the game. For example, the player must gather at
least 100,000 euros before a factory can be built.
Furthermore, the game rules might stipulate that a
factory can only be built if there are sufficient peo-
ple available. These people must have housing,

2In this respect, the planning problems encountered in re-
source management games differ substantially from classical
planning problems, that are successfully addressed by various
symbolic AI techniques. In these classical planning problems,
the focus is on state transitions, usually in a deterministic or
even static environment without competitors.

which means we can only build a factory after we
have built at least a few houses for the workers to
live in. Thus, if the player wants to build a factory,
he must come up with a sequence of actions that
makes the game progress from the current state to a
state in which building a factory is possible.

5. Competition – In many resource management
games, the player has to compete with computer-
controlled opponents or co-operate with allies, shar-
ing limited resources effectively.

6. Multiple objectives– Resource management games
often require the player to pursue more than one
objective at once in order to reach the end goals
of the game. For example, in the FACTORY game,
the player will be trying to build as many factories
as possible, but also to keep his financial situation
healthy and to outperform any competition, and he
does all this to reach the game’s goal: creating a city
that has an unemployment rate of 0%.

7. Non-determinism– Many games include elements
of non-determinism. Practical implementations
vary from adding odd-behaving competitors or nat-
ural disasters to a game to introducing noise on the
effects of rules that specify game dynamics. For ex-
ample, if we build a factory, we expect 100 people
to find a job, but the actual number of people that
do find a job varies.

From these seven principles, we derive the following
required capabilities for a player of resource manage-
ment games. He must be able (1) to cope with resource
dependencies, (2) to allocate space effectively, (3) to pre-
dict future game states, (4) to create a sound planning, (5)
to handle competition , (6) to perform multi-objective
reasoning, and (7) to deal with non-determinism. All
of these capabilities are actually used for only one task:
selecting actions that should be executed. In determin-
istic games, the sequence of actions selected by each
of the players defines the outcome completely. In non-
deterministic games, the sequence of actions also plays
an important role in the outcome – after all, if the out-
come is determined more by randomness than by the ac-
tions executed, the game is more a game of chance than
a real resource management game. Thus, action selec-
tion is the core task of any resource management player,
including computer-controlled players.

4 Methods
There are many ways of developing a computer-
controlled player that can perform action selection in re-
source management games, using the required capacities
outlined in the previous section. A possible approach is
to usehybrid AI, which we define as AI in which ele-
ments of symbolic and behavior-based artificial intelli-
gence are combined. We give three reasons here to sup-
port our statement that a hybrid AI approach should be
suitable for the domain of resource management games.

45

Figure 1: FACTORY: a simple resource management game.

First, in resource management games, we see that
some of the required capabilities for computer-controlled
players are typically provided by symbolic AI ap-
proaches, such as the ability to plan, whereas other skills
are typically provided by behavior-based approaches,
such as the ability to deal with non-determinism.

Second, in most resource management games, the ca-
pacity to plan is especially important for a player to be
successful, as has been explained above. Intuitively, we
would say that symbolic planning methods would there-
fore be a suitable way of dealing with resource manage-
ment games[Fasciano, 1996]. However, planning in a
dynamical environment with many parameters, such as a
resource management game, leads to search spaces that
are usually too large to handle with regular planning al-
gorithms. Moreover, many games do not provide their
players with perfect information – for example, in SIM -
CITY , a variety of random events takes place. Finally,
if a game includes some form of competition, such as
the game DUNGEON KEEPER, it becomes highly non-
deterministic and requires the player to perform adver-
sarial planning, which is harder than regular planning.

Third, research supports the power of a hybrid ap-
proach in many genres of interactive computer games.
For example, a hybrid AI approach leads to satisfying
performance in role playing games[Sproncket al., 2003]
and strategy games[Ponsen and Spronck, 2004].

In [de Jong, 2004], research is presented that com-
pares the performance of a hybrid AI approach to that
of a purely symbolic and a purely behavior-based ap-
proach, to determine whether hybrid AI is indeed a good
approach of choice for resource management games. For
this comparison, three solution methods have been de-
vised, viz.

1. a behavior-based approach using a neural network.
The input of the fully connected network consists of
the values of all parameters in the game world. The
output consists of a preference value for each ac-
tion. Thus, in each round, the network is used to de-
rive preferences for all actions, based on the current
state of the game. The action that is most preferred
is then executed, if possible. The neural network is
trained by weight optimization with a genetic algo-

rithm, by means of offline learning.

2. an abductive planner. This method builds a search
tree, consisting of nodes representing actions and
arcs representing a post-/precondition relationship
between these actions (similar to figure 2). It then
starts at the root of this tree and finds an action that
(1) is currently executable and (2) contributes the
most to the goal of the game. The latter should
be determined using domain knowledge, namely a
heuristic that provides the required information.

3. evolutionary planning heuristics. This hybrid
method is a combination of the aforementioned two
methods. Using a neural network as described un-
der 1, we derive preferences for all actions, given
the current state of the game. Then, these prefer-
ences are used as a heuristic for tree traversal in an
abductive planner.

The approach presented under 3 follows quite intu-
itively from the other two approaches, since both ap-
proaches have a problem. First, the purely behavior-
based approach cannot be expected to perform well in
all games, because planning is a task that is too com-
plex for a neural network. Second, as explained under 2,
an abductive planner must possess domain knowledge in
order to determine which action contributes most to the
goal of the game. Without such domain knowledge, the
planner would have to build and traverse the entire search
tree, which is not a feasible task due to the size of the
search space and the fact that there are non-deterministic
factors. In the case of rather small single-player games,
such as the games which were experimented upon, we
can easily provide the planner with domain knowledge;
developing a heuristic for efficient tree traversal is not
difficult here. In larger games however, we would like
the computer-controlled player to function without re-
quiring additional information (such as a heuristic) pro-
grammed in ahead of time by developers. As has been
mentioned earlier, many commercial games are changed
frequently to resolve balance issues, and in practise, this
often means that the game AI needs to be changed as
well. An adaptive system has an obvious advantage here.

The evolutionary planning heuristics approach deals

46

Figure 2: The schedule of actions in the experimental game PLANNING II.

with these two problems by providing a heuristic that is
not developed ahead of time, but learned by repeatedly
playing the game. This leads to both a less complex task
for the neural network part of the method, and an adap-
tive heuristic for the abductive planner part.

5 Experiments and results

This section presents the results obtained by[de Jong,
2004] using the methods described in the previous sec-
tion. The power of these methods has been assessed in
small resource management games that are quite com-
plicated to solve and representative for many games in
the genre. All experiments were performed in the re-
source management game builder TAKING CONTROL
[de Jong, 2004], which enables users to define and play
their own resource management games, based on a rigid
but feature-rich formalism of parameters and actions.

We will now provide a more detailed analysis of the
game developed for one particular experiment, namely
the game labelled PLANNING II in [de Jong, 2004].
The game is reminiscent of the FACTORY game dis-
cussed earlier. The player must build housing and fac-
tories. The location of these buildings does not effect
the game’s progress – only the quantity is a factor of
influence. There are two types of factories, viz. coal-
operated factories and electricity-operated factories – the
latter are more enhanced and produce more output (i.e.,
more money). In order to be able to build enhanced fac-
tories, the player must first build a power plant, which
is an expensive building. In addition to building new
enhanced factories, it is also possible to refit existing
normal, coal-operated factories, which then become en-
hanced ones. A schedule of actions and preconditions in
this game is represented in figure 2. For example, the
figure shows that in order to build a normal (factory), a
player must acquire 5 pieces of land and 2 houses, and
must invest 9 euros. The goal of the game is to make as
much money as possible within a given number of turns,
for example 300, with a given amount of money in the
first round, for example 50 euros.

We will look at three interesting aspects of the game

to gain insight into its complexity. First, we can observe
that the game is clearly divided into three phases. In the
first phase, a player must strive for as many normal fac-
tories as possible. This phase ends when the player has
earned enough money to buy a power plant with. A short
second phase of the game then starts, ending with the
power plant being built. Then, there is a third phase in
which the player must try to obtain as many enhanced
factories as possible, either by refitting normal factories
or by building completely new enhanced factories. Thus,
in each of the phases of the game, the player must pur-
sue different objectives, and in the last phase, there are
alternatives for reaching the objective.

Second, we can observe that it is possible to determine
the search space size of this game. If it is played for
only 300 rounds, the search tree resulting from it contains
7300 ≈ 3.4 ∗ 10253 possible action sequences, since in
each round, the player can choose one of the six actions
or pass[de Jong, 2004]. Clearly, an undirected search
process in this tree will not finish within feasible time.

Third, it is possible to derive a good solution for this
game by implementing a rule-based approach with a set
of intuitive rules such as:powerplants = 1∧money >
6 ∧ normalfactories > 0 → RefitNormalFactory.
The solution obtained by this method in case of a game
starting with 50 euros and running for 300 rounds, turns
out to be 15,780 euros[de Jong, 2004].

In the experiment, the score of the three methods pre-
sented earlier has been compared to that of the rule-
based approach. A first notable result is that the purely
behavior-based approach does not find a satisfactory so-
lution even after hundreds of generations; its best perfor-
mance is a game in which nothing at all is built, resulting
in a score equal to the initial amount of money, i.e., 50
euros. Depending on the heuristic used, the abductive
planner is able find the same solution as the rule-based
approach (15,780 euros), but as has been mentioned be-
fore, it then uses knowledge that has been added ahead
of time; without such knowledge, the search space can-
not be traversed efficiently by the planner. The evolu-
tionary planning heuristics approach is also able to find
this solution of 15.780 euros, but it does not require the

47

inclusion of additional knowledge. It does require time
to learn (approximately 100 evolutionary runs of 50 indi-
viduals each), but for a problem with a search space size
of 3.4∗10253 action sequences, this can be considered to
be an excellent achievement.

Four additional experiments using hybrid AI meth-
ods are described in[de Jong, 2004]. The evolution-
ary planning heuristics approach has been used in one
of these additional experiments, with comparable results.
At the time of writing, large quantities of complex re-
source management problems are being addressed by the
three methods presented, with preliminary results indi-
cating that evolutionary planning heuristics outperform
both other methods on average, due to the fact that the
heuristics found are actually better suited to the problems
than the heuristics developed by hand by the developers
of these problems.

All experiments performed lead to the same conclu-
sion, namely that hybrid AI approaches are able to ad-
dress many of the skills required for the direction of
a computer-controlled player for resource management
games, without requiring developers to program signifi-
cant parts of the behavior ahead of time. Instead, the hy-
brid AI approach uses trial and error to find satisfactory
strategies. This makes hybrid AI approaches both quite
straightforward to develop and highly adaptive when it
comes to changes in the game at hand. If the definition
of a game changes (for example, a power plant now costs
100 euros), all we need to do is perform a new learning
process which, possibly starting from the current solu-
tion method, will derive a better solution method.

6 Conclusions and future work
Developing computer-controlled players for resource
management games is a challenging task, because these
games have many layers of complexity, arising from
a small and understandable set of actions. Playing a
resource management game requires many skills that
currently only human intelligence possesses sufficiently.
Furthermore, resource management games are relevant
for research because their degree of realism makes them
valuable tools for educative purposes.

Exploratory research in the domain of computer-
controlled players for resource management games
shows that hybrid AI approaches, in which various tech-
niques from symbolic and behavior-based AI are com-
bined, are able to learn how to play our simple resource
management game, without requiring the programming
of significant elements of the player’s behavior ahead
of time. This indicates hybrid AI approaches might be
fair choice for the development of computer-controlled
players for resource management games, especially since
they are straightforward to develop and robust to changes
in game definitions.

For future research, it would be important to determine
whether hybrid approaches can be used in more complex
games than the examples presented here, such as product
chain management games and games in which the loca-

tion of objects built plays an important role. Moreover,
the principle of competition and its relationship to adver-
sarial planning should be addressed.

References
[Buro, 2004] Michael Buro. Call for AI research in

RTS games. InProceedings of the AAAI-04
workshop on AI in games, San Jose 2004, pages
139–142, 2004.

[de Jong, 2004] Steven de Jong. Hybrid AI approaches
for playing resource management games. Master’s
thesis, Universiteit Maastricht, the Netherlands,
2004.

[Fasciano, 1996] Mark Fasciano. Real-time case-based
reasoning in a complex world. Technical report, The
University of Chicago, USA, 1996.

[Jayanti, 2003] Vikram Jayanti. Game over: Kasparov
and the machine. Documentary, 2003.
http://www.imdb.com/title/tt0379296.

[Laird and van Lent, 2001] John Laird and Michael van
Lent. Human-level AI’s killer application: Interactive
computer games.AI Magazine, Summer
2001:15–25, 2001.

[McCarthy, 1990] John McCarthy. Chess as the
drosophilia of AI. In T. A. Marsland and J. Schaeffer,
editors,Computers, Chess, and Cognition, pages
227–237. Springer-Verlag, 1990.

[Pfeiffer and Scheier, 1999] Rolf Pfeiffer and Christian
Scheier.Understanding Intelligence. MIT Press,
1999.

[Ponsen and Spronck, 2004] M. Ponsen and P.H.M.
Spronck. Improving adaptive game AI with
evolutionary learning. In Q. Mehdi, N.E. Gough,
S. Natkin, and D. Al-Dabass, editors,Computer
Games: Artificial Intelligence, Design and Education
(CGAIDE 2004), pages 389–396, Wolverhampton,
UK, 2004. University of Wolverhampton.

[Russell and Norvig, 2003] Stuart Russell and Peter
Norvig. Artificial Intelligence: A Modern Approach.
Prentice-Hall, Englewood Cliffs, NJ, 2nd edition,
2003.

[Sawyer, 2002] B. Sawyer. Serious games: Improving
public policy through gamebased learning and
simulation.Foresight and Governance Project,
Woodrow Wilson International Center for Scholars,
2002.

[Scott, 2002] B. Scott. The illusion of intelligence. In
S. Rabin, editor,AI Game Programming Wisdom,
pages 16–20. Charles River Medias, 2002.

[Sproncket al., 2003] Pieter Spronck, Ida
Sprinkhuizen-Kuyper, and Eric Postma. Improving
opponent intelligence through offline evolutionary
learning.International Journal of Intelligent Games
and Simulation, Vol.2, No.1:20–27, 2003.

48

Path Planning in Triangulations

Marcelo Kallmann
USC Institute for Creative Technologies

13274 Fiji Way
Marina del Rey CA 90292

kallmann@ict.usc.edu

Abstract

This paper presents in detail how the techniques
described in my previous work [Kallmann et al., 2003]
can be used for efficiently computing collision-free
paths in a triangulated planar environment.

The method is based on a dynamic Constrained
Delaunay Triangulation (CDT) where constraints are
the obstacles in the planar environment. The main
advantage of relying on a triangulated domain is that
the size of the adjacency graph used for searching paths
is usually much smaller than in grid-based search
methods. As a result much more efficient planning can
be achieved.

1 Introduction and Related Work
The Delaunay Triangulation and its constrained version

[Preparata et al., 1985] [Anglada, 1997] [Floriani et al.,
1992] are important tools for representing planar domains
and have been used in several applications.

This work focuses on using the Constrained Delaunay
Triangulation (CDT) as the main data structure to represent
planar environments composed of polygonal obstacles, in
order to efficiently determine collision-free paths.

Obstacles are considered to be constraints, and specific
constraint insertion and removal routines are available for
updating the CDT whenever obstacles appear, disappear or
change position [Kallmann et al., 2003].

Let n be the total number of vertices in a given set of
obstacles. The initial construction of the CDT can be done in
optimal O(n log n) time using a divide-and-conquer
algorithm [Chew, 1987]. After the initial construction, the
CDT can be updated in order to reflect eventual changes in
the obstacle set. For this matter, several insertion and
removal routines are available in the Computational
Geometry literature.

Having the CDT up-to-date, a path joining any two given
points (or a failure report) is obtained in two phases. First, a
graph search performed over the CDT triangles adjacency

graph determines a sequence of free triangles (a channel)
joining both points. Finally, a linear pass algorithm
computes the shortest path inside channels. The obtained
path is the shortest in the homotopy class [Hershberger et
al., 1994] determined by its channel, but it might not be the
globally shortest one.

The main advantage of the method is that, due to the
underlying CDT, the size of the graph used for searching for
paths is O(n), reducing the time required for determining
shortest paths to the time required by the graph search itself,
which can be performed in O(n log n) time with any
Dijkstra-type search method [Cormen et al., 1993]. In
addition to that, as already mentioned, the CDT can be
efficiently updated when obstacles change position.

The main application that motivated the development of
this method is the navigation of characters in planar
environments for virtual reality and game-like applications.
Based on high-level decision mechanisms, characters decide
where to go and determine a goal position to walk to. The
path planner module is responsible to find a collision-free
path towards the desired position. In such applications,
handling dynamic environments and fast determination of
paths are important; guaranteed shortest paths are not
required.

The classical problem of finding shortest paths in the
plane [Mitchell et al., 1998] has been studied since a long
time. Efficient sub-quadratic approaches are available
[Mitchell et al., 1996] and an optimal algorithm has been
proposed taking O(n log n) time and space, where n is the
total number of vertices in the obstacle polygons
[Hershberger et al., 1999].

However practical implementations are still based on
grid-based search [Koenig, 2004] or on visibility graphs
[Kreveld et al., 2000]. Unfortunately, grid-based methods
lead to large graphs when fine grids are used and visibility
graphs can have Ω(n2) edges in the worst case.

Even if not popular in real applications, good alternatives
are available, as the pathnet graph [Mata et al., 1997],
constructed from a planar subdivision. The sparsity of

49

pathnets can be controlled in order to get as close as desired
to the global shortest path. This control is done by choosing
the number k of rays emanating from the source node,
resulting in a graph of size O(kn).

The method presented herein is also based on a planar
subdivision, but speed is preferred over control of the global
optimality of paths. A graph of fixed size O(n) is used,
which is implicitly defined by the subdivision. This choice
allows faster determination of paths and allows to
dynamically update the subdivision in order to cope with
dynamic environments.

2 Method Overview
The method can be divided in three main steps.

Step 1 Given a set of polygonal obstacles, a CDT having
as constraints the edges of the obstacles is constructed. In
order to consider discs of arbitrary radius r, obstacles can be
grown by r [Laumond, 1987] before insertion in the CDT,
reducing the problem to planning paths for a point
[Latombe, 1991] (see Figure 1).

During run-time obstacles are allowed to be inserted,
removed or displaced in the CDT as required. The CDT is
able to dynamically take into account these changes and
detailed algorithms are available in previous work
[Kallmann et al., 2003].

The CDT implicitly defines the polygonal domain used
by the path search. It fills with triangles both the interior and
the exterior of obstacles and ensures that the edges of
obstacles are also edges of the triangulation (see Figure 2).
If an edge of the triangulation is an obstacle edge, the edge
is said to be constrained. Therefore triangulation edges can
be of two types: constrained or non-constrained.

Step 2 Given two points p1 and p2, a graph search is
performed over the adjacency graph of the triangulation,
defining the shortest channel (according to the graph)
connecting p1 and p2. This process first locates the triangle
containing p1, and then applies an A* search in the
adjacency graph until the triangle containing p2 is found. If
the entire graph is searched and p2 is not reached, a failure
report is generated. Section 3 describes this process.

Step 3 Obtained channels are equivalent to triangulated
simple polygons, and thus the funnel algorithm [Chazelle,
1982] [Lee et al., 1984] can be applied in order to determine
the shortest path joining p1 and p2 inside the channel. This
takes linear time with respect to the number of vertices in
the channel. For completeness purposes, the funnel
algorithm is briefly described in section 4.

Figure 1. Obstacles inside a rectangular domain (top) and
their grown versions (bottom). Growing obstacles ensures

that paths maintain a given distance from the original
objects.

Figure 2. Grown obstacles inserted in the CDT. Edges of

obstacles become constrained edges.

3 Channel Search
The polygonal domain considered by the path planner is

implicitly defined as all triangles sharing non-constrained
edges, starting from one given triangle.

Point Location Given two points p1 and p2, the first step
is to determine the triangle t1 that contains p1. A point
location routine is required for finding t1. For robustness

50

purposes, the same routine may also determine if p1 lies
outside the CDT domain.

Good results were obtained with the visibility walk
approach [Devillers, 2001]. Starting with a seed
triangulation vertex v , one triangle t adjacent to v is selected.
Then, t is switched to the adjacent triangle t’ such that the
common edge of t and t’ divides p1 and t in different semi
planes. If more than one edge can be selected, a random
choice is taken in order to avoid possible loops. Intuitively,
t’ is now closer to p1 than t. This process of switching
triangles is continuously repeated. At a certain point it is no
more possible to switch of triangles, and the last triangle t
visited contains p1. Rare cases may produce an exponential
search, and for avoiding that, whenever the visibility walk is
detected to traverse the total number of triangles a linear
search over the remaining triangles is performed. The point
location routine needs to be carefully crafted, specifically in
relation to the used geometric primitives.

Graph Search Once triangle t1 is found, a graph search
over the triangulation adjacency graph is performed, starting
from t1 until the triangle containing p2 is found, without
traversing constrained edges. Note that it is essential to have
the triangulation described by an efficient data structure
[Guibas et al., 1985], permitting to retrieve all adjacency
relations in constant time. This is the case not only for the
graph search step, but also for several other computations
presented in this paper.

The considered connectivity graph is depicted in figure 3.
A starting node has the same position as p1. This node is
then connected to the midpoint of each non-constrained
edge of triangle t1. This process is continuously repeated,
expanding each node of the graph to the two opposite edges
of the same triangle, if these edges were not yet reached and
are not constrained. At each step, the edge with less cost
accumulated is selected to be expanded. The cost is the
Euclidian distance measured along the graph edges. The
search finishes when the triangle containing p2 is reached,
and the shortest channel is determined by the history of
traversed triangles in the branch from p1 to p2.

An additional A* heuristic cost function was included
based on the Euclidian distance from the current leaf node to
p2. Additional cost information can be associated to triangles
in order to indicate, for instance, different properties of the
terrain being traversed. Note that constrained edges are not
expanded guaranteeing that a path will never traverse them.

The graph shown in figure 3 captures the cost of a
canonical path passing through the center of the non-
constrained triangulation edges. This solution has shown to
be more accurate than using the center of each triangle.

At the end of the search process, a channel joining p1 and
p2 is determined. Figure 4 illustrates such a channel. We
define the first and last triangles of the channel by
connecting additional edges to p1 and p2 respectively.

Figure 3. The connectivity graph (solid lines) is implicitly

defined by the triangulation (dashed lines).

Figure 4. Channel (solid lines) joining point p1 to p2.

4 Paths Inside Channels
With the channel determined, the problem is now reduced

to find the closest path inside a triangulated simple polygon.

For this, the funnel algorithm [Chazelle, 1982] [Lee et
al., 1984] can be applied for linearly determining the
shortest path inside the channel. This algorithm is briefly
reviewed here for completeness purposes, following the
description of Hershberger and Snoeyink [Hershberger et
al., 1994].

Let p be a point and uv be a segment (figure 6). The
shortest paths from p to v and from p to u may travel
together for a while. At some point a they diverge and are
concave until they reach u and v. The funnel is the region
delimited by segment uv and the concave chains to a, and a
is its apex. The vertices of the funnel are stored in a double-
ended queue, a deque.

Figure 5 illustrates the insertion process of a new vertex
w. Points from the v end of the deque are popped until b is
reached, because the extension of edge ab is not below w as
occurred with previous popped points. If the apex of the

p1

p1

p2

51

previous funnel is popped during the process, then b
becomes the new funnel apex. Note that edge bw is on the
shortest path from p to w. A similar symmetrical process is
performed if the new vertex is between the extended edges
of the upper concave chain of the funnel. Figures 7 and 8
show some examples of paths and channels obtained from
CDTs.

Figure 5. The funnel algorithm.

5 Results and Extensions
Examples of obtained channels and paths are presented in

Figures 6, 7, 8 and 9. For instance it can be noticed in Figure
6 that the number of cells (i.e. triangles) in the triangulation
is much smaller than the number of cells that would be
required in a fine grid. Furthermore, the contour of obstacles
is precisely described and not subject to a cell resolution
choice.

Direct Visibility Test Given points p1 and p2, the
obtained path joining the two points is not necessarily the
globally shortest one. For instance, it is possible to obtain a
case where p1 and p2 are visible through a straight line, but
the path obtained from the planner is a different path. This
kind of situation mostly happens when several possible
solutions with similar lengths are available, as in Figure 7. A
specific direct visibility test was implemented in order to
detect such cases. When this test is activated, before
performing the graph search to find a path, a straight walk in
the triangulation [Devillers, 2001] is performed. The walk
consists in traversing all the triangles that are intersected by
the line segment p1p2, starting from p1, towards p2. If during
the traversal a constrained edge is crossed, the test fails.
Otherwise, the triangle containing p2 is reached and the test
succeeds, meaning that a straight line segment is the global
shortest path between p1 and p2.

This test has shown to be beneficial in particular for the
application of controlling characters in virtual environments
when users usually remark if characters don’t choose a
straight line path whenever possible.

Figure 6. Example of a path and its channel.

Figure 7. A path, its channel, and the CDT of 500

heptagons.

Other useful routines have been efficiently implemented
based on the underlying CDT: ray-obstacle intersections,
point-in-obstacle queries, and Boolean operation of
obstacles.

Obstacles may also be defined as open polygons, i. e. as
polygonal lines. Polygonal lines can be grown and inserted
in the CDT, similarly to closed polygons. Figure 8
exemplifies one case based on line segments.

p
a

v

u

w

b

52

Figure 8. A maze composed of 2600 segments and one

example path obtained. Each segment is considered to be
one open obstacle (the CDT is not shown for clarity).

6 Conclusions
This paper presents methods for fast path planning in

triangulated planar environments. The presented techniques
were fully implemented.

The algorithms presented here are also useful for several
other related purposes. For instance, the algorithm does not
only computes shortest paths, but also the channels
containing the paths. Such information can be very useful
for spatial reasoning algorithms, and for bounding steering
maneuvers when following planned paths.

The implemented software is being integrated with
several other grid-based search methods for the purpose of
evaluation, and will be soon available for research purposes .

Acknowledgments
The project or effort described here has been sponsored

by the U.S. Army Research, Development, and Engineering
Command (RDECOM). Statements and opinions expressed
do not necessarily reflect the position or the policy of the
United States Government, and no official endorsement
should be inferred.

References
[Anglada, 1997] M. V. Anglada. “An Improved

Incremental Algorithm for Constructing Restricted
Delaunay Triangulations”, Computer & Graphics,
21(2):215-223, 1997.

[Chazelle, 1982] B. Chazelle. A Theorem on Polygon
Cutting with Applications. In Proceedings of the 23rd
IEEE Symposium on Foundations of Computer Science,
339-349, 1982.

[Chew, 1987] L. P. Chew, “Constrained Delaunay
Triangulations”, Proceedings of the Annual Symposium
on Comp utational Geometry ACM, 215-222, 1987.

[Cormen et al., 1993] T. Cormen, C. Leiserson, and R.
Rivest. “Introduction to Algorithms”, MIT Press,
Cambridge, MA, 1993.

[Devillers, 2001] O. Devillers, S. Pion, and M. Teillaud,
“Walking in a Triangulation”, ACM Symposium on
Computational Geometry, 2001.

[Floriani et al., 1992] L. de Floriani and A. Puppo. “An On-
Line Algorithm for Constrained Delaunay Triangulation”,
Computer Vision, Graphics and Image Processing,
54:290-300, 1992.

[Guibas et al., 1985] L. Guibas and J. Stolfi. “Primitives for
the Manipulation of General Subdivisions and the
Computation of Voronoi Diagrams”, ACM Transaction
on Graphics, 4:75-123, 1985.

[Hershberger et al., 1994] J. Hershberger and J. Snoeyink.
“Computing Minimum Length Paths of a given
Homotopy Class”, Computational Geometry Theory and
Application, 4:63-98, 1994.

[Hershberger et al., 1999] J. Hershberger and S. Suri. An
optimal algorithm for Euclidean shortest paths in the
plane. SIAM J. Comput., 28(6):2215-2256, 1999.

[Kreveld et al., 2000] M. V. Kreveld, M. Overmars, O.
Schwarzkopf, and M. de Berg. “Computational
Geometry: Algorithms and Applications”, ISBN 3-540-
65620-0 Springer-Verlag, 2000.

[Latombe, 1991] J.-C. Latombe. Robot Motion Planning.
Kluwer Academic Publishers, ISBN 0-7923-9206-X,
Boston, 1991.

[Laumond, 1987] J.-P. Laumond, “Obstacle Growing in a
Nonpolygonal World”, Information Processing Letters
25, 41-50, 1987.

[Lee et al., 1984] D. T. Lee and F. P. Preparata. Euclidean
Shortest Paths in the Presence of rectilinear barriers.
Networks. 14(3):393-410, 1984.

[Mitchell et al., 1996] J. S. B. Mitchell. “Shortest paths
among obstacles in the plane”, International Journal on
Computation Geometry Applications 6, 309-332, 1996.

[Mitchell et al., 1998] J. S. B. Mitchell. “Geometric shortest
paths and network optimization”, in J.-R. Sack and J.
Urrutia, editors, Handbook of Computational Geometry,
Elsevier Science, Amsterdam, 1998.

[Mata et al., 1997] C. S. Mata, and J. S. B. Mitchell. “A
New Algorithm for Computing Shortest Paths in
Weighted Planar Subdivisions”. Proceedings ACM
Symposium on Computational Geometry, 264-273, Nice,
France, 1997.

53

[Preparata et al., 1985] F. P. Preparata and M. I. Shamos.
Computational Geometry: An Introduction. Springer-
Verlag, ISBN 3540961313, 1985.

[Kallmann et al., 2003] M. Kallmann, H. Bieri, and D.
Thalmann, “Fully Dynamic Constrained Delaunay
Triangulations”, In Geometric Modelling for Scientific

Visualization, G. Brunnett, B. Hamann, H. Mueller, L.
Linsen (Eds.), ISBN 3-540-40116-4, Springer-Verlag,
Heidelberg, Germany, pp. 241-257, 2003.

[Koenig, 2004] S. Koenig, “A Comparison of Fast Search
Methods for Real-Time Situated Agents”, AAMAS’04,
July 19-23, New York, 2004.

Figure 9. The image shows an interactive application where the virtual human is able to walk to a selected location
without colliding with the boxes inside the room. Note that in this application the polygons representing the boxes
are not grown before insertion in the CDT. Therefore found paths are further optimized to maintain a desired
clearance distance from the obstacles. This illustrates a possible tradeoff between the number of triangles
considered during the channel search and additional computation required to derive paths for the given channels.

54

Interfacing the D’Artagnan Cognitive Architecture to the
Urban Terror First-Person Shooter Game

Bharat Kondeti, Maheswar Nallacharu, Michael Youngblood and Lawrence Holder
University of Texas at Arlington

Department of Computer Science and Engineering
Box 19015, Arlington, TX 76019

{kondetibharat,mailbackmahesh}@yahoo.com, {youngbld,holder}@cse.uta.edu

Abstract
The D’Artagnan Cognitive Architecture (DCA) is a
multi-agent framework that supports the study of
attention as a means to realize intelligent behavior
by weighting the influence of different agents as
they collectively determine the next action. We
have interfaced the DCA to the Urban-Terror (UrT)
first-person shooter game and defined several
worlds of increasing complexity in order to test the
DCA’s ability to perform well in these worlds and
demonstrate the usefulness of shifting attention
among different agents. We have implemented
several reflex agents and a path planner to help
DCA play the UrT game. Experimental results in-
dicate that a DCA-based player using a combina-
tion of action-determining agents can be successful
when no single agent can complete the task.

1 Introduction
Interactive computer games have been considered human-
level AI’s “killer app” [Laird and van Lent, 2001] in that
current games have a sufficient level of realism to require
human-level intelligence to play well. Laird and van Lent’s
work along these lines with the SOAR cognitive architec-
ture and the Unreal Tournament game explored the current
limits of AI to play these games [Laird, 2002]. Motivated
from this challenge, but with an alternative view of the de-
sign of cognitive architectures, we have begun development
on the D’Artagnan Cognitive Architecture (DCA) and an
interface between it and the Urban Terror (UrT) first-person
shooter game. The DCA is a novel approach to cognitive
architectures based on a Minskian society-of-agents ap-
proach [Minsky, 1988] of psychologically-inspired, possibly
competing, agents with a global focus-of-attention influence
over the agents to achieve robust, human-consistent intelli-
gent behavior. In previous work we have presented metrics
for human-consistency and comparison of human and DCA
behaviors [Youngblood and Holder, 2003].
 In this paper we describe the DCA, the UrT game, and
the interface between the two. Fundamental to a player’s
performance in such environments is the ability to reason
spatially. Therefore, we have also implemented a path plan-
ner based on the work of [Hill, 2002] that generates a topo-

logical graph from the UrT world maps and uses the graph
to find paths between the agent’s starting and goal location.
While there is a large body of work in representations and
algorithms for path planning in many domains (e.g., see
O’Neill’s [2004] work on a mesh representation for game
worlds to support path planning), our work is unique in its
ability to automatically generate a topological graph from
the UrT’s map representation, which is the means by which
different UrT world scenarios are distributed to gamers.
 To test the DCA approach, we define multiple tasks in
five different UrT maps and evaluate the performance of a
reflex-agent-based DCA while playing UrT. Our goal is to
evaluate the hypothesis that the DCA consisting of multiple
action-generating agents, controlled by a global attention
agent, can accomplish tasks too difficult for a single-agent-
based DCA. This hypothesis is similar to that confirmed in
Reynolds’ [1999] work, where he exhibited human-
consistent steering behavior using a linear combination of
numeric values from lower-level behaviors (e.g., flee dan-
ger, avoid obstacles). However, the DCA must choose
among a discrete set of actions for which we propose an
approach based on an adaptive focus of attention.

2 D’Artagnan Cognitive Architecture (DCA)
The D’Artagnan Cognitive Architecture (DCA,
http://ailab.uta.edu/dca) [Youngblood, 2000; Youngblood
and Holder, 2003] is based on the work of existing cognitive
architectures, robotics research, and human-consistent cog-
nitive models, centered on a specific task. DCA consists of
twelve components, or models of cognition (see Figure 1).
The twelve DCA models consist of the action model, action
evaluation model, attention model, decision model, effectual
model, emotion model, goal model, learning model, learning
evaluation model, memory model, perceptual model, and
reflex model. Models are implemented using one or more
agents in a multi-agent framework, e.g., several different
types of learning techniques may be underlying the learning
model, and all compete for the bandwidth to influence
DCA’s behavior. When connected, these components form
an architectural system for learning and adapting to an envi-
ronment. Figure 1 depicts one possible set of connections
between models, but in reality the models are completely
connected. The communication bandwidth across a connec-

55

Learning
Evaluation

Model

Memory
Model

Perceptual
Input

(Sensors)

Learning
Model

Attention
Model

Reflex
Model

Goal
Model

Decision
Model

Action
Model

Effectors

Emotion
Model

Action
Evaluation

Model

Figure 1. The D'Artagnan Cognitive Architecture (DCA). Figure 2. Urban area map (left) used by the DCA-
UrT project and a screen shot of the game (right).

tion varies dynamically, as controlled by the attention
model.

When percepts are received and stored into memory, the
appropriate models are triggered and start processing. Some
models will select goals and propose actions based on learn-
ing from past actions, while other models will use delibera-
tive planning to determine the next action leading toward a
goal. The proposed actions are available at any time for the
action model, which selects the action to take. The selected
action is executed by the effectors.

Selection among the set of possible actions is affected by
a number of factors. The learning model not only generates
knowledge and possible actions, but also evaluates past de-
cisions to learn the action's effectiveness for a particular
goal. The emotion model provides a suppressor or enabler
signal of an action based on environmental situations.
Strong emotions can completely inhibit certain actions and
enable others (e.g., fear will inhibit charging an opponent
and enable retreat). The final dispatcher of influence is the
attention model, which controls the weights of all edges and
thus controls communication between models and the confi-
dence level of possible decisions generated by these models.
The attention model also controls the timing of decisions,
following the anytime paradigm, to produce the best possi-
ble decision at given time intervals. Based on the human
ability to focus the mind on different thought mechanisms
for different situations, the attention model can stop and
restart other models to enforce desired behavior.

3 Urban Terror (UrT)
We have begun development on interfacing DCA to a visu-
ally and tactically realistic urban warfare simulator called
Urban Terror (UrT, http://www.urbanterror.net), which is
built on top of the cross-platform (Win32, Linux, Mac OS
X) Quake III Arena game engine. UrT is a first-person
shooter (FPS) game developed by Silicon Ice Development.
At present UrT is offered as an entertainment-based game,
and to our knowledge, has not been deployed for any other
commercial or military use. As part of this project we have

implemented an interface to the UrT game that allows the
DCA (or any other system) to extract perceptual information
from the UrT game and perform actions in UrT. UrT sup-
ports several challenging world maps (e.g., Figure 2 depicts
an UrT urban map and a game screenshot) and game scenar-
ios (e.g., capture the flag, bomb-defuse, and free for all). We
have also defined our own simplified games within these
worlds that still portray realistic urban warfare scenarios.
We have developed mechanisms for logging game informa-
tion in XML in order to extract a player’s behavior. Eventu-
ally, we plan to have human players play our worlds in or-
der to capture their play, which will serve as part of an
evaluation metric for an agent’s consistency with human
behavior.

4 DCA-UrT Interface
The DCA and UrT are interfaced via shared memory to ex-
change percepts and actions. The shared memory is used to
read and write percepts and actions with lower communica-
tion latency and lower computational burden on the game
engine. A visual interface called UrTInterface (see Figure 3)
has been developed for UrT to display all the percept infor-
mation that can be obtained from the game and also acts as a
virtual keyboard to play the game. This section describes the
main aspects of interfacing DCA to UrT. For more interface
details, see [Kondeti, 2005].

4.1 Modifications to UrbanTerror
Since UrbanTerror (UrT) is a realistic shooter game, with
sophisticated worlds and adversaries, and DCA is still in its
infancy, a number of modifications had to be done to UrT
before DCA can play it. The main concern of DCA is to
navigate towards the goal while avoiding obstacles. So the
opponents in the game had to be removed since their goal is
to kill the player and end the game. This is done by deliber-
ately not allowing the game to start any opponents in the
game, giving DCA more time to successfully navigate to the
goal without getting killed by opponents.
 The goal of the DCA is to get the opponent’s flag. The
rules for “Capture the Flag” mode in UrT require the player

56

Figure 3. DCA-UrT effector interface (left) and percept interface (right).

to get to the opponent’s flag and return back to his base
without being killed or losing the flag. Since there are no
opponents and the task for DCA to navigate toward the goal
is itself very difficult, the complexity of the game is mini-
mized by finishing the game once the DCA player gets the
opponent flag, avoiding the burden of navigating back to the
starting location with the flag.
 The game is also modified to log information about the
time, step, action, player health and player location, which is
sufficient to determine if the DCA was able to finish the
task, and if so, the time and number of actions taken to
reach the goal.

4.2 Modifications to DCA
DCA is modified to handle the percepts obtained from UrT,
consisting of 33 different percepts related to the player, 11
different percepts about entities which include opponents if
they are present and all the different dynamic objects, and 4
different percepts about weapons. DCA can choose from 29
different actions that can be sent to the game.
 A portion of DCA was implemented to produce a reflex
agent based cognitive architecture to test the working of
DCA with UrT. This includes a perceptual agent for getting
information from the UrT environment, a basic memory
agent, an attention agent, several reflex agents, a bread-
crumb agent, a path-planning agent, an action agent and an
effector agent to send actions back to UrT. The imple-
mented portion of the DCA model for UrT is shown in Fig-
ure 4 along with the main communication links between the
agents.

Only the percept agent and effector agent are interfaced
to the local shared memory. All the information that is read
by the percept agent from shared memory is first sent to the
memory agent. The memory agent creates a data structure of
all the information and places the data in the network for the
reflex and path-planning agents to consume. All the reflex
agents (described in the next section) process this informa-
tion and send an action to the action agent. The path-
planning agent determines waypoints for the BreadCrumb
agent. The action agent receives actions from different re-

flex agents and selects an action based on a policy. Since
there are no agents to evaluate the action taken, the policy is
hard-coded into the action agent. Each link from a reflex
agent is given a weight by the attention agent, and the action
is chosen according to this weight. The action thus deter-
mined is sent to the effector agent.

4.3 Reflex Agents
There are four reflex agents implemented within the DCA-
UrT interface. Some reflex agents maintain a small amount
of state information to determine whether or not they are
stuck at the same position for a while. The Random Agent
depicted in Figure 4 represents one of two random reflex
agents: with goal information and without goal information.
For the random reflex agent with no goal location the agent
randomly chooses one of the navigation actions. For the
random reflex agent with goal location the agent always
tries to move in a straight path towards the goal. If there are
any obstacles in between, and the agent determines that it is
struck at the obstacle, then the agent randomly chooses one
of several evasive sequences of steps and sends them all
sequentially as its actions, in order to move away from the
obstacle.

The Ping Agent on the other hand knows the distance to
the nearest obstacle in its line of sight. If this distance be-
comes less than a threshold value, the Ping Agent takes one
of the sequences of random steps and continuously takes
these sequences of steps until the distance to the nearest
obstacle is greater than the threshold value.

For the BreadCrumb agent obstacle-free subgoals are
provided which when followed take the agent to the final
goal. These subgoals are chosen such that a minimum of
them are required to reach the goal. These subgoals are
visually identified and hard-coded into the agent, or gener-
ated by the path planning agent (see next section). Even
though subgoals provided for the bread crumb agent are
obstacle free, there is a possibility that the agent may get
stuck at an edge of an obstacle or there might be a small
obstacle in between subgoals. To accomplish the goals in
such scenarios the BreadCrumb agent is played along with

57

Percept
Agent

Memory
Agent

one of the random agents. The attention agent keeps track of
whether the DCA player is stuck and directs the action agent
to place additional weight on the actions from the random
agent to get itself free from the obstacle.

4.4 Path Planning Agent
The ability to navigate is a fundamental component of intel-
ligent behavior in real-time simulated worlds. We have de-
veloped a path planning agent for the DCA-UrT interface to
support the action-generating agents in their quest toward
the goal. Currently, the path-planning agent supplies bread
crumbs for the BreadCrumb agent to follow. The path plan-
ning system is developed in two phases. The first phase
converts the UrT game world map representation into a
topological graph (TOG) representation of the game world.
This is a complex process, since the world map representa-
tion was not designed to be used for path planning. The sec-
ond phase is the one used in the path-planning agent, i.e., it
involves searching the TOG to extract path information
from the graph structure. We provide an overview of the
process here. For more information, see [Nallacharu, 2005].
 The first phase of the path planning process consists of
the following four tasks. For reference, Figure 5 shows a
small world consisting of two floors connected by stairs
with a wall and door on the second floor. The bottom of
Figure 5 shows the final topological graph for this world.
1. Parsing the .map file. The Quake III family of games, of

which UrT is one, describes the worlds using a .map file
format. The first step is to parse this file to extract the
planes, or “brushes”, used to describe the world. For ex-
ample, the world shown in Figure 2 (known as Reyk-
javík) consists of 1814 brushes.

2. Find related brushes. In this step we calculate the rela-
tionships (i.e., intersections) between brushes.

3. Find brush reachabilities. Reachability information helps
decide if one can traverse from a given brush to another.
The reachability represents a directed edge connecting
two plane surfaces in three-dimensional space. Reach-
ability information also includes a cost metric, which is
directly proportional to the inclination and the height val-

ues of the brush planes and represents the physical diffi-
culty in traversing between the two brushes.

4. Generate topological graph. The process of generating
the topological graph starts at a brush and expands along
reachability edges in a breadth first manner.

The bottom of Figure 5 shows the TOG for the top world.
Notice that each step of the staircase is a node in the graph
and the bottom three steps can all be reached directly (per-
haps by jumping) from the first floor.

Given the TOG and a starting and goal location, the path-
planning agent can generate a set of points along a path be-
tween the two locations. We first identify the nodes contain-
ing the desired locations by searching the graph using
bounding box information. We then find the shortest path
between the start and goal nodes based on the edge costs
(recall that some edges cost more because they represent
more complicated moves for the agent).
 The next step is to determine exactly how to move based
on the traversing edge in the TOG. Since the nodes repre-
sent concave surfaces, simply moving between midpoints of
the common edges may not yield a successful path. So, we
use a concave polygon triangulation method to divide up the
nodes into convex triangles and augment the path at each
edge transition with the result of a sub-search through the
midpoints of each surface’s triangles. The graph at the bot-
tom of Figure 5 shows the triangulation of the node sur-
faces.
 Finally, the points in the path are communicated to the
BreadCrumb agent, which translates them into actions.
These actions are sent sequentially to the action model.

5 Experimental Results
Two main objectives of the DCA are to show human consis-
tency in its behavior and that a collection of possibly com-
peting models can sometimes accomplish tasks not possible
by a single model approach. We have evaluated the human-
consistency of the DCA in earlier work using the Quake II
game [Youngblood and Holder, 2003]. In the Quake II ex-
periments we defined 100 levels of increasing complexity
starting from a single room with the objective right in front

Attention
Agent

Random
Agent

Ping
 Agent

BreadCrumb
Agent

 Action
Agent

Effector
Agent

Path-Planning
Agent

Figure 4. Sample map (above) and its topological
graph (below).

Figure 5. DCA model for UrT interface.

58

of the agent to a complicated world with multiple adversar-
ies. In addition to having the DCA play these levels, we also
collected game play data from 24 different human players.
We found that the human players clustered into three
groups: novice, intermediate and expert. And we found that
the DCA player was consistent with the novice-level human
play according to a path edit distance based metric. The
Urban Terror game provides a much more realistic urban-
warfare scenario based on the Quake III Arena game engine.

The experiments reported here are designed to test the
hypothesis that multiple action-generating agents working
simultaneously within DCA may yield better game-playing
performance than a single agent approach. The agents util-
ized are the two random agents (with and without goal loca-
tion), the ping agent, the bread crumb agent with hand-
crafted crumb locations, and the bread crumb agent with
crumb locations provided by the path-planning agent.

5.1 Test Maps and Tasks
For our experiments we are using the following five differ-
ent maps included with UrT.
1. Reykjavik. This map represents an urban warfare scenario

and consists of four large buildings with three floors each
separated by many path ways. This map is pictured in
Figure 2.

2. Rommel. This map (see top of Figure 6) represents a vil-
lage scenario where most of the buildings are destroyed.
A canal flows through the village and there are many ob-
stacles in the form of rubble.

3. Docks. This map depicts a warehouse scenario at the edge
of a shallow body of water. This map is the most complex
of all the five maps with many buildings and rooms that
are interconnected in a complex manner.

4. Riyadh. This map portrays a desert scenario and consists
of two market places far away from each other. Bezier
curves are used to construct all the curved surfaces to
give a desert effect.

5. Twinlakes. This map is built upon mountains covered
with snow. The map is completely covered with trees that
are climbable. The map also has two houses at either end
of the map with a small pond for each house. For this
map also Bezier curves were used to construct the moun-
tainous terrain.

Figure 6. Rommel map (top) and the task 4 scenario
of crossing the canal bridge (bottom).

For each of the five maps we defined five tasks consisting of
capture-the-flag games of increasing difficulty. Table 1 de-
scribes the 25 tasks.

5.2 Results
We evaluated the performance of DCA with various reflex
agents playing individually and then two or more reflex
agents playing together. The metric information used for
evaluation is whether the individual reflex agents or coop-
erative reflex agents were able to accomplish the given task,
and if so, the time taken to accomplish the task and the num-
ber of actions sent to UrT to finish the task. Each version of
the DCA was allowed to play each task three times and the
average of the three plays is taken for evaluation purposes.

Figure 7 shows the time take by each of the three single-
agent DCAs on the task 3 scenario for the five maps. Except
for Rommel, the performance of the bread crumb agent is
better than all other agents, and the performance of the ping
Table 1. Five tasks for each of the five DCA-UrT maps (obstacles are between start and goal locations).
 Reykjavik Rommel Docks Riyadh Twinlakes
1 Obstacle-free

traversal
Obstacle-free
traversal

Obstacle-free traversal Obstacle-free tra-
versal

Obstacle-free traversal;
mountainous terrain

2 One large obsta-
cle

L-shaped obstacle Two adjoining obstacles
with deadend

One small obstacle One octagonal slip-
pery-surfaced obstacle

3 Start enclosed by
wall with door

Cluster of walls Two clusters of obstacles
far from each other

Platform obstacle Row of four obstacles

4 Traverse large L-
shaped alley

Cross bridge over
canal (see fig. 6)

Cross narrow bridge to
floating dock

Traverse around
marketplace

Traverse thru tunnel

5 Obstacle-free Long traversal, Climb stairs to second Descend ladder to One room to another

staircase traversal many obstacles floor first floor through narrow door

59

agent is better than that of the random agent with goal in-
formation. For Reykjavik the random agent with goal in-
formation could not finish the given task, so the values for
that agent are not plotted. For Rommel the performance of
the random agent with goal information is better than that of
the ping agent and almost equivalent to that of the bread
crumb agent. This is because the obstacle present is in the
form of a slanted wall, and the random agent simply slides
along the wall to reach the goal.

Results for tasks 1 and 2 follow the trend of the bread
crumb agent taking the least time, followed by the ping
agent and then the random agent with goal information. For
tasks 4 and 5 only the bread crumb agent was able to com-
plete the levels. Task 4 typically resulted in the random and
ping agents getting stuck or falling in the water. Task 5 in-
volved finding a staircase or ladder, which the random and
ping agents rarely find.

We do not show the results with the path-planning agent,
because they are typically longer times, because the path
planner generates many more bread crumbs, each possibly
requiring slight turns. For the handcrafted bread crumbs,
only 2-4 are needed for all tasks. However, there were some
scenarios in which the bread crumb agent became stuck;
whereas, the path-planner agent was able to successfully
complete the task. In these same cases where the bread
crumb agent got stuck, we allow the attention agent to
weight the random agents’ actions more heavily, which was
typically enough to get the player unstuck. Once unstuck,
the attention agent readjusted the weight back in favor of the
bread-crumb agent in order to complete the task. While this
policy was hard-coded, it illustrates how multiple agent ap-
proach can combine to accomplish tasks not possible by a
single agent approach and illustrates an area in which the
DCA can focus efforts to learn such a policy.

6 Conclusions
We have successfully integrated the D’Artagnan Cognitive
Architecture (DCA) to the Urban Terror (UrT) first-person
shooter game to support the further development of the
DCA. The definition of increasingly difficult tasks within

the realistic maps provided with UrT comprises a challeng-
ing evaluation testbed for the DCA and other AI methods.
The implementation and combination of the path planner
and reflex agents provides a simple, yet effective, agent for
playing our simplified UrT game.
 We plan to pursue this work along three directions. First,
we will further develop the various components of the DCA
based on the latest understanding from cognitive and neuro-
sciences. We will also interface and evaluate the DCA in
other environments. Our goal is not only to produce a DCA-
based agent that performs well in complicated environ-
ments, but that also exhibits human-consistent behavior.
Second, we will extend the testbed to include additional
tasks of increasing complexity by combining components of
existing tasks and introducing adversaries. Third, we will
make the UrT interface and task set available to others as a
testbed for evaluating AI methods and as a mechanism to
collect human play to serve as a baseline for measuring hu-
man consistency.

References
[Hill, 2002] R. Hill, C. Han and M. van Lent. Applying per-

ceptually driven cognitive mapping to virtual urban envi-
ronments. Proceedings of the Eighteenth National Con-
ference on Artificial Intelligence, pp. 886-893, 2002.

[Kondeti, 2005] B. Kondeti. Integration of the D’Artagnan
Cognitive Architecture with Real-Time Simulated Envi-
ronments. M.S. thesis, Department of Computer Science
and Engineering, University of Texas at Arlington, 2005.

[Laird, 2002] J. Laird. Research in Human-Level AI Using
Computer Games. Communications of the ACM, 45(1):
32-35, 2002.

[Laird and van Lent, 2001] J. Laird and M. van Lent. Hu-
man-level AI’s Killer Application: Interactive Computer
Games. AI Magazine, 22:15-25, 2001.

[O’Neill, 2004] J. O’Neill. Efficient Navigation Mesh Im-
plementation. Journal of Game Development, Volume 1,
Issue 1, 2004.

[Nallacharu, 2005] M. Nallacharu. Spatial Reasoning for
Real-Time Simulated Environments. M.S. thesis, De-
partment of Computer Science and Engineering, Univer-
sity of Texas at Arlington, 2005.

[Reynolds, 1999] C. Reynolds. Steering Behaviors for
Autonomous Characters. Proceedings of the Game De-
velopers Conference, pp. 763-782, 1999.

[Youngblood, 2002]. G. M. Youngblood. Agent-Based
Simulated Cognitive Intelligence in a Real-Time First-
Person Entertainment-Based Artificial Environment.
M.S. thesis, Department of Computer Science and Engi-
neering, University of Texas at Arlington, 2002.

[Youngblood and Holder, 2003] G. M. Youngblood and L.
B. Holder. Evaluating Human-Consistent Behavior in a
Real-time First-person Entertainment-based Artificial
Environment. Proceedings of the Sixteenth International
FLAIRS Conference, pp. 32-36, 2003.

Level 3 – Time (secs)

800
Random with goal
Ping
Bread Crumb

700

600

500
400

300
200

100
0

Docks Reykjavik Rommel Riyadh Twinlakes

Figure 7. Average time taken by three agents in the
task 3 scenario of the five maps.

60

Abstract
Reinforcement learning (RL) methods have diffi-
culty scaling to large, complex problems. One ap-
proach that has proven effective for scaling RL is
to make use of advice provided by a human. We
extend a recent advice-giving technique, called
Knowledge-Based Kernel Regression (KBKR), to
RL and evaluate our approach on the KeepAway
subtask of the RoboCup soccer simulator. We pre-
sent empirical results that show our approach can
make effective use of advice. Our work not only
demonstrates the potential of advice-giving tech-
niques such as KBKR for RL, but also offers in-
sight into some of the design decisions involved in
employing support-vector regression in RL.

1 Introduction
Reinforcement learning (RL) techniques such as Q-learning
and SARSA [Sutton and Barto, 1998] are effective learning
techniques, but often have difficulty scaling to challenging,
large-scale problems. One method for addressing the com-
plexity of such problems is to incorporate advice provided
by a human teacher. The approach of using advice has
proven effective in a number of domains [Lin, 1992;
Gordon and Subramanian, 1994; Maclin and Shavlik, 1994;
Andre and Russell, 2001; Kuhlmann et al., 2004].

Recently, Mangasarian et al., [2004] introduced a method
called Knowledge-Based Kernel Regression (KBKR) that
allows a kernel method to incorporate advice given in the
form of simple IF-THEN rules into a support vector method
for learning regression (i.e., real-valued) problems. Their
technique proved effective on the simple regression prob-
lems on which they tested it. In this article we extend the
general KBKR approach to RL and test it on a complex
game from the RoboCup soccer simulator [Noda et al.,
1998] – KeepAway [Stone and Sutton, 2001].

In applying the KBKR approach to KeepAway we found
that we had to make a number of adjustments and exten-
sions, both to the KBKR method and to our representation
of the problem. These adjustments and extensions proved
critical to effectively learning in the KeepAway task.

In the next section of the paper we present the basic
KBKR method. In Section 3 we present the RoboCup simu-

lator and KeepAway in particular, and discuss some of the
difficulties for this game. In Section 4 we discuss how a
support-vector regressor can be used in Q-learning and then
present our reformulation of the KBKR method and some of
the issues we had to address in order to get good results.
Following that we present results of experiments using our
new approach on KeepAway. The final sections discuss
related research, future directions, and conclusions.

2 Knowledge-Based Support Vector Regression
In this section we present the basics of Knowledge-Based
Kernel Regression [Mangasarian et al., 2004].

2.1 Support Vector Regression
A linear regression problem involves trying to find a set of
weights (w) and a offset (b) to learn a function of the form
f(x) = wTx + be, where T indicates the transpose of a vector,
x is a vector of numeric features describing a particular in-
stance (e.g., values describing the soccer field as seen from
the player’s point of view), f(x) is the value that instance is
labeled with (e.g., the Q value of taking action HoldBall),
and e denotes a vector of ones. From now on, for clarity we
will omit e, with the understanding that b is a scalar.

For a particular set of observed input vectors (a set of
states observed during learning) and a corresponding set of
f(x) values (the current Q estimates for each of those states),
we find a solution to the equation:

Aw + b = y
where A is the set of states, one row for each input vector,
one column for each feature, and y is the set of expected f(x)
values, one for each input vector. Since an exact solution is
often infeasible, this equation is generalized to:

Aw + b ≈ y (1)
Solutions to this problem are ranked by how well they meet
some performance criterion (such as minimum error with
respect to the y values).

In a kernel approach, the weight vector w is replaced with
its dual form ATα, which converts Eq. 1 to:

AATα + b ≈ y
This formulation is then generalized by replacing the AAT
term with a kernel, K(A,AT), to produce:

K(A,AT)α + b ≈ y (2)
However, in this article we simply use Eq. 1 above, since

linear models are more understandable and scale better to

Knowledge-Based Support-Vector Regression for Reinforcement Learning

Richard Maclin†, Jude Shavlik‡, Trevor Walker‡, Lisa Torrey‡
University of Minnesota – Duluth† University of Wisconsin – Madison‡

Computer Science Department Computer Sciences Department
1114 Kirby Dr, Duluth, MN 55812 1210 W Dayton St, Madison, WI 53706

 rmaclin@d.umn.edu {shavlik,torrey,twalker}@cs.wisc.edu

61

large numbers of training examples. We use tile coding (an
example is shown below) to produce the non-linearity in our
models. The reader should note that using Eq. 1 is not iden-
tical to simply using a linear kernel (K) in Eq. 2.

To use a linear programming (LP) method to learn a
model we simply have to indicate the expression to be
minimized when producing a solution. One common for-
mulation for linear regression models is the following,
which we call LP1 so we can refer to it again later:

In this formulation we use slack variables s to allow the
solution to be inaccurate on some training examples, and we
penalize these inaccuracies in the objective function that is
to be minimized. We then minimize a weighted sum of the
s slack terms and the absolute value of weights and the b
term (the one-norm, ||·||1, computes the sum of absolute val-
ues). This penalty on weights (and b) penalizes the solution
for being more complex. C is a parameter for trading off
how inaccurate the solution is (the s terms) with how com-
plex the solution is (the weights and b). The resulting
minimization problem is then presented to a linear program
solver, which produces an optimal set of w and b values.

2.2 Knowledge-Based Kernel Regression
In KBKR, a piece of advice or domain knowledge is repre-
sented in the notation:

Bx ≤ d ⇒ f(x) ≥ hTx + β (3)
This can be read as:

If certain conditions hold (Bx ≤ d), the output, f(x),
should equal or exceed some linear combination of
the inputs (hTx) plus a threshold term (β).

The term Bx ≤ d allows the user to specify the region of
input space where the advice applies. Each row of matrix B
and its corresponding d values represents a constraint in the
advice. For example, a user might give the rule:

IF (distanceA + 2 distanceB) ≤ 10
THEN f(x) ≥ 0.5 distanceA + 0.25 distanceB + 5

For this IF-THEN rule, matrix B would have a single row with
a 1 in the column for feature distanceA and a 2 in the col-
umn for distanceB (the entry for all other features would be
0), and the d vector would be a scalar with the value 10.

In general, the rows of B and the corresponding d values
specify a set of linear constraints that are treated as a con-
junction and define the polyhedral region of the input space
to which the right-hand side of the advice applies. The vec-
tor h and the scalar β then define a linear combination of
input features that the predicted value f(x) should match or
exceed. For the above rule, the user advises that when the
left-hand side condition holds, the value of f(x) should be
greater than ½ distanceA plus ¼ distanceB plus 5. This
would be captured by creating an h vector with coefficients
of 0.5 and 0.25 for the features distanceA and distanceB (0
otherwise), and setting β to 5.

In this advice format, a user in a reinforcement-learning
task can define a set of states in which the Q value for a
specific action should be high (or low). We later discuss
how we numerically represent “high Q.”

Mangasarian et al. prove that the advice implication in
Eq. 3 is equivalent to the following set of equations having a
solution (we have converted to non-kernel form):

BTu + w – h = 0, -dTu + b - β ≥ 0, u ≥ 0 (4)
“Softening” the first two of these leads to the following op-
timization problem in the case of linear models (LP2):

The z and ζ are slack terms associated with the advice;
they allow Eq. 4 to be only approximately satisfied. The μ1
and μ2 parameters specify how much to penalize these
slacks. In other words, these slacks allow the advice to be
only partially followed by the learner.

Mangasarian et al., [2004] tested their method on some
simple regression problems and demonstrated that the re-
sulting solution would incorporate the knowledge. How-
ever, the testing was done on small feature spaces and the
tested advice placed constraints on all of the input features.
In this article we apply this methodology to a more complex
learning problem based on RL and the RoboCup simulator.

3 RoboCup Soccer: The Game KeepAway
We experimented on the game KeepAway in simulated Ro-
boCup soccer [Stone and Sutton, 2001]. In this game, the
goal of the N “keepers” is to keep the ball away from N-1
“takers” as long as possible, receiving a reward of 1 for each
time step they hold the ball (the keepers learn, while the
takers follow a hand-coded policy). Figure 1 gives an ex-
ample of KeepAway involving three keepers and two takers.

To simplify the learning task, Stone and Sutton chose to
have learning occur only by the keeper who currently holds
the ball. When no player has the ball, the nearest keeper
pursues the ball and the others perform hand-coded moves
to “get open” (be available for a pass). If a keeper is hold-
ing the ball, the other keepers perform the “get open” move.

The learnable action choice then is whether to hold the
ball or to pass it to another keeper. Note that passing re-
quires multiple actions in the simulation (orienting the body,
then performing multiple steps of kicking), but these low-
level actions are managed by the simulator and are not ad-
dressed in Stone and Sutton’s, nor our, experiments.

The policy of the takers is simple; if there are only two
takers they pursue the ball. When there are more than two
takers, two pursue the ball and the others “cover” a keeper.

For our work we employ the feature representation used
by Stone and Sutton. They measure 13 values that define
the state of the world from the perspective of the keeper that
currently has the ball. These 13 features record geometric
properties such as the pair-wise distances between players
and the angles formed by sets of three players.

The task is made more complex because the simulator in-
corporates noise into the information describing the state.
In addition, the actions of the agents contain noise. For ex-
ample, there is a chance the keeper passing the ball to an-
other keeper will misdirect the ball, possibly sending it out

sybAwsts

sCbw
s

≤−+≤−

++
≥

 ..

||||||||||||min 1110 - b ud
zhwuBz

sybAwsts

zsCbw

T

T

zus

βζ

ζμμ
ζ

≥+−

≤−+≤−

≤−+≤−

++++
≥≥≥≥

 ..

||||||||||||||||min 2111110,0,0,0

62

of bounds or towards one of the takers. The overall score of
a keeper team is measured in terms of how long they are
able to hold onto the ball.

Stone and Sutton [2001] demonstrated that this task can
be learned with RL. They employed SARSA learning with
replacing eligibility traces, and used CMAC’s as their func-
tion approximator. They used a tile encoding of the state
space, where each feature is discretized several times into a
set of overlapping bins. For example, one could divide a
feature that ranges from 0 to 5 into four overlapping bins of
width 2: one bin covering values [0,2], one [1,3], one [2,4]
and one [3,5]. This representation proved very effective in
their experiments and we use it also.

4 Using KBKR for KeepAway
In order to use regression for RL we must formulate the
problem as a regression problem. We represent the real-
valued Q function as a set of learned models, one for each
action. The input to each model is the state and each model
makes a prediction of the Q value for the action. We use
one-step SARSA to estimate the Q value.

Since incremental training algorithms are not well devel-
oped for support vector machines, we employ batch train-
ing. We save the series of states, actions, and reinforce-
ments experienced over each set of 100 games, we then stop
to train our models, and then use the resulting models in the
next chunk of 100 games. When we create training exam-
ples from old data, we use the current model to compute the
Q values for the next state in one-step SARSA learning since
these estimates are likely to be more accurate than those
obtained when these old states were actually encountered.

This batch approach is effective but leads to a potential
problem. As the game continues data accumulates, and
eventually the sets of constraints in LP1 and LP2 become
intractably large for even commercial LP solvers. In addi-
tion, because the learner controls its experiences, older data
is less valuable than newer data.

Hence, we need a mechanism to choose which training
examples to use. We do this by taking a stochastic sample
of the data. We set a limit on the number of training exam-
ples (we currently set this limit to 1500 and have not ex-
perimented with this value). If we have no more examples
than this limit, we use them all. When we need to discard
some examples, we keep a (uniformly) randomly selected

750 (i.e., half our limit) and discard others according to their
age. The probability we select an as yet unselected example
is ρage (ρ raised to the power age) and we set ρ to a value in
[0,1] to produce a data set of our specified maximum size.

In our initial experiments on KeepAway we employed
kernel-based regression directly using the 13 numeric fea-
tures used by Stone and Sutton without tile encoding. In
these experiments, we found that both Gaussian and linear
kernels applied to just these 13 features performed only
slightly better than a random policy (the results stay right
around 5 seconds – compare to Figure 3’s results).

Using Stone and Sutton’s tile coding led to substantially
improved performance, and we use that technique for our
experiments. We provide to our learning algorithms both
the 13 “raw” numeric features as well as binary features that
result from (separately) tiling each of the 13 features. We
create 32 binary features per raw feature. We keep the nu-
meric features to allow our methods to explore a wide range
of possible features and also since the numeric features are
more easily expressed in advice.

One critical adjustment we found necessary to add to the
KBKR approach (LP2) was to append additional constraints
to the constraints defined by the B matrix and d vector of
Eq. 3. In our new approach we added for each feature not
mentioned in advice constraints of the form:

min(featurei) ≤ featurei ≤ max(featurei)
For example, if distanceC ranges from 0 to 20, we add the
constraint: 0 ≤ distanceC ≤ 20.

This addresses a severe limitation in the original KBKR
method. In the original KBKR approach the advice, when
unmodified with slack variables, implies that the right-hand
side must be true in all cases (no matter what the values of
the other features are). For example, if we advise “when
distanceA is less than 10 we want the output to be at least
100,” but do not place any restrictions on the other features’
values, the KBKR algorithm cannot include any other fea-
tures in its linear model, since such a feature could hypo-
thetically have a value anywhere from –∞ to +∞, and one of
these extremes would violate the THEN part of advice. By
specifying the legal ranges for all features (including the
Booleans that result from tiling), we limit the range of the
input space that KBKR has to consider to satisfy the advice.

For this reason, we also automatically generate con-
straints for any of the binary features constrained to be true
or false by advice about numeric feature. For example, as-
sume the advice says distanceA>10. We then add con-
straints that capture how this information impacts various
tiles. If we had two tiles, one checking if distanceA is in
[0,10], and a second checking if distanceA is in [10,20], we
would add constraints that the first tile must be false for this
advice and the second tile must be true.

If we tile a feature into several bins where more than one
tile might match the constraint – imagine that distanceA was
divided into tiles [0,5], [5,10], [10,15] and [15,20] – we
would add constraints indicating that each of the first two
must be false for the constraint (distanceA>10) and one of
the last two must be true. This last constraint equation (that
one of the last two tiles must be true) would be:

distanceA[10,15] + distanceA[15,20] = 1

Figure 1. A sample KeepAway game where there are
three keepers (light gray with black outlines), two takers
(black with gray outlines), and the ball (currently held by
the keeper in the upper right). A game continues until one
of the takers holds the ball for at least 5 time steps (0.5 sec)
or if the ball goes out of bounds (beyond the white lines).

63

where distanceA[X,Y] denotes the feature value (0 or 1) for
the tile of distanceA covering the range [X,Y].

In cases where a tile only partially lines up with a con-
straint included in advice – for example if distanceA was
covered by tiles [0,4], [4,8], [8,12], [12,16] and [16,20] and
the advice included distanceA>10, we would still add con-
straints to indicate that the first two tiles ([0,4] and [4,8])
must be false and then add a constraint that one of the other
three tiles must be true (as in the equation shown above).
These cases will often occur, since we cannot count on ad-
vice lining up with our tiling scheme. Since we conjoin the
constraints on the tiles with the original constraint on the
numeric feature, it is safe to include tiles that span beyond
the original advice’s constraint on the numeric feature.

We also needed to extend the mechanism for specifying
advice in KBKR in order to apply it to RL. In the original
KBKR work the output values are constrained by a linear
combination of constants produced by the user (see Eq. 3).
However, in RL advice is used to say when the Q for some
action should be high or low. So we need some mechanism
to convert these terms to numbers. We could simply define
high to be, say, ≥ 100 and low to be ≤ 50, but instead we
decided to let the training data itself specify these numbers.
More specifically, we allow the term averageQ to be used in
advice and this value is computed over the examples in the
training set. Having this term in our advice language makes
it easier to specify advice like “in these states, this action is
10 units better than in the typical state.”

As briefly mentioned earlier, our linear programs penalize
the b term in our models. In our initial experiments, how-
ever, we found the b term led to underfitting of the training
data. Recall that our training data for action A’s model is a
collection of states where A was applied. As training pro-
gresses, more and more of the training examples come from
states where executing action A is a good idea, (i.e., action A
has a high Q value in these states). If the b term is used in
the learned models to account for the high Q values, then
when this model is applied to a state where action A is a bad
choice, the predicted Q may still be high.

For instance, imagine a training set contains 1000 exam-
ples where the Q is approximately 100 and 10 examples
where the Q is 0. Then the constant model Q = 100 might
be the optimal fit to this training set, yet is unlikely to lead
to good performance when deployed in the environment.

One way to address this weakness is to include in the
training set more states where the Q for action A is low, and
we partly do this by keeping some early examples in our
training set. In addition we address this weakness by highly
penalizing non-zero b terms in our linear programs (for clar-
ity we did not explicitly show a scaling factor on the b term
earlier in our linear programs). The hypothesis behind this
penalization of b is that doing so will encourage the learner
to instead use weighted feature values to model the Q func-
tion, and since our objective function penalizes having too
many weights in models, the weights used to model the set
of high Q values will have captured something essential
about these states that have high Q’s, thereby generalizing
better to future states. Our improved empirical evidence
after strongly penalizing b supports our hypothesis. In gen-

eral, one needs to carefully consider how to choose training
examples when using a non-incremental learner in RL.

5 Experimental Results
We performed experiments on the KeepAway task using our
approach for incorporating advice into a learner via the
KBKR method. As an experimental control, we also con-
sider the same support-vector regressor but without advice.
In other words, LP2 described in Section 2 is our main algo-
rithm and LP1 is our experimental control, with both being
modified for RL as explained in Section 4. We measure our
results in terms of the length of time the keepers hold the
ball. Our results show that, on average, a learner employing
advice will outperform a learner not using advice.

5.1 Methodology
Our experiments were performed on 3 versus 2 KeepAway
(3 keepers and 2 takers). The takers employed a fixed pol-
icy as described in Section 3. The keepers were all learning
agents and pooled their experience to learn a single model
which is shared by all of the keepers.

The reinforcement signals the learners receive are 0.1 for
each step in the game and a 0 when the game ends (when
the takers control the ball or the ball goes out of bounds).
Our discount rate is set to 1, the same value used by Stone
and Sutton [2001]. For our action-selection process we used
a policy where we performed an exploitation action (i.e.,
chose the action with the highest value) 99% of the time and
randomly chose an action (exploration) the remaining time,
again following Stone and Sutton. We report the average
total reinforcement for the learners (the average time the
keepers held the ball) over the previous 1000 games.

We set the values of C, µ1, and µ2 in LP1 and LP2 to be
100/#examples, 10, and 100 respectively. By scaling C by
the number of examples, we are penalizing the average er-
ror on the training examples, rather than the total error over
a varying number of examples. Since the number of
weights is fixed in LP1 and LP2, we do not want the penalty
due to data mismatch to grow as the number of training ex-
amples increases. We tried a small number of settings for C
for our non-advice approach (i.e., our experimental control)
and found this value worked best. We use this same value

8 m

Hold Advice Pass Advice
Figure 2. The two pieces of advice involve a suggestion
when to hold the ball (if the nearest taker is at least 8m
away) , and when to pass the ball (if a taker is closing in,
the teammate is further away than the takers and there
is a large passing lane - the value of Θ is ≥ 45°).

Θ

64

for our KBKR approach. We simply chose the µ1 and µ2
values and have not experimented with different settings.

Each point in our results graphs is averaged over ten runs.
The results are reported as a function of the number of
games played, although since games are of different length,
the amount of experience differs. This result is somewhat
mitigated in that we provide at most 1500 state and action
pairs to our learners, as discussed above.

5.2 Advice We Used
We employed two pieces of advice. The advice is based on
advice used in Kuhlman et al., [2004]. The first rule sug-
gests the keeper with the ball should hold it when the near-
est taker is at least 8m away (see Fig. 2 left). When this ad-
vice applies, it suggests the Q for holding should exceed the
average for holding by 1 second for each meter the closest
taker is beyond 8 meters. The advice in our notation is:

 IF distanceNearestTaker ≥ 8
THEN Q(hold) ≥ averageQ + distanceNearestTaker - 8
The second piece of advice indicates when to pass the

ball (see Figure 2 right). This advice tests whether there is a
taker closing in, whether there is a teammate that is further
away than either of the takers and whether there is a passing
lane (a value of Θ that is at least 45 degrees) to that team-
mate. When this advice applies, it suggests that the Q for
passing to the nearest teammate exceeds the average by 0.1
seconds for each degree (up to 60 degrees, and by 6 seconds
for angles larger than 60 degrees).

5.3 Results and Discussion
Fig. 3 presents the results of our experiments. These results
show that a learner with advice obtains gains in performance
due to that advice and retains a sizable advantage in per-
formance over a large number of training examples. Figure
3 indicates that advice-taking RL based on KBKR can pro-
duce significant improvements for a reinforcement learner
(p < 0.01 for an unpaired t-test on the performance at 2500
games played). Although other research has demonstrated
the value of advice previously (see next section), we believe

that the advantages of using a support-vector based regres-
sion method make this a novel and promising approach.

Our results are not directly comparable to that in Stone
and Sutton [2001] because we implemented our own Ro-
boCup players, and their behavior, especially when they do
not have the ball, differs slightly. We also tile features dif-
ferently than they do. Stone and Sutton’s learning curves
start at about 6 seconds per game and end at about 12 after
about 6000 games (our results are initially similar but our
keepers games last longer – possibly due to somewhat dif-
ferent takers). We have not implemented Stone and Sut-
ton’s method, but our LP1 is a good proxy for what they do.
Our focus here is on the relative impact of advice, rather
than a better non-advice solution.

6 Related Work
A number of researchers have explored methods for pro-

viding advice to reinforcement learners. These include
methods such as replaying teaching sequences [Lin, 1992],
extracting information by watching a teacher play a game
[Price and Boutilier, 1999], and using advice to create rein-
forcement signals to “shape” the performance of the learner
[Laud and DeJong, 2002]. Though these methods have a
similar goal of shortening the learning time, they differ sig-
nificantly in the kind of advice provided by the human.

Work that is more closely related to the work we present
here includes various techniques that have been developed
to incorporate advice in the form of textual instructions (of-
ten as programming language constructs). Gordon and
Subramanian [1994] developed a method that used advice in
the form IF condition THEN achieve goals that adjusts the
advice using genetic algorithms. Our work is similar in the
form of advice, but we use a significantly different approach
(optimization by linear programming) to incorporate advice.

In our previous work [Maclin and Shavlik, 1994], we de-
veloped a language for providing advice that included sim-
ple IF-THEN rules and more complex rules involving multi-
ple steps. These rules were incorporated into a neural net-
work, which learned from future observations. In this ear-
lier work new hidden units are added to the neural network
that represent the advice. In this article, a piece of advice
represents constraints on an acceptable solution.

Andre and Russell [2001] developed a language for creat-
ing RL agents. Their language allows a user to specify par-
tial knowledge about a task using programming constructs
to create a solver, but also includes “choice” points where
the user specifies possible actions. The learner then ac-
quires a policy to choose from amongst the possibilities.
Our work differs from theirs in that we do not assume the
advice is correct.

In Kuhlmann et al., [2004], advice is in the form of rules
that specify in which states a given action is good (or bad).
When advice is matched, the predicted value of an action in
that state is increased by some fixed amount. Our work
differs from this work in that our advice provides constraints
on the Q values rather than simply adding to the Q value.
Thus our learner is better able to make use of the advice
when the advice is already well represented by the data. We

0

5

10

15

20

25

0 500 1000 1500 2000 2500

Games Played

D
ur

at
io

n
(s

ec
)

With Advice (LP2)

Without Advice (LP1)

Figure 3. Results of standard support vector linear regres-
sion versus a learner that receives at the start of learning
the advice described in the text.

65

tested the Kuhlmann et al. method with our no-advice algo-
rithm (LP1), but found it did not improve performance.

A second area of related research is work done to employ
support vector regression methods in RL agents. Both Diet-
terich and Wang [2001] and Lagoudakis and Parr [2003]
have explored methods for using support vector methods to
perform RL. The main limitation of these approaches is that
these methods assume a model of the environment is avail-
able (or at least has been learned) and this model is used for
simulation and Q-value inference. Our approach is a more
traditional “model-free” approach and does not need to
know the state-transition function.

7 Conclusions and Future Directions
We presented and evaluated an approach for applying Man-
gasarian et al.'s [2004] Knowledge-Based Kernel Regres-
sion (KBKR) technique to RL tasks. In our work we have
investigated the strengths and weaknesses of KBKR and
have developed adjustments and extensions to that tech-
nique to allow it to be successfully applied to a complex RL
task. Our experiments demonstrate that the resulting tech-
nique for employing advice shows promise for reducing the
amount of experience necessary for learning in such com-
plex tasks, making it easier to scale RL to larger problems.
The key findings and contributions of this paper are:
1. We demonstrated on the challenging game KeepAway

that a variant of the KBKR approach (LP2) could be
successfully deployed in a reinforcement-learning set-
ting. We also demonstrated that “batch” support-vector
regression (LP1) can learn in a challenging reinforce-
ment-learning environment without needing to have a
model of the impact of actions on its environment.

2. We found that in order for the advice to be used effec-
tively by the KBKR algorithm, we had to specify the le-
gal ranges for all input features. Otherwise advice had
to be either absolutely followed or “discarded” (via the
slack variables of LP2) since, when the model includes
any input feature not mentioned in the advice, the THEN
part of advice (Eq. 3) can not be guaranteed to be met
whenever the current world state matches the IF part.
We also augment advice about numeric features by mak-
ing explicit those constraints on the associated binary
features that results from tiling the numeric features.

3. We found that it was critical that our optimization not
only penalize the size of the weights in the solution, but
that a sizable penalty term should also be used for the
“b” term (of the “y = wx + b” solution) so that the
learner does not simply predict the mean Q value.

4. Because little work has been done on incremental sup-
port vector machines, we chose to learn our Q models in
a batch fashion. For a complex problem, this large set of
states quickly results in more constraints than can be ef-
ficiently solved by a linear-programming system, so we
had to develop a method for selecting a subset of the
available information with which to train our models.

5. We found that without tile coding, we were unable to
learn in KeepAway. One advantage of using tile coding
is that we did not need to use non-linear kernels; the
non-linearity of tile coding sufficed.

6. Finally, we looked at simple ways to extend the mecha-
nism used for specifying advice in KBKR. We found it
especially helpful to be able to refer to certain “dy-
namic” properties in the advice, such as the average Q
value, as a method of giving advice in a natural manner.

Our future research directions include the testing of our re-
formulated version of KBKR on additional complex tasks,
the addition of more complex features for the advice lan-
guage (such as multi-step plans) and the use of additional
constraints on the optimization problem (such as directly
including the Bellman constraints in the optimization for-
mulation and the ability to give advice of the form “in these
world states, action A is better than action B”). We believe
that the combination of support-vector techniques and ad-
vice taking is a promising approach for RL problems.

Acknowledgements
This research was supported by DARPA IPTO grant HR0011-
04-1-0007 and US Naval Research grant N00173-04-1-G026.

References
[Andre and Russell, 2001] D. Andre and S. Russell, Programma-
ble reinforcement learning agents, NIPS ‘02.

 [Dietterich and Wang, 2001] T. Dietterich and X. Wang, Support
vectors for reinforcement learning, ECML ‘01.

[Gordon and Subramanian, 1994] D. Gordon and D. Subramanian,
A multistrategy learning scheme for agent knowledge acquisition,
Informatica 17: 331-346.

[Kuhlmann et al., 2004] G. Kuhlmann, P. Stone, R. Mooney and J.
Shavlik, Guiding a reinforcement learner with natural language
advice: Initial results in RoboCup soccer, AAAI ‘04 Workshop on
Supervisory Control of Learning and Adaptive Systems..

[Lagoudakis and Parr, 2003] M. Lagoudakis and R. Parr, Rein-
forcement learning as classification: Leveraging modern classifi-
ers, ICML ‘03.

[Laud and DeJong, 2002] A. Laud and G. DeJong, Reinforcement
learning and shaping: Encouraging intended behaviors, ICML ‘02.

[Lin, 1992] L-J. Lin, Self-improving reactive agents based on rein-
forcement learning, planning, and teaching, Machine Learning,
8:293-321.

[Maclin and Shavlik, 1994] R. Maclin and J. Shavlik, Incorporat-
ing advice into agents that learn from reinforcements, AAAI ‘94.

[Mangasarian et al., 2004] O. Mangasarian, J. Shavlik and E.
Wild, Knowledge-based kernel approximation. Journal of Ma-
chine Learning Research, 5, pp. 1127-1141.

[Noda et al., 1998] I. Noda, H. Matsubara, K. Hiraki and I. Frank,
Soccer server: A tool for research on multiagent systems, Applied
Artificial Intelligence 12:233-250.

[Price and Boutilier, 1999] B. Price and C. Boutilier, Implicit imi-
tation in multiagent reinforcement learning, ICML ‘99.

[Stone and Sutton, 2001] P. Stone and R. Sutton, Scaling rein-
forcement learning toward RoboCup Soccer, ICML ‘01.

[Sutton and Barto, 1998] R. Sutton and A. Barto, Reinforcement
Learning: An Introduction. MIT Press.

66

Writing Stratagus-playing Agents in Concurrent ALisp

Bhaskara Marthi, Stuart Russell, David Latham
Department of Computer Science

University of California
Berkeley, CA 94720

{bhaskara,russell,latham}@cs.berkeley.edu

Abstract

We describe Concurrent ALisp, a language that al-
lows the augmentation of reinforcement learning
algorithms with prior knowledge about the struc-
ture of policies, and show by example how it can
be used to write agents that learn to play a subdo-
main of the computer game Stratagus.

1 Introduction
Learning algorithms have great potential applicability to the
problem of writing artificial agents for complex computer
games [Spronck et al., 2003]. In these algorithms, the agent
learns how to act optimally in an environment through experi-
ence. Standard “flat” reinforcement-learning techniques learn
very slowly in environments the size of modern computer
games. The field of hierarchical reinforcement learning [Parr
and Russell, 1997; Dietterich, 2000; Precup and Sutton, 1998;
Andre and Russell, 2002] attempts to scale RL up to larger en-
vironments by incorporating prior knowledge about the struc-
ture of good policies into the algorithms.

In this paper we focus on writing agents that play the game
Stratagus (stratagus.sourceforge.net). In this game, a player
must control a medieval army of units and defeat oppos-
ing forces. It has high-dimensional state and action spaces,
and successfully playing it requires coordinating multiple
complex activities, such as gathering resources, constructing
buildings, and defending one’s base. We will use the follow-
ing subgame of Stratagus as a running example to illustrate
our approach.

Example 1 In this example domain, shown in Figure 1, the
agent must defeat a single ogre (not visible in the figure). It
starts out with a single peasant (more may be trained), and
must gather resources in order to train other units. Even-
tually it must build a barracks, and use it to train footman
units. Each footman unit is much weaker than the ogre so
multiple footmen will be needed to win. The game dynamics
are such that footmen do more damage when attacking as a
group, rather than individually. The only evaluation measure
is how long it takes to defeat the ogre.

Despite its small size, writing a program that performs
well in this domain is not completely straightforward.
It is not immediately obvious, for example, how many

footmen

peasants

goldminebarracks

Figure 1: An example subgame of Stratagus.

peasants should be trained, or how many footmen should
be trained before attacking the ogre. One way to go about
writing an artificial agent that played this program would
be to have the program contain free parameters such as
num-peasants-to-build-given-single-enemy,
and then figure out the optimal setting of the parameters,
either “by hand” or in some automated way. A naive
implementation of this approach would quickly become
infeasible1 for larger domains, however, since there would
be a large number of parameters, which are coupled, and so
exponentially many different joint settings would have to be
tried. Also, if the game is stochastic, each parameter setting
would require many samples to evaluate reliably.

The field of reinforcement learning [Kaelbling, 1996] ad-
dresses the problem of learning to act optimally in sequential
decision-making problems and would therefore seem to be
applicable to our situation. However, standard “flat” RL algo-
rithms scale poorly to domains the size of Stratagus. One rea-
son for this is that these algorithms work at the level of prim-
itive actions such as “move peasant 3 north 1 step”. These al-
gorithms also provide no way to incorporate any prior knowl-
edge one may have about the domain.

1A more sophisticated instantiation of this approach, com-
bined with conventional HRL techniques, has been proposed re-
cently [Ghavamzadeh and Mahadevan, 2003].

67

Hierarchical reinforcement learning (HRL) can be viewed
as combining the strengths of the two above approaches, us-
ing partial programs. A partial program is like a conventional
program except that it may contain choice points, at which
there are multiple possible statements to execute next. The
idea is that the human designer will provide a partial pro-
gram that reflects high-level knowledge about what a good
policy should look like, but leaves some decisions unspec-
ified, such as how many peasants to build in the example.
The system then learns a completion of the partial program
that makes these choices in an optimal way in each situation.
HRL techniques like MAXQ and ALisp also provide an addi-
tive decomposition of the value function of the domain based
on the structure of the partial program. Often, each compo-
nent in this decomposition depends on a small subset of the
state variables. This can dramatically reduce the number of
parameters to learn.

We found that existing HRL techniques such as ALisp were
not directly applicable to Stratagus. This is because an agent
playing Stratagus must control several units and buildings,
which are engaged in different activities. For example, a
peasant may be carrying some gold to the base, a group of
footmen may be defending the base while another group at-
tacks enemy units. The choices made in these activities are
correlated, so they cannot be solved simply by having a sepa-
rate ALisp program for each unit. On the other hand, a single
ALisp program that controlled all the units would essentially
have to implement multiple control stacks to deal with the
asynchronously executing activities that the units are engaged
in. Also, we would lose the additive decomposition of the
value function that was present in the single-threaded case.

We addressed these problems by developing the Concur-
rent ALisp language. The rest of the paper demonstrates by
example how this language can be used to write agents for
Stratagus domains. A more precise description of the syntax
and semantics can be found in [Marthi et al., 2005].

2 Concurrent ALisp
Suppose we have the following prior knowledge about what a
good policy for Example 1 should look like. First train some
peasants. Then build a barracks using one of the peasants.
Once the barracks is complete, start training footmen. Attack
the enemy with groups of footmen. At all times, peasants not
engaged in any other activity should gather gold.

We will now explain the syntax of concurrent ALisp with
reference to a partial program that implements this prior
knowledge. Readers not familiar with Lisp should still be
able to follow the example. The main thing to keep in mind is
that in Lisp syntax, a parenthesized expression of the form (f
arg1 arg2 arg3) means the application of the function
f to the given arguments. Parenthesized expressions may also
be nested. In our examples, all operations that are not part of
standard Lisp are in boldface.

We will refer to the set of buildings and units in a state as
the effectors in that state. In our implementation, each effec-
tor must be given a command at each step (time is discretized
into one step per 50 cycles of game time). The command
may be a no-op. A concurrent ALisp program can be multi-

(defun top ()
(spawn ‘‘allocate-peasants’’

#’peas-top nil *peas-eff*)
(spawn ‘‘train-peasants’’ #’townhall-top

townhall *townhall-eff*)
(spawn ‘‘allocate-gold’’
#’alloc-gold nil)
(spawn ‘‘train-footmen’’ #’barracks-top nil)
(spawn ‘‘tactical-decision’’

#’tactical nil))

Figure 2: Top-level function

(defun peas-top ()
(loop

unless (null (my-effectors))
do (let ((peas (first (my-effectors))))

(choose ‘‘peas-choice’’
(spawn (list ‘‘gold’’ peas)
#’gather-gold nil peas)

(spawn (list ‘‘build’’ peas)
#’build-barracks nil peas)))))

Figure 3: Peasant top-level function

threaded, and at any point, each effector is assigned to some
thread.

Execution begins with a single thread, at the function top,
shown in Figure 2. In our case, this thread simply creates
some other threads using the spawn operation. For exam-
ple, the second line of the function creates a new thread with
ID “allocate peasants”, which begins by calling the function
peas-top and is assigned effector *peas-eff*.

Next, examine the peas-top function shown in Figure 3.
This function loops until it has at least one peasant assigned
to it. This is checked using the my-effectors operation.
It then must make a choice about whether to use this peasant
to gather gold or to build the barracks, which is done using
the choose statement. The agent must learn how to make
such a choice as a function of the environment and program
state. For example, it might be better to gather gold if we have
no gold, but better to build the barracks if we have plentiful
gold reserves.

Figure 4 shows the gather-gold function and the
navigate function, which it calls. The navigate func-
tion navigates to a location by repeatedly choosing a direc-
tion to move in, and then performing the move action in
the environment using the action operation. At each step,
it checks to see if it has reached its destination using the
get-env-state operation.

We will not give the entire partial program here, but Fig-
ure 5 summarizes the threads and their interactions. The
allocate-gold thread makes decisions about whether
the next unit to be trained is a footman or peasant, and
then communicates its decision to the train-footmen
and train-peasants threads using shared variables. The

68

(defun gather-gold ()
(call navigate *gold-loc*)
(action *get-gold*)
(call navigate *base-loc*)
(call *dropoff*))

(defun navigate (loc)
(loop

with peas = (first (my-effectors))
for s = (get-env-state)
for current = (peas-loc peas s)
until (equal current loc)
do (action ‘‘nav’’

(choose *N* *S* *W* *E*))))

Figure 4: Gather-gold and navigate functions

Allocate Gold

Allocate for barracks, peasants
or footmen

Train Footmen (Barracks)

Train Peasants (Town Hall)

Allocate Peasants

Send idle peasants to gather
gold or build barracks

Gather Gold
(Peasant)

Build Barracks
(Peasant)

Tactical Decision

Decide when to use
new footmen to attack

Attack (Footmen)

Controls a set of footmen who
are jointly attacking the
enemy.

New
footmen

New
peasants

Shared variables for
resource allocation

ROOT

Thread
(Effector)

spawns

Legend

Figure 5: Structure of the partial program for the example domain

tactical-decision thread is where new footman units
are assigned. At each step it chooses whether to launch an
attack or wait. The attack is launched by spawning off a
new thread with the footmen in the tactical thread. Currently,
it just consists of moving to the enemy and attacking, but
more sophisticated tactical manouvering could be incorpo-
rated as prior knowledge, or learnt by having choices within
this thread.

3 Semantics
We now give an informal semantics of what it means to ex-
ecute a partial program. We view each state of the environ-
ment as having a set of effectors, such that the set of actions
allowed at that state is the set of assignments of individual
actions to each effector. Thus, we have to make sure that the
action statements in all the threads execute simultaneously.
Also, we would like choose statements to execute simulta-
neously as much as possible. This is based on the intuition
that it is easier to represent and learn the value function for a
single joint choice than for a set of sequential choices, each
depending on the previous ones. Finally, no time is assumed
to elapse in the environment except when the action state-
ments are being executed, and each joint action takes exactly

one time step. Section 6 describes how to fit Stratagus into
this framework.

We build on the standard semantics for interleaved execu-
tion of multithreaded programs. At each point, there is a set
of threads, each having a call stack and a program counter.
There is also a set of global shared variables. All this infor-
mation together is known as the machine state θ. We also
refer to the joint state ω = (s, θ) where s is the environment
state. A thread is said to be an action thread in a given joint
state if it is at an action statement, a choice thread if it at a
choice statement, and a running thread otherwise.

Given a particular joint state ω, there are three cases for
what happens next. If every thread with effectors assigned to
it is an action thread, then we are at an joint action state.
The joint action is done in the environment, and the pro-
gram counters for the action threads are incremented. If ev-
ery thread is either an action thread or a choice thread, but
we are not at an action state, then we are at a joint choice
state. The agent must simultaneously make a choice for all
the choice threads, and their program counters are updated
accordingly. If neither of these two cases holds, then some
external scheduling mechanism is used to pick a thread from
the running threads whose next statement is then executed.

It can be shown that a partial program together with a
Markovian environment yields a semi-Markov Decision Pro-
cess (SMDP), whose state space consists of the joint choice
states. The set of “actions” possible at a joint state corre-
sponds to the set of available joint choices, and the reward
function of making choice u in ω is the expected reward
gained in the environment until the next choice state ω′.

The learning task is then to learn the Q-function of this
SMDP, where Q(ω, u) is the expected total future reward if
we make choice u in ω and act optimally thereafter. Once a
Q-function is learnt, at runtime the agent simply executes the
partial program, and when it reaches a choice state ω, picks
the choice u maximizing Q(ω, u). We will discuss how to do
this efficiently in Section 4.

4 Approximating the Q-Function
It is infeasible to represent the function Q(ω, u) exactly in
large domains for two reasons. First, the joint state space is
huge, resulting in too many parameters to represent or learn.
Second, in situations with many effectors, the set of joint
choices, exponential in the number of effectors, will be too
large to directly maximize over during execution.

A solution to both these problems is provided by approxi-
mating the Q-function as a linear combination of features :

Q(ω, u) =
K

∑

k=1

wkfk(ω, u)

We can control the number of parameters to learn by setting
K appropriately. Also, if features are chosen to be “local”,
i.e. to each depend on a small subset of the choice threads,
then the maximization can, in many cases, be performed ef-
ficiently [Guestrin et al., 2002] using nonsequential dynamic
programming. Some example features for the Stratagus sub-
game are :

69

Concurrent ALisp
partial program

Feature templates

Feature weights

Learning

Execution

Environment

Figure 6: Architecture of the system

1. A feature fgold that counts how much gold we have in
state ω

2. A feature fattack that is 1 if there are at least 3 footmen
in the tactical thread and u involves choosing to start an
attack, and 0 otherwise.

3. A feature fdist, 3 that returns the distance of peasant 3 to
his destination after making the navigation choice in u.

Thus, features may depend on the environment state, thread
states, or memory state of the partial program. They may also
depend on the choices made by any subset of the currently
choosing threads.

To further reduce the number of parameters, we make use
of relational feature templates [Guestrin et al., 2003]. The
feature fdist, 3 above refers to a specific peasant, but it seems
reasonable to expect that the weight of this feature should be
the same regardless of the identity of the peasant. To achieve
this, we allow the specification of a single “feature template”
fdist that results in a distance feature for each peasant in a
given state, all sharing the same weight wdist.

In our implementation, the set of feature templates must be
specified by the user (as Lisp functions). The performance of
the learning algorithms can be strongly dependent on the spe-
cific features used, and in practice feature engineering takes
much more time than writing the partial program.

5 Learning
Figure 6 summarizes the overall system architecture. The
user provides a partial program and features to the learning
algorithm, which uses experience in the environment to learn
a set of weights. The learnt weights can then be used, in con-
junction with the partial program and features, to act in the
environment.

Since the learning task is to learn the Q-function of an
SMDP, we can adapt the standard SMDP Q-learning algo-
rithm to our case. The algorithm assumes a stream of samples
of the form (ω, u, r, ω′). These can be generated by execut-
ing the partial program in the environment and making joint
choices randomly, or according to some exploration policy.
After observing a sample, the algorithm performs the online
update

~w ← ~w + α
(

r + max
u′

Q(ω′, u′; ~w)−Q(ω, u; ~w)
)

~f(ω, u)

where α is a learning-rate parameter that decays to 0 over
time.

The above algorithm does not make explicit use of the pro-
cedural or thread structure of the partial program - learning is

centralized and acts on the entire joint state and joint choice.
In recent work, we have developed an improved algorithm in
which the learning is done separately for each thread. The al-
gorithm also makes use of the procedural structure of the par-
tial program within each thread. To achieve this, the system
designer needs to specify in advance a reward decomposition
function that takes the reward at each timestep and divides it
among the threads.

6 Experiments
We implemented the Concurrent ALisp language and the
above algorithms on top of standard Lisp. We interfaced with
the Stratagus game using a socket. Time was discretized so
that every 50 steps of game time (typically about a quarter of
a second) corresponds to one “timestep” in the environment.
For simplicity, we made the game static, i.e., it pauses at each
step and waits for input from the ALisp program, but the algo-
rithms ran fast enough that it should be possible to make the
environment dynamic. To fit Stratagus into our framework,
in which a joint action at a state must assign an individual ac-
tion to all the effectors, we added a noop action that can be
assigned to any unit for which there is no specific command
on a given timestep.

We ran the original learning algorithm on the domain from
Example 1. Videos of the policies over the course of learning
can be found on the web2. The initial policy trains no new
peasants, and thus collects gold very slowly. It also attacks
immediately after each footman is trained. In contrast, the
final policy, learnt after about 15000 steps of learning, trains
multiple peasants to ensure a constant supply of gold, and at-
tacks with groups of footmen. Thanks to these improvements,
the time to defeat the enemy is reduced by about half.

7 Scaling up
It is reasonable to ask how relevant the above results are to the
overall problem of writing agents for the full Stratagus game,
since the example domain is much smaller. In particular, the
full game has many more state variables and effectors, and
longer episodes which will require more complex policies.
These will increase the complexity of each step of learning
and execution, the amount of sampled experience needed to
learn a good policy, and the amount of input needed from the
human programmer.

We first address the complexity of each step of the algo-
rithms. Since we are using function approximation, the com-
plexity of our algorithms doesn’t depend directly on the num-
ber of joint states, but only on on the number of features. We
believe that it should be possible to find good feature sets that
are not so large as to be bottlenecks, and are working to verify
this empirically by handling increasingly large subdomains of
Stratagus.

The larger number of effectors will typically result in more
threads, which will increase the complexity of each joint
choice. As discussed in Section 4, a brute-force algorithm
for making joint choices would scale exponentially with the
number of threads, but our algorithm grows exponentially in

2http://www.cs.berkeley.edu/∼bhaskara/ijcai05-videos

70

the tree-width of the coordination graph and only linearly
with the number of threads. By making each feature depend
only on a small “local” subset of the choosing threads, we can
usually make the treewidth small as well. Occasionally, the
treewidth will still end up being too large. In this case, we
can use an approximate algorithm to find a reasonably good
joint choice rather than the best one. Our current implemen-
tation selectively removes edges from the coordination graph.
Methods based on local search in the space of joint choices
are another possibility. Once again, this is unlikely to be the
major bottleneck when scaling up.

The cost of executing the partial program itself is currently
negligible, but as partial programs become more complex and
start performing involved computations (e.g. path-planning),
this may change. It should be noted that this issue comes up
for any approach to writing controllers for games, whether or
not they are based on reinforcement learning. One intriguing
possibility in the HRL approach is to treat this as a meta-
level control problem [Russell and Wefald, 1991] in which
the amount of computation is itself decided using a choice
statement. For example, an agent may learn that in situations
with few units and no immediate combat, it is worth spending
time to plan efficient paths, but when there is a large battle go-
ing on, it’s better to quickly find a path using a crude heuristic
and instead spend computation on the joint choices for units
in the battle.

The amount of experience needed to learn a good policy
is likely to be more of a concern as the domains get increas-
ingly complex and the episodes become longer. The number
of samples needed will usually increase at least polynomially
with the episode length. This can be mitigated by the use of
reward shaping [Ng et al., 1999]. Note also that concurrent
ALisp is not wedded to any one particular learning algorithm.
For example, we have extended least-squares policy itera-
tion [Lagoudakis and Parr, 2001], which aims to make better
use of the samples, to our situation. Algorithms that learn a
model of the environment along with the Q-function [Moore
and Atkeson, 1993] are another promising area for future
work.

Finally, the amount of human input needed in writing the
partial program, features, reward decomposition, and shaping
function will increase in more complex domains. A useful di-
rection to pursue in the medium-term is to learn some of these
instead. For example, it should be possible to add a feature
selection procedure on top of the current learning algorithm.

8 Conclusion
We have outlined an approach to writing programs that play
games like Stratagus using partial programming with concur-
rent ALisp, and demonstrated its effectiveness on a subdo-
main that would be difficult for conventional reinforcement
learning methods. In the near future, we plan to implement
our improved learning algorithm, and scale up to increasingly
larger subgames within Stratagus.

References
[Andre and Russell, 2002] D. Andre and S. Russell. State

abstraction for programmable reinforcement learning

agents. In AAAI, 2002.
[Dietterich, 2000] T. Dietterich. Hierarchical reinforcement

learning with the maxq value function decomposition.
JAIR, 13:227–303, 2000.

[Ghavamzadeh and Mahadevan, 2003] M. Ghavamzadeh
and S. Mahadevan. Hierarchical policy-gradient algo-
rithms. In Proceedings of ICML 2003, pages 226–233,
2003.

[Guestrin et al., 2002] C. Guestrin, M. Lagoudakis, and
R. Parr. Coordinated reinforcement learning. In ICML,
2002.

[Guestrin et al., 2003] C. Guestrin, D. Koller, C. Gearhart,
and N. Kanodia. Generalizing plans to new environments
in relational mdps. In IJCAI, 2003.

[Kaelbling, 1996] L. Kaelbling. Reinforcement learning : A
survey. Journal of Artificial Intelligence Research, 1996.

[Lagoudakis and Parr, 2001] M. Lagoudakis and R. Parr.
Model-free least squares policy iteration. In Advances in
Neural Information Processing Systems, 2001.

[Marthi et al., 2005] B. Marthi, S. Russell, D. Latham, and
C. Guestrin. Concurrent hierarchical reinforcement learn-
ing. In Proceedings of IJCAI 2005, 2005. to appear.

[Moore and Atkeson, 1993] Andrew Moore and C. G. Atke-
son. Prioritized sweeping: Reinforcement learning with
less data and less real time. Machine Learning, 13, Octo-
ber 1993.

[Ng et al., 1999] A. Ng, D. Harada, and S. Russell. Policy
invariance under reward transformations : theory and ap-
plication to reward shaping. In ICML, 1999.

[Parr and Russell, 1997] R. Parr and S. Russell. Reinforce-
ment learning with hierarchies of machines. In Advances
in Neural Information Processing Systems 9, 1997.

[Precup and Sutton, 1998] D. Precup and R. Sutton. Multi-
time models for temporally abstract planning. In Advances
in Neural Information Processing Systems 10, 1998.

[Russell and Wefald, 1991] Stuart Russell and Eric Wefald.
Do the right thing: studies in limited rationality. MIT
Press, Cambridge, MA, USA, 1991.

[Spronck et al., 2003] P. Spronck, I. Sprinkhuizen-Kuyper,
and E. Postma. Online adaption of game opponent ai in
simulation and in practice. In Proceedings of the Fourth
International Conference on Intelligent Games and Simu-
lation, 2003.

71

Defeating Novel Opponents in a Real-Time Strategy Game

Matthew Molineaux1, David W. Aha2, and Marc Ponsen3

1ITT Industries; AES Division; Alexandria, VA 22303
2Navy Center for Applied Research in Artificial Intelligence;

Naval Research Laboratory (Code 5515); Washington, DC 20375
3Department of Computer Science and Engineering;

Lehigh University; Bethlehem, PA 18015
1,2first.last@nrl.navy.mil 3mjp304@lehigh.edu

Abstract
The Case-Based Tactician (CAT) system, created by
Aha, Molineaux, and Ponsen (2005), uses case-based
reasoning to learn to win the real-time strategy game
Wargus. Previous work has shown CAT’s ability to
defeat a randomly selected opponent from a set
against which it has trained. We now focus on the
task of defeating a selected opponent while training
on others. We describe CAT’s algorithm and report
its cross-validation performance against a set of
Wargus opponents.

1 Introduction
Research on artificial intelligence (AI) and games has an
extraordinary history that dates from 1950. Automated
game-playing programs now exist that outperform world
champions in classic board games such as checkers, Othello,
and Scrabble (Schaeffer, 2001). These efforts brought about
significant advancements in search algorithms, machine
learning techniques, and computer hardware.

In recent years, AI researchers (e.g., Laird & van Lent,
2001; Buro, 2003) have begun focusing on complex strategy
simulation games that offer new challenges, including but
not limited to partially observable environments,
asynchronous gameplay, comparatively large decision
spaces with varying abstraction levels, and the need for
resource management processes.

Learning to win such games may require more
sophisticated representations and reasoning capabilities than
games with smaller decision spaces. To assist their studies,
Ponsen and Spronck (2004) developed a lattice for
representing and relating abstract states in Wargus, a
moderately complex real-time strategy game which mimics
the popular commercial game WarCraft II. They also
sharply reduced the decision space by employing a high-
level language for game agent actions. Together, these
constrain the search space of useful plans (i.e., strategies)
and state-specific subplans (i.e., tactics). This approach
allowed them to focus on the game at a strategic level,
abstracting away the minutiae of individual actions. They
developed a genetic algorithm and a technique called
dynamic scripting to learn plans spanning the entire game,

which win against a fixed opponent. We build on this
success and approach the same challenge, without
foreknowledge of the adversary.

We have developed a case-based approach for playing
Wargus that learns to select appropriate tactics based on the
current state of the game. This approach is implemented in
the Case-based Tactician (CAT) system. We will report
learning curves that demonstrate that its performance
improves against one opponent from training against others.
CAT is the first case-based system designed to defeat an
opponent that uses tactics and strategies that it has not
trained against.

In Section 2, we review some case-based approaches in
games research. In Section 3, we describe the domain
knowledge available to CAT and how this reduces the
complexity of finding effective strategies for defeating
Wargus opponents. CAT’s case-based approach is examined
in section 4. We review our empirical methodology and
CAT’s results in Section 5, and close with a discussion in
Section 6 that highlights several future research objectives.

2 Background: Case-based Reasoning
Research in Large Decision-Space Games

Below, we contrast some of the prior Case-Based Reasoning
research focusing on large decision-space games with CAT.

ROBOCUP SOCCER is a popular CBR focus. Wendler and
Lenz (1998) described an approach for identifying where
simulated agents should move, while Wendler et al. (2001)
reported strategies for learning to pass. Gabel and Veloso
(2001) instead used a CBR approach to select members for a
team. Karol et al. (2003) proposed a case-based action
selection algorithm for the 4-legged league. While these
real-time environments are challenging strategically, they do
not involve complicating dimensions common to strategy
games, such as economies, research, and warfare.

Some researchers have addressed real-time individual
games. Goodman (1994) applied a projective visualization
approach for Bilestoad, a personal combat game, to predict
actions that would inflict damage on the adversary and/or
minimize damage to oneself. Fagan and Cunningham (2003)
instead focused on a plan recognition task; they acquire
cases (state-action planning sequences) for predicting the
next action of a human playing Space Invaders™. In

72

Figure 1: A building-specific state lattice for
WARGUS, where nodes represent states (defined
by a set of completed buildings), and state
transitions involve constructing a specific
building. Also displayed are the evolved counter-
strategies (a-h) that pass through each state.

 1: Th,Ba

a,b,c,d,e,f,g,h

2: Th,Ba,Lm

c,d
3: Th,Ba,Bs

a,e,g
5: Kp,Ba

b,f,h

6: Kp,Ba,Lm

d,f
4: Th,Ba,Lm,Bs

a,c
7: Kp,Ba,Bs

b,e,g
9: Kp,Ba,St

h

8: Kp,Ba,Lm,Bs

a,b,c,f,g
10: Kp,Ba,Lm,St

d
11: Kp,Ba,Bs,St

e,h

20: Kp,Ba,Lm,Bs,
St

a,c,d,e,f,g,h

20: Ca,Ba,Lm,Bs,
St

a,c,d,e,f,g,h

15: Ca,Ba,Lm,Bs,
St,Mt

c

14: Ca,Ba,Lm,Bs,
St,Ap

a

16: Ca,Ba,Lm,Bs,
St,Tm

d,e,f,g,h

18: Ca,Ba,Lm,Bs,
St,Ap,Tm

a,d,f,g

17: Ca,Ba,Lm,Bs,
St,Ap,Mt

c

19: Ca,Ba,Lm,Bs,
St,Mt,Tm

e,h

20: Ca,Ba,Lm,Bs,
St,Ap,Mt,Tm

d,f,g

a
b
c
d
e
f
g
h

= evolved_SC1
= evolved_SC2
= evolved_SC3
= evolved_SC4
= evolved_SC5
= evolved_LBLA
= evolved_SR
= evolved_KR

c,d a,e,g b,f,h

c
d a e,g f

b
h

a,c
f

d b,g e
h

a,c,f,g d e,h

a,c,d,e,f,g,h

a c d,e,f,g,h

a c d,f,g e,h

 d,f,g

Th
Ba
Lm
Bs
Kp
St
Ca
Ap
Mt
Tm

= Townhall
= Barracks
= Lumbermill
= Blacksmith
= Keep
= Stables
= Castle
= Airport
= Magetower
= Temple

contrast, CAT does not perform projective modeling, and
does not learn to recognize adversarial plans. Instead, it
acquires cases concerning the application of a subplan in a
given state, learns to select subplans for a given state, and
executes them in a more complex gaming environment.

Fasciano’s (1996) MAYOR learns from planning failures
in SIMCITY™, a real-time city management game with no
traditional adversaries. MAYOR monitors planning
expectations and employs a causal model to learn how to
prevent failure repetitions, where the goal is to improve the
ratio of successful plan executions. In contrast, CAT does
not employ plan monitoring or causal goal models, and does
not adapt retrieved plans. Rather, it simply selects, at each
state, a good tactic (i.e., subplan) to retrieve. Also, our
gaming environment includes explicit adversaries.

Ulam et al. (2004) described a meta-cognitive approach
that performs failure-driven plan adaptation for Freeciv, a

complex turn-based strategy game. While they employed
substantial domain knowledge in the form of task models, it
was only enough to address a simple sub-task (defending a
city). In contrast, CAT performs no adaptation during reuse,
but does perform case acquisition. Also, CAT focuses on
winning a game rather than on performing a subtask.

Guestrin et al. (2003) applied relational Markov decision
process models for some limited Wargus scenarios (e.g.,
3x3 combat). They did not address more complex scenarios
because their planner’s complexity grows exponentially
with the number of units. Similarly, Cheng and Thawonmas
(2004) proposed a case-based plan recognition approach for
assisting Wargus players, but only for low-level
management tasks. Their state representation is
comprehensive and incorporates multiple abstraction levels.

3 Domain Knowledge in CAT
CAT employs three sources of domain knowledge to reduce
the complexity of WARGUS. Two of these are from Ponsen
and Spronck (2004): a building state lattice, which abstracts
the state space, and a set of tactics for each state.

In Wargus, certain buildings provide the player with new
capabilities, in the form of newly available technologies,
units and buildings. Therefore, it makes sense to break the
game up into periods when a certain set of buildings exist.
We call the time between the construction of one such
building to the time the next is built a building state. The
building state defines the set of actions available to the
player at any one time. It is important not to confuse this
with the game state, which encompasses all of the variables
of the game, and changes much more frequently, whether
the player takes action or not.

The building state lattice (Figure 1) shows the transitions
that are possible from one building state to the next. This
was developed in the course of Ponsen and Spronck’s
research for the purpose of planning. In their research, plans
spanned an entire game, which we call strategies. These
strategies are made up of tactics, which are subplans that
span a single building state. The tactics are made up of
individual actions; using the state lattice, Ponsen and
Spronck ensured that all actions used were legal for the
corresponding building state, and that the entire plan was
therefore legal.

The second source of domain knowledge CAT has access
to (i.e., a set of tactics for each state) was acquired using
Ponsen and Spronck’s genetic algorithm (2004). This was
used to evolve chromosomes, representing counter-
strategies, against specific opponents. Eight opponent
strategies (see Table 1) were available, including some that
are publicly available and others that were manually
developed. The resulting counter-strategies (i.e., one for
each of the eight opponents) were used as a source for
automatically acquiring the tactics (Ponsen et al. 2005a)
used by CAT. The names of counter-strategies are shown in
the lower left of Figure 1. By making reference to the state
lattice, CAT is able to determine what tactics are applicable
whenever a new building state is entered and choose among
them. Figure 1 shows for each building state which of the

73

tactics are applicable to each state. For example, State 1
offers tactics from all evolved counter-strategies, only three
tactics apply to state 20, namely those derived from the
evolved_SC4, evolved_LBLA and evolved_SR counter-
strategies.

In order to choose which tactic to use, CAT employs a
casebase for each building state which records certain
features of the game state, a value indicating which tactic
was selected, and

an associated performance value (see section 4.3) achieved
by using that tactic in gameplay. We will discuss our case-
based strategy selection algorithm in more detail in the next
Section.

4 Case-Based Strategy Selection
Our case-based approach for selecting which tactic to use in
each state employs the state lattice and state-specific tactics
libraries described in Section 3. By doing this, the decision
space (i.e., the number of tactics per state) becomes small,
and an attribute-value representation of game situations
suffices to select tactics. We define a case C as a tuple of
four objects:

C = <BuildingState, Description, Tactic, Performance>
where Building State is an integer node index in the building
state lattice, Description is a set of features of the current
situation (see Table 2), Tactic is a counter-strategy’s
sequence of actions for that building state, and Performance
is a real value in the range [0,1] that reflects the utility of
choosing that tactic for that building state, where higher
values indicate higher performance (see Section 4.3). We
next use Aamodt and Plaza’s (1994) task decomposition
model to detail our approach.

4.1 Retrieval
CAT retrieves cases when a new state in the lattice is
entered (i.e., at the game’s start, and when a transition
building is built). At those times, it requests and records
values for the eight features shown in Table 2. This set
balances information on recent game changes (i.e., the first
two features), the opponent’s situation (e.g., Workerso), and
the player’s situation (e.g., Workersp,i). When games begin,
the value of the first two features is 0, while the others have
small values. About 50 units are created, per side, in a short
game, and a player’s limit is 200 at any time.

Cases are grouped by the building state, and at most one
case is recorded per building state per game. In our
experiments, games lasted an average of 5 minutes, and
CAT made a maximum of 8 decisions in that time (see
Figure 1); therefore, CAT does not require a fast indexing
strategy.

The similarity between a stored case C and the current
game state S is defined as:

SimC, S = (CPerformance/dist(CDescription, S)) - dist(CDescription, S)

where dist() is the (unweighted, unnormalized) Euclidean
distance between two cases for the eight features. We chose
this simple function because it emphasizes distance, and it
prefers the higher-performing of two equally distant cases. It
is particularly useful for building state 1 (i.e., the start of the
game), when all case descriptions are all identical.

CAT uses a modified k-nearest neighbor function to select
case Tactics for retrieval. Among the k most similar cases, it
retrieves one with the highest Performance. However, to
gain experience with all tactics in a state, case retrieval is
not performed until each available Tactic at that state is
selected e times, where e is CAT’s exploration parameter.
During exploration, one of the least frequently used tactics
is retrieved for reuse. Exploration also takes place whenever
the highest performance among the k-nearest neighbors is
below 0.5. In our experiments, e and k were both set to 3;
we have not attempted to tune these parameters.

4.2 Reuse
CAT’s reuse stage is given a retrieved tactic. While
adaptation takes place, it is not controlled by CAT, but is
instead performed at the level of the action primitives in the
context of the Wargus game engine (e.g., if an action
requests the creation of a building, the game engine decides
its location and which workers will construct it, which can
differ in each game situation).

4.3 Revision
Revision involves executing the reused tactic in Wargus,
and evaluating the results. No repairs are made to these
tactics; they are treated as black boxes.

Evaluation yields the performance of a case’s tactic,
which is a function of the increase in the player’s Wargus
game score relative to the opponent. The score is measured
both when the tactic is selected and at the game’s end,

Table 1: WARGUS opponents used in the experiments.

The top 5 scripts created by students, based on a class tournament.

Knight’s Rush: This attempts to quickly advance technologically,
launching large offences as soon as strong units are available.

Soldier’s Rush: This attempts to overwhelm the opponent with
cheap offensive units in an early state of the game.

This balances offensive actions, defensive actions, and research.

Description

SC1-SC5

KR

SR

LBLA

Opponent

The top 5 scripts created by students, based on a class tournament.

Knight’s Rush: This attempts to quickly advance technologically,
launching large offences as soon as strong units are available.

Soldier’s Rush: This attempts to overwhelm the opponent with
cheap offensive units in an early state of the game.

This balances offensive actions, defensive actions, and research.

Description

SC1-SC5

KR

SR

LBLA

Opponent

Number of own worker units currently existingWorkersp,i

Number of own combat units currently existingCombatUnitsp,i

Number of own buildings currently existingBuildingsp,i

Number of opponent worker units ever createdWorkerso

Number of opponent combat units ever createdCombatUnitso

Number of opponent buildings ever createdBuildingso

Number of opponent buildings destroyed minus
same for onself, in the preceding state

∆Razingsi-1

Number of opponent combat & worker units killed
minus the same for oneself, in the preceding state

∆Killsi-1

DescriptionFeature

Number of own worker units currently existingWorkersp,i

Number of own combat units currently existingCombatUnitsp,i

Number of own buildings currently existingBuildingsp,i

Number of opponent worker units ever createdWorkerso

Number of opponent combat units ever createdCombatUnitso

Number of opponent buildings ever createdBuildingso

Number of opponent buildings destroyed minus
same for onself, in the preceding state

∆Razingsi-1

Number of opponent combat & worker units killed
minus the same for oneself, in the preceding state

∆Killsi-1

DescriptionFeature

Table 2: Features of the case description.

74

which occurs when one player eliminates all of the
opponent’s units, or when we terminate a game if no winner
has emerged after ten minutes of clock time.

The performance for the tactic of case C for building state
b is computed as:

Woni = { winsCaTif
losesCaTif

__,1
__,0

CPerformance =∑i=1,n CPerformance,i /n
CPerformance,i = 1/3(∆Scorei + ∆Scorei,b+ Woni)

∆Scorei = (Scorei,p-Scorei,p,b)/((Scorei,p-Scorei,p,b) +
(Scorei,o-Scorei,o,b))

∆Scorei,b = (Scorei,p,b+1-Scorei,p,b)/((Scorei,p,b+1-Scorei,p,b)
+ (Scorei,o,b+1-Scorei,o,b))

() (1)nDescriptio
nDescriptio

ePerformanc S) ,dist(C
S) ,dist(C

C, −=SCSim

where n is the number of games in which C was selected,
Scorei,p is the player’s Wargus score at the end of the ith
game in which C is used, Scorei,p,b is player p’s score before
C’s tactic is executed in game i, and Scorei,p,b+1 is p’s score
after C’s tactic executes (and the next state begins).
Similarly, Scorei,o is the opponent’s score at the end of the
ith game in which C is used, etc. Thus, C’s performance is
updated after each game in which it is used, and equal
weight is given to how well the player performs during its
state and throughout the rest of the game.

4.4 Retention
During a game, CAT records a description when it enters
each building state, along with the score and tactic selected.
It also records the scores of each side when the game ends,
along with who won (neither player wins a tie). For each
building state traversed, CAT checks to see whether a case C
exists with the same <Description, Tactic> pair. If so, it
updates C’s value for Performance. Otherwise, CAT creates
a new case C for that BuildingState, Description, Tactic, and
Performance as computed in Section 4.3 (this counts as C’s
first application). Thus, while duplicate cases are not
created, CAT liberally creates new ones, and does not
employ any case deletion policy.

5 Evaluation and Analysis
Our evaluation focuses on examining the hypothesis that
CAT’s method for selecting tactics outperforms the best of
the eight counter-strategies.

5.1 Competitors: WARGUS Players
CAT’s performance is compared against the best performing
counter-strategies. We would like CAT to outperform the
best counter-strategies in terms of achieved score and
frequency of victory against the opponents listed in Table 1.
CAT has the advantage over the static evolved strategies, in
that it can adapt its strategy to the opponents based on the
three sources of domain knowledge described in Section 3.
However, the best evolved counter-strategies achieve high
results against the opponents and are though to outperform.

5.2 TIELT Integration
TIELT (Aha & Molineaux, 2004) is a freely available tool
(http://nrlsat.ittid.com) that facilitates the integration of
decision systems and simulators. We used this tool to
perform the experiments described. The Game Model and
Game Interface Model came from the Wargus integration
led by Lehigh University (Ponsen et al., 2005b). We
developed an agent to isolate the decision tasks to be
performed and interpret the decisions of the Decision
System; we also developed a Decision System Interface
Model which describes communications between the CAT
system and TIELT. Finally, the experiment methodology
describes the data to be collected and the procedure for
running the experiment described in the next section.

5.3 Empirical Methodology
We compared CAT to the evolved counter-strategies for its
ability to win Wargus games. We used a fixed initial
scenario, on a 128x128 tile map, involving a single
opponent. The opponent used one of the eight strategies
listed in Table 1. With the exception of the opponent
strategies designed by students, these were all used in
(Ponsen and Spronck, 2004).

We chose the percentage of the total score as defined by
Wargus, and the frequency of wins against a test opponent
as our dependent variables. Because the environment is
non-deterministic (due to communications latencies), we
averaged the difference in score over ten trials, and
measured the percentage of wins over the same period.

We performed an eight-fold cross validation study,
training CAT against seven of the available opponents, and
measuring performance against the eighth. For each training
trial, the opponent was randomly selected from among the
seven training opponents; after every 25 training trials, CAT
was tested against the eighth opponent for ten trials.

5.4 Results
Figure 2 compares CAT’s frequency of victory to the
average and best performance of the eight counter-
strategies. On average, the eight counter-strategies win 34%
of the time. Evolved_SC5 wins 72% of the time; this is the
best frequency among the counter-strategies. After 100
trials, CAT wins 79% of the time. We compared the
frequency of victory for CAT after 100 games against each
opponent with Evolved_SC5’s performance against the
same opponents, using a paired two sample one-tail t-test
for means; the results were not statistically significant. We
also compared the average score percentage against each
opponent using the same test; the difference for this
comparison was significant at the .05 level.

However, Evolved_SC5 was not the best performer in
terms of score; Figure 3 compares CAT against
Evolved_SR, the best scoring of the eight counter-
strategies. CAT achieved 65% of the score on average,
whereas Evolved_SR achieved 64%. This difference was
not shown to be significant. However, Evolved_SR won

75

only 49% of the time (it was the 3rd best on this metric).
Here, CAT outperforms Evolved_SR at the .01 level.

This is the first attempt that we know of to learn to defeat
an unknown opponent at a real-time strategy game using
case-based reasoning. We were not able to significantly
outperform all of the static counter-strategies, but we were
able to perform at least as well as the best counter-strategies
on two separate metrics, which no single counter-strategy
could match.

6 Discussion
In Section 5, we showed that case-based techniques can be
used to learn how to defeat an unknown opponent. The

static tactics developed using Ponsen and Spronck’s genetic
algorithm, although evolved to defeat a single opponent in a
deterministic setting, were also somewhat flexible in the
non-deterministic environment introduced by controlling
WARGUS externally. Although they no longer enjoyed a
100% success rate against the opponent that each was
evolved to defeat, some of their success rates were high in
our experiments. CAT was able to combine the successes of
individual counter-strategies, showing that case-based
selection of tactics is a viable strategy.

More study could improve CAT’s performance in this
experiment. One flaw in our methodology is that the various
features of the case description are not normalized, giving
some features a larger effect on the distance calculation.
This should be investigated, and there may be a possibility
of improvement.

No attempt has been made to calculate the optimality of
the opponents or variance between them. The opponents we
used may not cover the space of possible opponents well;
some are certainly harder than others, and may require
qualitatively different strategies to defeat. This is supported
by the fact that some strategies are much more difficult for
the CAT system to defeat without training on them directly.
More opponents, that better cover the space of possible
strategies, may provide better approximations for CAT’s
learning rate on the entire strategy population by reducing
the variance within the opponent pool.

The problem of tactic selection can be viewed as a
reinforcement learning problem, and several reinforcement
learning approaches have been used with tasks in the game
of Stratagus (Guestrin et al., 2003; Marthi et al., 2005).
Some similarities exist between CAT’s selection algorithm
and a reinforcement learning approach, in that a
performance value is used to guide future actions in similar
states. However, CAT’s approach disregards optimized
long-term rewards, while focusing more heavily on degrees
of similarity than traditional reinforcement learning
approaches.

7 Conclusion
This is the first attempt to use a case-based reasoning
system to win real-time strategy (RTS) games against an
unknown opponent. Our experiments show that CAT learns
to perform as well as or better than the best performing
counter-strategy on score and victory frequency metrics.

The TIELT system was able to adapt an earlier
experiment (Aha, Molineaux, and Ponsen 2005) quite easily
to perform the new experiment we report in this paper.
Ongoing research on this system is expected to benefit
future work along these lines. Furthermore, our experience
with the new experiment highlights key areas for expansion
of TIELT’s capabilities.

CAT’s algorithm has not been tailored for this application;
its performance can probably be further improved. Also,
many interesting research issues require further attention,
such as CAT’s applicability to online learning tasks, and
transferring learned knowledge to win other games.

CaT vs. Best and Average Static

0
0.1
0.2
0.3
0.4
0.5
0.6
0.7
0.8
0.9

25 50 75 100

Trials

Fr
eq

ue
nc

y
of

 V
ic

to
ry

CaT Performance Average Static Perf.
Evolved_SC5 (Best Static)

Figure 2: Comparison of frequency of CaT victory versus
best and average of the counter-strategies.

Figure 3: Comparison of CaT score versus best and
average of the counter-strategies.

CaT vs. Best and Average Static

0
0.1
0.2
0.3
0.4
0.5
0.6
0.7
0.8

25 50 75 100

Trials

Pe
rc

en
ta

ge
 o

f T
ot

al
 S

co
re

CaT Performance Average Static Perf.
Evolved_SR (Best Static)

76

Acknowledgements

This research was supported by DARPA’s Information
Processing Technology Office and the Naval Research
Laboratory.

References
Aamodt, A., & Plaza, E. (1994). Case-based reasoning:

Foundational issues, methodological variations, and system
approaches. AI Communications, 7, 39-59.

Aha, D.W., Molineaux, M., and Ponsen, M. (2005). Learning to
Win: Case-based plan selection in a real-time strategy games.
To appear in Proceedings of the Sixth International Conference
on Case-Based Reasoning. Chicago, IL: Springer.

Aha, D.W., & Molineaux, M. (2004). Integrating learning in
interactive gaming simulators. In D. Fu. & J. Orkin (Eds.)
Challenges in Game AI: Papers of the AAAI’04 Workshop
(Technical Report WS-04-04). San José, CA: AAAI Press.

Buro, M. (2003). Real-time strategy games: A new AI research
challenge. Proceedings of the Eighteenth International Joint
Conference on Artificial Intelligence (pp. 1534-1535).
Acapulco, Mexico: Morgan Kaufmann.

Cheng, D.C., & Thawonmas, R. (2004). Case-based plan
recognition for real-time strategy games. Proceedings of the
Fifth Game-On International Conference (pp. 36-40). Reading,
UK: Unknown publisher.

Fagan, M., & Cunningham, P. (2003). Case-based plan recognition
in computer games. Proceedings of the Fifth International
Conference on Case-Based Reasoning (pp. 161-170).
Trondheim, Norway: Springer.

Fasciano, M.J. (1996). Everyday-world plan use (Technical
Report TR-96-07). Chicago, Illinois: The University of
Chicago, Computer Science Department.

Forbus, K., Mahoney, J., & Dill, K. (2001). How qualitative spatial
reasoning can improve strategy game AIs. In J. Laird & M.
van Lent (Eds.) Artificial Intelligence and Interactive
Entertainment: Papers from the AAAI Spring Symposium
(Technical Report SS-01-02). Stanford, CA: AAAI Press.

Gabel, T., & Veloso, M. (2001). Selecting heterogeneous team
players by case-based reasoning: A case study in robotic
soccer simulation (Technical Report CMU-CS-01-165).
Pittsburgh, PA: Carnegie Mellon University, School of
Computer Science.

Goodman, M. (1994). Results on controlling action with projective
visualization. Proceedings of the Twelfth National Conference
on AI (pp. 1245-1250). Seattle, WA: AAAI Press.

Guestrin, C., Koller, D., Gearhart, C., & Kanodia, N. (2003).
Generalizing plans to new environments in relational MDPs.
Proceedings of the Eighteenth International Joint Conference
on AI (pp. 1003-1010). Acapulco, Mexico: Morgan Kaufmann.

Karol, A., Nebel, B., Stanton, C., & Williams, M.-A. (2003). Case
based game play in the RoboCup four-legged league: Part I the
theoretical model. In D. Polani, B. Browning, A. Bonarini, &
K. Yoshida (Eds.) RoboCup 2003: Robot Soccer World Cup
VII (pp. 739-747). Padua, Italy: Springer.

Laird, J.E., & van Lent, M. (2001). Interactive computer games:
Human-level AI’s killer application. AI Magazine, 22(2), 15-
25.

Marthi, B., Russell, S., & Latham, D. (2005). Writing Stratagus-
playing agents in Concurrent ALisp. To appear in D.W. Aha, H.
Muñoz-Avila, & M. van Lent (Eds.) Reasoning, Representation,
and Learning in Computer Games: Proceedings of the IJCAI
Workshop (Technical Report). Washington, DC: Navy Center
for Applied Research in Artificial Intelligence, Washington, DC.

Muñoz-Avila, H., & Aha, D.W. (2004). On the role of explanation
for hierarchical case-based planning in real-time strategy games.
In P. Gervás & K.M. Gupta (Eds.) Proceedings of the ECCBR
2004 Workshops (Technical Report 142-04). Madrid, Spain:
Universidad Complutense Madrid, Departamento di Sistemos
Informáticos y Programación.

 Ponsen, M.J.V., Muñoz-Avila, H., Spronck, P., & Aha, D.W.
(2005a). Automatically acquiring domain knowledge for
adaptive game AI using evolutionary learning. To appear in
Proceedings of the Seventeenth Conference on Innovative
Applications of Artificial Intelligence. Pittsburgh, PA: AAAI
Press.

Ponsen, M.J.V., Lee-Urban, S., Muñoz-Avila, H., Aha, D.W. &
Molineaux, M. (2005b). Stratagus: An open-source game engine
for research in real-time strategy games. Paper submitted to this
workshop.

Ponsen, M., & Spronck, P. (2004). Improving adaptive game AI
with evolutionary learning. Computer Games: Artificial
Intelligence, Design and Education (pp. 389-396). Reading, UK:
University of Wolverhampton.

Schaeffer, J. (2001). A gamut of games. AI Magazine, 22(3), 29-
46.

Ulam, P., Goel, A., & Jones, J. (2004). Reflection in action:
Model-based self-adaptation in game playing agents. In D. Fu &
J. Orkin (Eds.) Challenges in Game Artificial Intelligence:
Papers from the AAAI Workshop (Technical Report WS-04-04).
San Jose, CA: AAAI Press.

Wendler, J., Kaminka, G. A., & Veloso, M. (2001). Automatically
improving team cooperation by applying coordination models.
In B. Bell & E. Santos (Eds.), Intent Inference for
Collaborative Tasks: Papers from the AAAI Fall Symposium
(Technical Report FS-01-05). Falmouth, MA: AAAI Press.

Wendler, J., & Lenz, M. (1998). CBR for dynamic situation
assessment in an agent-oriented setting. In D. W. Aha & J. J.
Daniels (Eds.), Case-Based Reasoning Integrations: Papers
from the AAAI Workshop (Technical Report WS-98-15).
Madison, WI: AAAI Press.

77

Stratagus: An Open-Source Game Engine
for Research in Real-Time Strategy Games

Marc J.V. Ponsen1, Stephen Lee-Urban1, Héctor Muñoz-Avila1, David W. Aha2, Matthew Molineaux3

1Dept. of Computer Science & Engineering; Lehigh University; Bethlehem, PA; USA; {mjp304, sml3, hem4}@lehigh.edu
2Navy Center for Applied Research in AI; Naval Research Laboratory (Code 5515); Washington, DC; USA; aha@aic.nrl.navy.mil

3ITT Industries; AES Division; Alexandria, VA 22303; USA; molineau@aic.nrl.navy.mil

Abstract
Stratagus is an open-source game engine that can be used
for artificial intelligence (AI) research in the complex
domain of real-time strategy games. It has already been
successfully applied for AI studies by several researchers.
The focus of this paper is to highlight Stratatgus’ useful
features for AI research rather than compare it with other
available gaming engines. In particular, we describe
Stratagus’ integration with TIELT, a testbed for integrating
and evaluating decision systems with game engines.
Together they can be used to study approaches for
reasoning, representation, and learning in computer games.

1. Introduction
In recent years, AI researchers (e.g., Laird & van Lent,
2001; Guestrin et al., 2003; Buro, 2003; Spronck et al,.
2004; Ponsen et al., 2005) have begun focusing on
artificial intelligence (AI) challenges presented by complex
computer games. Among these, real-time strategy (RTS)
games offer a unique set of AI challenges such as planning
under uncertainty, learning adversarial strategies, and
analyzing partially observable terrain. However, many
commercial RTS games are closed-source, complicating
their integration with AI decision systems. Therefore,
academic practitioners often develop their own gaming
engines (e.g., Buro’s (2002) ORTS) or turn to open-source
alternatives (e.g., FreeCiv, Stratagus).

Stratagus is an appropriate RTS engine for AI research
for several reasons: it is open-source, the engine is highly
configurable, and it is integrated with TIELT (2005). The
Stratagus engine has already been extensively used by
researchers (e.g., Guestrin et al., 2003; Ponsen & Spronck,
2004; Ponsen et al., 2005; Marthi, Russell, & Latham,
2005; Aha et al. 2005) and students (e.g., for class projects
on game AI).

In this paper, we first describe RTS games and the
research challenges posed by these environments. In
Section 3 we then detail the Stratagus engine, and describe
its integration with TIELT in Section 4. In Section 5 we
describe an example application of their integration.
Finally, we conclude and highlight future work in Section
6.

2. Research Challenges in RTS Games
RTS is a genre of strategy games that usually focuses on
military combat. RTS games such as Warcraft™ and
Empire Earth™ require the player to control a civilization
and use military force to defeat all opposing civilizations
that are situated in a virtual battlefield (often called a map)
in real time. In most RTS games, winning requires
efficiently collecting and managing resources, and
appropriately distributing these resources over the various
game action elements. Typical RTS game actions include
constructing buildings, researching new technologies, and
waging combat with armies (i.e., consisting of different
types of units).

The game AI in RTS manages the decision-making
process of computer-controlled opponents. We distinguish
between two levels of decision-making in RTS games. The
strategic level involves abstract decision making
considerations. In contrast, the tactical level concerns more
concrete decisions. The global AI in RTS games is
responsible for making strategic decisions (e.g., choosing
warfare objectives or deciding the size of the force
necessary to assault and control an enemy city). The local
AI works on the game action level (e.g., give individual
commands to train soldiers, and give them orders to move
to specific coordinates near the enemy base) and is
responsible for achieving the objectives defined at the
tactical level.

Unlike the high performance in some classic board
games where AI players are among the best in the world
(Schaeffer, 2001), their performance in RTS games is
comparatively poor (Buro, 2003) because designing strong
AI in these complex environments is a challenging task.
RTS games include only partially observable environments
that contain adversaries who modify the game state
asynchronously, and whose decision models are unknown,
thereby making it infeasible to obtain complete
information on the current game situation. In addition, RTS
games include an enormous number of possible game
actions that can be executed at any given time, and some of
their effects on the game state are uncertain. Also, to
successfully play an RTS game, players must make their
decisions in real-time (i.e., under severe time constraints)

78

and execute multiple orders in a short time span. These
properties of RTS games make them a challenging domain
for AI research.

Because of their decision making complexity, previous
research with RTS games often resorted to simpler tasks
(Guestrin et al., 2003), decision systems were applied
offline (e.g., the evolutionary algorithm developed by
Ponsen and Spronck (2004)), or they employed an
abstraction of the state and decision space (e.g., Madeira et
al., 2004; Ponsen et al., 2005; Aha et al., 2005).

When employing online decision-making in RTS games,
it is computationally impractical for an AI decision system
to plan on the game action level when addressing more
comprehensive tasks (e.g., making all strategic and tactical
decisions for a civilization). Decision systems can
potentially plan more quickly and efficiently when
employing appropriate abstractions for state and decision
space. However, current AI systems lag behind human
abilities to abstract, generalize, and plan in complex
domains. Although some consider abstraction to be the
essence of intelligence (Brooks, 1991), comparatively little
research has focused on abstraction in the context of
complex computer games. However, Ponsen and Spronck
(2004) developed a lattice for representing and relating
abstract states in RTS games. They identified states with
the set of buildings a player possesses. Buildings are
essential elements in many RTS games because these
typically allow a player to train armies and acquire new
technologies (which are relevant game actions in RTS
games such as Warcraft™). Thus, they determine what
tactics can be executed during that game state. Similarly,
Ponsen et al. (2005) and Aha et al. (2005) used an
abstraction of the decision space by searching in the space
of compound tactics (i.e., fine-tuned combination of game

actions) that were acquired offline with an evolutionary
algorithm.

Another limitation of commercial game AI is its
inability to learn and adapt quickly to changing players and
situations. In recent years, the topic of learning in
computer games has grown in interest and several such
studies have focused on RTS. For instance, Guestrin et al.
(2003) applied relational Markov decision process models
for some limited combat scenarios (e.g., 3x3 combat). In
contrast, by using abstract state and decision spaces Ponsen
and Spronck (2004) and Ponsen et al. (2005) applied
dynamic scripting (Spronck et al., 2004) to learn to win
complete games against a static opponent. Aha et al.
(2005) relaxed the assumption of a fixed adversary by
extending the state representation and recording game
performance measures from selecting specific tactics in
these extended states. This permitted them to evaluate a
case-based tactic selector (CaT) designed to win against
random opponents.

3. Stratagus: An Open-Source RTS Engine
Stratagus is a cross-platform, open-source gaming engine
for building RTS games. It supports both single player
(i.e., playing against a computer opponent) and multi
player games (i.e., playing over the internet or LAN).
Stratagus is implemented primarily in C. A precompiled
version can be downloaded freely at the Stratagus website
(2005). The latest source code of this actively maintained
engine can be downloaded from a CVS (Concurrent
Versioning System) repository.

Games that use the Stratagus engine are implemented in
scripts using the LUA scripting language (www.lua.org).
These games can also be found on the Stratagus website.

 Figure 1: Screenshots of two Stratagus games. The left shows Wargus, a clone of Blizzard’s Warcraft II™ game, and the right shows Magnant.
The Wargus game is situated in a fantasy world where players either control armies of humans or ‘orcs’. Magnant combines an RTS game with a
trading card game. In Magnant, players can collect, exchange, and trade cards that give them unique abilities.

79

Popular games for Stratagus include Wargus (a clone of
the popular RTS game Warcraft II™, illustrated in Figure
1), Battle of Survival (a futuristic real-time strategy game),
and Magnant (a trading card game situated in an RTS
environment, also illustrated in Figure 1). These games all
share the same API provided by the game engine. Stratagus
includes some useful features for AI research:

• Configurable: This highly configurable engine can be
used to create RTS games with varying features.
Therefore, games can be tailored to specific AI tasks
(e.g., learning to win complete games, winning local
battles, resource management). For example, by
changing simple text-based files one can easily add
new units or tweak existing unit characteristics (e.g.,
increase unit speed), add new buildings, maps and set
new triggers (e.g., define what constitutes a win).

• Games: Stratagus already includes several operational
games (e.g., see Figure 1). Because all games share
the same API, a decision system can be evaluated in
multiple domains.

• Modifiable: Although Stratagus is fairly mature code,
changing existing code in the engine can be a daunting
task, in particular for novice C programmers.
Fortunately, LUA allows AI researchers to modify the
game AI without having to change the engine code.
LUA employs many familiar programming paradigms
from ‘common’ programming languages such as C
(e.g., variables, statements, functions), but in a simpler
fashion. Also, LUA is well documented; many
detailed tutorials and example snippets can be found
on-line (e.g., see http://lua-users.org/wiki/).

• Fast mode: Stratagus includes a fast forward mode
where graphics are partially turned off, resulting in
fast games. This is particularly useful for expediting
experiments.

• Statistics: During and after Stratagus games, numerous
game related data (e.g., time elapsed before winning,
the number of killed units, the number of units lost)
are available, and are particularly useful for
constructing a performance measure used by machine
learning algorithms.

• Recordable: Games can be recorded and replayed.
Recorded games can be used for training AI systems
to perform tasks such as plan recognition and strategic
planning.

• Map Editor: Stratagus includes a straightforward
(random) map editor. This facility can be used to vary
the initial state when evaluating the utility of AI
problem solving systems.

Another important feature of Stratagus is that it is
integrated with TIELT. We describe TIELT, its integration
with Stratagus, and an example application in Sections 4
and 5.

4. TIELT Integration
Integrating AI systems with most closed-source
commercial gaming simulators can be a difficult or even
impossible task. Also, the resulting interface may not be
reusable for similar integrations that a researcher may want
to develop. In this section we describe an integration of
Stratagus with TIELT (Testbed for Integrating and
Evaluating Learning Techniques) (TIELT, 2005; Aha &
Molineaux, 2004). TIELT is a freely available tool that
facilitates the integration of decision systems and
simulators. To date, its focus has been on supporting the
integration of machine learning systems and complex
gaming simulators.

Decision systems integrated with TIELT can, among
other tasks, take the role of the human player in a Stratagus
game (i.e., they can play a complete game in place of the
human player, or assist a human player with a particular
task). TIELT-integrated decision systems, in Buro’s (2003)
terminology, can be viewed as “AI plug-ins”. For example,
they can assist the human player with managing resources
or take control of the human player’s fleet.

4.1 TIELT Knowledge Bases
TIELT’s integration with Stratagus requires constructing or
reusing/adapting five knowledge bases. We describe each
of them briefly here.

The Game Model is a (usually partial) declarative
representation of the game. TIELT’s Game Model for this
integration includes operators for key game tasks like
building armies, researching technology advances, and
attacking. Other operators obtain information about the
game (e.g., the player’s score). It also contains information
about key events such as when a building or unit is
completed. This information is kept updated by the Game
Interface Model.
The Game Interface Model and Decision System Interface
Model define the format and content of messages passed
between TIELT, the selected game engine, and the selected
decision system. Future research using Stratagus can reuse
these models. We will describe an example decision
system in Section 5. Two-way communication with the
Game Interface Model is achieved over a TCP/IP
connection and includes both actions and sensors (see
Table 1). Actions are commands sent from TIELT to
Stratagus, and are used to either control the game AI or
change settings in the game engine. In contrast, sensors are
received by TIELT from Stratagus and give information on
the game state or current engine settings.

Currently, TIELT’s game actions interface with the
global AI in Stratagus. By sending strategic commands to
the Stratagus engine, TIELT does not have to plan on the
local AI level. The latter is currently hard-coded in the
engine and is automatically triggered through global AI
actions. For example, suppose the AI wants to launch an
attack on an enemy. This can be achieved by first

80

Table 1: Description of important, currently available actions (sent from
TIELT to Stratagus) and sensors (sent from Stratagus to TIELT).

Game AI Actions
AiAttackWithForce (forceID)
e.g., AiAttackWithForce(1)

Command the AI to attack an
enemy with all units belonging
to a predefined force.

AiCheckForce (ForceID)
e.g., AiCheckForce(1)

Check if a force is ready.

AiForce (ForceID, {force})
e.g., AiForce(1,{“unit-grunt”, 3})

Define a force: determine the
type and number of units that
belong to it.

AiForceRole (forceID, role)
e.g.,AiForceRole(1,”defend”)

Define the role of a force:
Assign it either an defensive or
offensive role.

AiNeed (unitType)
e.g., AiNeed(“unit-footmen”)

Command the AI to train or
build a unit of a specific unit
type (e.g., request the training
of a soldier).

AiMoveTo (forceID, location)
e.g., AiMoveTo(1,200,200)

Command an army to move to
a specific location on the map.

AiResearch (researchType)
e.g., AiResearch(“upgrade-
sword”)

Command the AI to pursue a
specific research advancement.

AiUpgradeTo (unitType)
e.g.,AiUpgradeTo(“upgrade-
ranger")

Command the AI to upgrade a
specific unit.

Miscellaneous Actions
GameCycle () Request the current game cycle.
GetPlayerData (playerID,
info)
e.g., GetPlayerData(1,”Score”)

Request player information
(e.g., get the player score or the
number of units or buildings
controlled by this player).

QuitGame () Quit a Stratagus game.
SetFastForwardCycle(cycle)
e.g.,
SetFastFowardCycle(200000)

Set the fast forward cycle (only
for single player games).

UseStrategy(strategyID)
e.g., UseStrategy(2)

Set the strategy for a specific
opponent.

Sensors
CONNECT () Informs TIELT that a TCP

connection has been
established with Stratagus.

FORCE (ForceID)
e.g., FORCE(1)

Informs TIELT that all units
for an army are combat-ready .

GAMECYCLE (gameCycle)
e.g., GameCycle(20000)

Sent in response to the
GameCycle action. It returns
the current game cycle.

GAMEOVER (result,
TieltScore, endCycle)
e.g.,GAMEOVER(“won”,1000,50
0)

Informs TIELT that the game
has ended. It reports
information on the result of the
game.

INFO (playerID, message)
e.g., INFO(1,“New Peasant
ready”)

Informs TIELT about game
events (e.g., ‘under attack’, or
‘building or unit is complete’).

PLAYERDATA (playerID,
info, content)
e.g., PLAYERDATA (1,TotalKills,
10)

Sent in response to the
GetPlayerData action. It returns
information for a specific
player.

specifying the number and type of the units belonging to
the attack force and then ordering it to attack the enemy.
Local AI tasks such as training the individual units, target
selection, and pathfinding to an enemy base is currently
hard-coded in the engine. Another typical global AI
command is to construct a particular building. Deciding the
best place to construct the building and deciding which
worker will be assigned to the task is left to the engine.

Next, the Agent Description includes an executable task
structure that distinguishes the responsibilities of the
decision system from those of game engine components.
The Agent Description links a decision system to the
abstractions of the Game Model. TIELT retrieves
instructions from a decision system and executes them
using operators. When events recognized by the Game
Model occur, it notifies the decision system, using
information from the Decision System Interface Model to
communicate. For example, when a building is finished,
Stratagus sends a message to TIELT. The Game Interface
Model interprets this, and fires a Game Model event. The
Agent Description, listening for this event, notifies the
decision system and asks for further instructions. This
Agent Description would need to be rewritten to work with
a different decision system (if it targets a different
performance task), but the abstractions available from the
Game Model simplify creating this knowledge base.

 Finally, the Experiment Methodology encodes how the
user wants to test the decision system on selected game
engine tasks. For example, it defines the number of runs,
when to stop the game, and resets the decision system’s
memory when experiments begin. Also, it records game
data for post-experiment analysis. It also permits a user to
repeat experiments overnight, and record any data passed
from Stratagus to the decision system, or vice versa.

4.2 Single and Multiplayer Games
Stratagus includes both single player and multiplayer (i.e.,
network) games. The communication between Stratagus
and TIELT for both game types is illustrated in Figure 2.

In a single player game, the ‘TIELT AI’ will be pitted
against one or more static or adaptive (Ponsen and
Spronck, 2004) opponent AIs controlled by scripts, which
are lists of game actions that are executed sequentially
(Tozour, 2002). In single player games, it is possible to run
games in a fast forward mode. This speeds up games
enormously (e.g., a typical battle between two civilizations
on a relatively small map finishes in less than 3 minutes,
whereas in normal speed a game can take up to 30
minutes).

81

A multiplayer game, which is played by multiple
players over the Internet or a LAN, can be used to play
with multiple different decision systems for TIELT and/or
human players. Multiplayer games cannot be run in fast
forward mode due to network synchronization issues. In
the current network implementation as illustrated in Figure
2, Stratagus does not hide information from clients;
instead, clients are connected through a peer-to-peer
connection and send each other UDP packets containing
information on the action taken during the game by any of
the participants.

5. Example Application
In this section, we describe an example application of our
Stratagus-TIELT integration. We implemented SR, a
decision system that employs a ‘soldier’s rush’ strategy in
Wargus, and integrated it with TIELT. This strategy
attempts to overwhelm the opponent with cheap military
units in an early state of the game. In Wargus, our soldier’s
rush implementation requires the AI to first train (i.e.,
build) a small defensive force, then build several barracks
followed by a blacksmith. After constructing a blacksmith,
the AI will upgrade its soldiers by researching better
weapons and shields. This strategy will then continuously
attack the enemy with large groups of soldiers.

In the initial state, the AI starts with a town hall and
barracks. SR will first command the AI to train a small
defensive force. This command is divided into two parts.
First, an army will be trained with the Game AI action
AiForce. Next, this army will be assigned a defensive role

using the action AiForceRole. SR, through TIELT, can
command Stratagus to construct several barracks and a
blacksmith using the action AiNeed. The planned research
advancements (better weapons and shields) can be
achieved using the action AiResearch. However, these
research advancements are only applicable when a
blacksmith has been fully constructed. Therefore, before
triggering these actions, TIELT will first wait for an INFO
sensor informing it that a blacksmith has been constructed.
When the soldiers are upgraded, SR can order Stratagus to
train an army consisting of x soldiers that will be used to
attack the enemy. Again, the force is defined using the
action AiForce. Before sending the army into battle, SR
will first wait until the army is complete. SR periodically
triggers the action AiCheckForce. If the desired x number
of soldiers has been trained, Stratagus will send a FORCE
sensor (in response to the AiCheckForce action). After
receiving the FORCE sensor, SR can launch the attack
with the Game AI action AiAttackWithForce. The actions
for training and using an offensive army can be repeated by
SR to continuously launch attacks on the enemy.

After a game ends, Stratagus will send a GAMEOVER
sensor message. This sensor informs TIELT and SR on the
result of the game (e.g., a win or loss). In return, TIELT
can collect more detailed game-related data by sending the
GameCycle and/or GetPlayerData actions. The former
returns the current game cycle (in this case, the time it took
before the game was won by either player) with the
GAMECYCLE sensor, while the latter returns player
information (e.g., player score, units killed by player, units
lost by player) with the PLAYERDATA sensor.

Figure 2: Schematic view of the communication between Stratagus clients, modified clients (i.e., those with TIELT
integration), and TIELT.

TCP Controller

TCP Controller

UDP Controller

UDP Controller

UDP Controller

Stratagus
Modified Client

Stratagus
Client

Stratagus
Modified Client

TIELT

TIELT

Actions
(UDP) Actions

(UDP)

Actions
(UDP)

Actions
(TCP)

Sensors
(TCP)

Actions
(TCP)

Sensors
(TCP)

Single Player Game

Multi Player (Network) Game

82

The SR example decision system, Stratagus’ necessary
knowledge base files for TIELT, and the modified
Stratagus engine can be downloaded at
http://nrlsat.ittid.com and http://www.cse.lehigh.edu.

6. Conclusions and Future Work
Currently, a TIELT-integrated decision system can control
the game AI in Stratagus in both single and multiplayer
games. This integration was used for experiments in single
player games (Aha et al., 2005). The integrated decision
system has complete control over the global AI in
Stratagus games through a set of TIELT actions that
interface with the game engine’s API. It also receives
feedback from the game engine through TIELT’s sensors.

In our future work we will improve the control a
TIELT-integrated decision system has over the AI by
adding more game actions (e.g., we will allow TIELT to
interface with the local AI). However, the API may be
subject to change because different decision systems often
require different APIs. Because Stratagus is open-source,
researchers can change or extend the API as needed. We
will also extend the sensors and provide TIELT with more
detailed information on the game state. Greater interaction
between Stratagus players and TIELT-integrated decision
systems can be aided by adding a TIELT specific "toolbox"
panel to the games, which would visually allow human
players to dialog with TIELT. Decision systems can then
be used as advisors. For example, given TIELT’s
observations of the opponent’s army, its decision system
could advise the human player to attack with an army of x
footmen, y archers, and z catapults. TIELT could prompt
the human player to determine whether its decision system
should execute this order. If the user agrees, it will then
execute the order (i.e., train the army and send it into
battle). Finally, in addition to the example application
described in Section 5, we will design and evaluate other
decision systems with TIELT, and explore issues such as
on-line learning, collaborative decision systems, and
methods for automatically learning domain knowledge.

While Stratagus does have limitations in its use for AI
research (e.g., some of its behaviors are hardwired, its
graphics are not separable from the logic), it provides
access to important high-level behaviors, and we expect it
will receive increasing attention from AI researchers.

Acknowledgements
This research was sponsored by DARPA and the Naval
Research Laboratory. Many thanks to the Stratagus
developers for their support.

References
Aha, D.W., & Molineaux, M. (2004). Integrating

learning in interactive gaming simulators. In D. Fu & J.
Orkin (Eds.) Challenges in Game AI: Papers of the AAAI

Workshop (Technical Report WS-04-04). San José, CA:
AAAI Press.

Aha, D.W., Molineaux, M., & Ponsen, M. (2005).
Learning to win: Case-based plan selection in a real-time
strategy game. To appear in Proceedings of the Sixth
International Conference on Case-Based Reasoning.
Chicago, IL: Springer.

Brooks, R.A. (1991). Intelligence without representation.
Artificial Intelligence, 47, 139-159.

Buro, M. (2002). ORTS: A hack-free RTS game
environment. Proceedings of the International Computers
and Games Conference. Edmonton, Canada: Springer.

Buro, M. (2003). Real-time strategy games: A new AI
research challenge. Proceedings of the Eighteenth
International Joint Conference on Artificial Intelligence
(pp. 1534-1535). Acapulco, Mexico: Morgan Kaufmann.

Guestrin, C., Koller, D., Gearhart, C., & Kanodia, N.
(2003). Generalizing plans to new environments in
relational MDPs. Proceedings of the Eighteenth
International Joint Conference in Artificial Intelligence
(pp. 1003-1010). Acapulco, Mexico: Morgan Kaufmann.

Laird, J.E., & van Lent, M. (2001). Interactive computer
games: Human-level AI’s killer application. AI Magazine,
22(2), 15-25.

Madeira, C., Corruble, V. Ramalho, G., & Ratich B.
(2004). Bootstrapping the learning process for the semi-
automated design of challenging game AI. In D. Fu & J.
Orkin (Eds.) Challenges in Game AI: Papers of the
AAAI’04 Workshop (Technical Report WS-04-04). San
José, CA: AAAI Press.

Marthi, B., Russell, S., & Latham, D. (2005). Writing
Stratagus-playing agents in Concurrent ALisp. To appear
in this volume

Ponsen, M., Muñoz-Avila, H., Spronck P., & Aha D.W
(2005). Automatically acquiring domain knowledge for
adaptive game AI using evolutionary learning. To appear
in Proceedings of the Seventeenth Innovative Applications
of Artificial Intelligence. Pittsburgh, PA: Morgan
Kaufmann.

Ponsen, M., & Spronck, P. (2004). Improving adaptive
game AI with evolutionary learning. Computer Games:
Artificial Intelligence, Design and Education (pp. 389-
396). Reading, UK: University of Wolverhampton Press.

Schaeffer, J. (2001). A gamut of games. AI Magazine,
22(3), 29–46.

Spronck, P., Sprinkhuizen-Kuyper, I., & Postma, E.
(2004). Online adaptation of game opponent AI with
dynamic scripting. International Journal of Intelligent
Games and Simulation, 3(1), 45–53.

Stratagus (2005), A Real-Time Strategy Engine,
[http://stratagus.sourceforge.net]

TIELT (2005). Testbed for integrating and evaluating
learning techniques. [http://nrlsat.ittid.com]

Tozour, P. (2002). The perils of AI scripting. In S. Rabin
(Ed.) AI Game Programming Wisdom. Hingham, MA:
Charles River Media.

83

Abstract
Recently, many AI researchers working on interac-
tive storytelling systems have turned to off-the-
shelf game engines for simulation and visualization
of virtual 3D graphical worlds. Integrating AI re-
search into game engines can be difficult due to the
fact that game engines typically do not use sym-
bolic or declarative representations of characters,
settings, or actions. This is particularly true for in-
teractive storytelling applications that use an AI
story controller to subtly manipulate a virtual world
in order to bring about a structured narrative ex-
perience for the user. In this paper, I describe a
general technique for translating between an arbi-
trary game engine’s proprietary and procedural
world state representation into a declarative form
that can be used by an AI story controller. The
work is placed in the context of building a narra-
tive-based training simulation.

1 Introduction
Interactive storytelling systems are applications in which a
story is presented to a user in such a way that the user has
the ability to affect the direction and possibly even the out-
come of story. The ability of the user to impact the story arc
and outcome suggests a branching story structure [Riedl and
Young, 2005]. Advanced 3D graphics rendering capabili-
ties, such as those found in modern computer games, makes
it possible and even desirable to implement interactive sto-
rytelling by situating the user in a 3D graphical story world.
In this approach, the user, through her avatar, is a character
in the story and is able to interact with the environment and
other characters and possibly even play a role in the plot.

Computer games are perhaps the most pervasive example
of an interactive storytelling system. However, in computer
games, the user’s interactivity with the world is typically
bounded in such a way that the user’s actions do not actually
have an impact on the story arc. That is, computer games
use story to motivate action but typically have little or no
branching.

AI techniques have been applied to the problem of inter-
active storytelling for entertainment and training. A com-
mon technique among AI research in interactive storytelling

is to separate the AI story control elements from the graphi-
cal, virtual world. An automated story director – often re-
ferred to as a drama manager [Kelso, Weyhrauch, and
Bates, 1993] – is responsible for keeping the user and any
non-player characters (NPCs) on track for achieving a par-
ticular narrative-like experience. An automated story direc-
tor maintains a representation of the structure that the emer-
gent user experience is expected to conform to and exerts
influence over the user, the virtual world, and the NPCs in
order to achieve this. Examples of interactive storytelling
systems that use some notion of an automated story director
are [Weyhrauch, 1997], [Mateas and Stern, 2003], [Szilas,
2003], [Young et al., 2004], and [Magerko et al., 2004].
Some interactive storytelling systems such as [Cavazza,
Charles, and Mead, 2002] do not use an explicit story direc-
tor. Instead, such systems rely on story to emerge from the
behaviors of the NPCs and the user [Aylett, 2000].

Recently, many AI researchers working on interactive
storytelling systems have turned to off-the-shelf game en-
gines for simulation and visualization of virtual 3D graphi-
cal worlds (e.g. [Cavazza, Charles, and Mead, 2002], [Seif
El-Nasr and Horswill, 2003], [Young et al., 2004], and
[Magerko et al., 2004]). Game engines provide sophisti-
cated graphical rendering capabilities with predictable frame
rates, physics, and other advantages so that AI researchers
do not need to devote resources to “reinventing the wheel.”

Integrating AI research into game engines can however
be difficult due to the fact that game engines typically do
not use symbolic or declarative representations of charac-
ters, settings, or actions [Young and Riedl, 2003]1. Action
representations for many game engines such as first-person
shooters are expressed as “micro-actions” – mouse clicks,
key presses, etc. – and state representations are based on
continuous vector positions, rotations, velocities and “flag”
variables. AI character or story controllers such as
[Cavazza, Charles, and Mead, 2002], [Young et al., 2004],
and [Magerko et al., 2004] use declarative, symbolic repre-
sentations of character, world, and story state. For example,
Walk(agent1, loc1, loc2) is a discrete action and (at

1 One exception is the commercial game described in [Orkin,
2004], which uses both proprietary and symbolic world state repre-
sentations.

Towards Integrating AI Story Controllers and Game Engines: Reconciling World
State Representations

Mark O. Riedl
Institute for Creative Technologies
University of Southern California

13274 Fiji Way, Marina Del Rey, CA 90292 USA
riedl@ict.usc.edu

84

agent1 loc1) is a discrete term partially describing the
world state.

AI technologies often use declarative and/or symbolic
representations of the virtual environment, simplifying the
world to only the aspects that are necessary for computation.
Declarative representation facilitates robust reasoning about
the simulation state such as regressive problem solving (e.g.
planning and re-planning), predictive analysis (e.g. predict-
ing plan failure), user goal recognition, agent belief-desire-
intention modeling, and others. As far as automated story
direction is concerned, [Young, 1999] describes the advan-
tages of using a declarative, partial-order plan representation
for narrative: (a) causal dependencies between actions en-
sure that all events are part of causal chains that lead to the
outcome; (b) planning algorithms are general problem-
solvers that “solve the problem” of piecing together the
events of a narrative that achieves a particular outcome; and
(c) story plans can be repaired by replanning to allow inter-
activity.
 For an AI character or story controller to be closely inte-
grated with a proprietary game engine, the AI system must
transform the proprietary non-declarative world state in the
game engine into a declarative form. For example, Mimesis
[Young et al., 2004] overrides the game engine’s user input
routines in order to detect discrete user actions. The discre-
tized user actions are correlated with plan operators that
have declarative preconditions and effects with which to
reason about changes to the world wrought by the user. Not
all AI controllers use plan operator representations.

The remainder of the paper is laid out as follows. In Sec-
tion 2, we describe a generic architecture for an interactive
storytelling system. In Section 3, we describe a general
technique for translating proprietary and procedural world
representation from an arbitrary game engine into a declara-
tive form that can be used by AI controllers such as auto-
mated story directors and autonomous agents. In Section 4,
we briefly describe a narrative-based training simulation
that motivates the need for the integration of an automated
story director and autonomous agents with an arbitrary
game engine.

2 A Generic Interactive Storytelling Archi-
tecture

A generic architecture for an interactive storytelling system
is given in Figure 1. The architecture is based around a
game engine and one or more AI controllers. AI controllers
can be automated story directors or autonomous agents.
Autonomous agents control the decision-making processes

of non-player characters (NPCs). Even though a virtual
world contains non-player characters, it is not necessarily
the case that there must be an AI controller for each NPC.
An automated story director, in addition to maintaining a
branching narrative model, can be implemented such that it
also directs the behaviors of NPCs, as in [Young et al.,
2004]. If there is an automated story director, there is typi-
cally only one director. There does not necessarily have to
be an automated story director for there to be interactive
storytelling, as in [Cavazza, Charles, and Mead, 2002].

The game engine can be any game or simulation system
that supports or can be extended to support interface to the
automated story director and the virtual actors. Figure 1
refers to the game engine as an extended game engine be-
cause of its support for AI controllers. The game engine
extensions are described in further detail in the next section.
In general, the game engine is responsible for simulating a
virtual world plus graphical presentation of the virtual world
to the user who is embodied by an avatar. Each non-player
character (NPC) that the trainee will be expected to interact
with is represented graphically in the game engine as a bot.
A bot is a physical manifestation of an NPC based on the
proprietary graphical rendering of the character’s body in
the virtual world. Aside from processes for rendering, ani-
mating, and low-level path-planning, there is little or no
intelligence in the bot. The higher-level intelligence of an
NPC is relegated to one of the AI controllers that receive
updates from the virtual world and issues control commands
to bots.

It is possible – and sometimes even desirable – for the
various AI controllers to communicate with each other to
coordinate behaviors and world representations. For the
remainder of this paper, we shall assume that all the AI con-
trollers in an interactive storytelling system use the same
world state representations and it is only the game engine
that does not. Furthermore, we shall assume that there is at
least one AI controller that is an automated story director.

3 A Middleware Substrate for Integrating a
AI Controllers into a Game Engine

In the generic architecture for an interactive storytelling
system described in the previous section, the automated
story director and any autonomous agents are assumed to
use a shared declarative representation of world state. The
game engine, however, is not assumed to use a world state
representation that is deterministic or shared with the other
components. In fact, it is assumed that the game engine
does not use a declarative representation! However, it is
vital that the AI controllers are aware of the state of the
simulation in the game engine. An automated story director,
in particular, must be aware of the changes to the world
state that are caused by the actions of the user. Agents must
also be aware of changes in the world state to be able to
react appropriately and believably. The solution to reconcil-
ing world state representations between an arbitrary game
engine and AI controllers described here is motivated by the
generic architecture. However, it is our belief that the solu-

Extended
Game

Engine
Avatar Bot2 acts

vis.

Bot1

AI Controller0

Figure 1: Generic architecture for an interactive storytelling
system.

AI Controller1 AI Controller2

85

tion is general enough to apply to other interactive storytel-
ling systems.
 The procedural, non-declarative state representation
maintained by the game engine must be translated into a
declarative representation shared by the automated story
director and the actors. One way to transform the game
engine’s representation into a declarative form is through a
middleware substrate that interfaces directly with the game
engine through scripting or through an API such as that pro-
posed in [van Lent, 2004]. A middleware approach may be
inappropriate for computer game production where AI is
only guaranteed a small portion of a computer’s processing
time and efficiency is therefore essential. However, AI
game research is not necessarily beholden to production
constraints. Researchers in automated story direction often
resort to a distributed architecture where graphical and
simulation processing occurs on one computer while AI
processing occurs on one or more other computers. In this
case, a middleware solution is favorable because it abstracts
away the procedural nature of the game engine and allows
AI researchers to focus on theories, algorithms, and cogni-
tively plausible representations of narrative.

The proposed middleware substrate implements state de-
tectors and proprioceptive detectors that efficiently access
the game engine’s proprietary state variables (such as object
locations, rotations, velocities, flags, etc.) to derive discre-
tized information about the game engine and push that in-
formation to any system modules that request updates. Fig-
ure 2 shows a conceptualization of the middleware sub-
strate.

3.1 State Detectors
State detectors determine if discrete state declarations are
true or false. For each atomic, ground sentence used by the
automated story director or an autonomous agent to repre-
sent some aspect of world state, there must be a detector that
can recognize whether it is true or not in the simulation.
Note that for efficiency purposes a single state detector can
be responsible for more than one fact.

An example of a state detector is one that determines
whether (in-speaking-orientation user ?npc) is
true for some non-player character in the world, meaning
the NPC and player are close by, facing each other, etc.
When a sentence of this form is true, the player and agents

can engage in conversation (either can take the initiative).
This world state can be important to agents who need to
know if they can engage the user in dialogue and to an
automated director if the story requires some conversational
exchange between user and another character before the
story can continue. Whether a sentence of this form is true
or not can be computed from the distance between the user’s
avatar and the bot and the directional orientation of avatar
and bot towards each other. A single detector can be re-
sponsible for determining whether the relationship holds or
does not hold for all NPCs in the world, as opposed to state
detectors for each NPC.

3.2 Proprioceptive Detectors
Proprioceptive detectors apply only to the user’s avatar and
are used to determine if the user has performed certain dis-
crete actions. The purpose of a proprioceptive detector is
for the user’s avatar to declare to listening AI controllers, “I,
the user’s avatar, have just performed an action that you
might have observed.” Bots do not need proprioceptive
detectors because their behavior is dictated by an AI con-
troller; success or failure of bot behaviors can be confirmed
by comparing the expected world state changes with actual
world state changes. Agents can be made aware of each
others’ observable actions through direct back-channel
communication.

An example of a proprioceptive detector is one that de-
termines when the user has moved from one discrete loca-
tion in the world to another. That is, it determines whether
the declarative action Walk(user, ?loc1, ?loc2) has
been performed. This declaration can be important to
agents who observe the user leaving or arriving. This decla-
ration can also be important for an AI controller such as an
automated director that needs to know about the effects of
the action: (at user ?loc2) and ¬(at user ?loc1).
However, this information can be derived through state de-
tectors as well without concern for how those effects were
achieved (e.g. Walk versus Run).

3.3 Detector Integration with the Game Engine
While state changes can be determined from discrete action
representations such as those used in planning systems, the
purpose of detecting user actions is primarily for sensor
input to the autonomous agent AI controllers. When NPCs
and the user interact, the agents will need to know the ob-
servable actions that the user performs, whether they are
physical or discourse acts, instead of inferring them from
local world state changes. State detectors, however, are still
necessary above and beyond proprioceptive detectors be-
cause the user’s input into the game engine is through “mi-
cro-actions” – mouse clicks, key presses, etc. Many micro-
actions string together to produce discrete actions. How-
ever, it may be the case that the user performs micro-actions
that change the world state but are not aggregated into a
recognizable discrete action. Thus, it is possible for the
simulation state in the game engine to become out of sync
with that of the story director and the actors. One solution
is to define discrete action representations at a finer level of

Game
Engine

Avatar Bot2 Bot1

Middle-
ware Detector1 Detector2 Detectorn…

Director Agent1 Agent2

Detector3

Figure 2: Middleware for detecting and translating game
engine world state.

86

detail. The approach advocated here is to detect high-level
actions that are necessary for user-agent interactions and
allow state detectors to fill in the rest.

 It is possible to integrate symbolic and procedural rep-
resentations. Orkin [2004] describes a technique for indi-
vidual AI characters to perform real-time, goal-oriented
planning in a game engine using action representations that
combine both symbolic preconditions and effects with pro-
cedural preconditions and effects. However, it is not clear
whether such a technique could be applied to an AI story
director since a story director does not directly act in the
world as an AI character does. We believe the middleware
substrate approach advocated in this paper to be more gen-
eral and flexible.

4 Towards a Narrative-based Training Simu-
lation

In this section, we describe an interactive storytelling sys-
tem built on top of a game engine that uses a multitude of
AI controllers, including an automated story director and
several autonomous agents. The various types of AI con-
trollers use different AI technologies and consequently have
different declarative world representations. The middleware
substrate approach is capable of meeting all of the informa-
tion requirements of the heterogeneous collection of AI con-
trollers without requiring any to be tightly integrated with
the game engine. The following discussion describes the
purpose of the system and motivates the necessity of having
different types of AI controllers operating simultaneously.

The interactive storytelling system we describe here is a
narrative-based training simulation. Simulations have been
used for training skills and situation awareness. For training
tacit knowledge such as the operational and procedural
skills required for adaptive military leadership, it is advan-
tageous to situate the trainee in a realistic environment. A
virtual reality simulator is a good start. However, it is ad-
vantageous that trainees are situated in an environment
whose situational evolution is directed. The advantages are
that the trainee can be exposed to a larger context, multiple
learning objectives can be strung together in a particular
order, and the trainee can gain valuable experience in deal-
ing with successions of problems that are interrelated in a
lifelike manner (instead of running separate, and thus dis-
joint, training exercises). Since pure simulations are open-
ended, there is no guarantee that the world will evolve in a
sustainable manner. That is, the structure of the trainee’s
experience is not guaranteed to contain certain events or
situations after the first few actions. The actions of the
trainee and any autonomous agents can cause the world to
evolve in a way that is undesirable from the perspective of
the trainee being exposed to situations of pedagogical value.

4.1 Story Control for Training
Our narrative-based training simulation uses a high-level AI
control structure to try to manipulate a simulation such that
the world state, at least at a high level of abstraction,
evolves in way that corresponds to a given model of narra-

tive. The way in which this is achieved is necessarily dif-
ferent from more entertainment-oriented interactive storytel-
ling systems. One difference between training and enter-
tainment applications is that the trainee must learn about
second- and third-order effects of their actions, meaning that
it is important for realistic emergence of situation. An en-
tertainment application can ignore the effects on the world
that do not contribute to the story. This emergence [Aylett,
2000] must be carefully balanced against the overarching,
high-level narrative model of the story director.

A second difference between training and entertainment
applications of interactive storytelling is that in systems for
training the AI story controller should be relatively resilient
to branching. That is, the given high-level narrative model
achieves a certain sequence of learning objectives that has
pedagogical value. Branching to alternative narrative arcs
should be possible, but only when absolutely necessary.
Furthermore, any alternative narrative branch should be as
similar as possible to the original narrative model and con-
tain the same pedagogical value. Branching story in enter-
tainment applications only require the consequent alterna-
tive narrative branches to have entertainment value and can
consequently deviate more in order to comply with the ap-
parent desires of the user.

A third difference between training and entertainment ap-
plications of interactive storytelling is that in systems for
training, the automated story director should not intervene
with the actions of the trainee. This is important because
one does not want the trainee to learn that certain incorrect
or inappropriate actions are okay because they will be
caused to fail. It is also important for the trainee to learn
from her mistakes, even if it means “game over.” This is in
contrast to [Young et al., 2004] which describes an enter-
tainment-oriented interactive storytelling system that is ca-
pable of subtly intervening with user actions to preserve the
content of the narrative. For training, user actions that are
not in accordance with the narrative model should either
cause an alternative branch to be taken or result in failure
with feedback about what was wrong.

4.2 Architecture for a Narrative-Based Training
Simulation

We believe that we can achieve the nuances of interactive
storytelling for training purposes with a combination of
automated story direction and semi-autonomous agents.
The heterogeneity of AI controllers makes a middleware
approach to integration with a game engine desirable. The
architecture for the narrative-based training simulation is
given in Figure 3.

The three main components to the architecture are: the
game engine, the automated story director, and the semi-
autonomous virtual actors. The game engine is any game
engine or simulation that includes the middleware substrate
for interfacing with an automated story director and AI
characters. The automated story director is an AI controller
that has a branching narrative model and is capable of de-
termining whether the simulation state in the game engine
matches – or at least is not contradictory to – the narrative

87

model. Additionally, the automated story director is capable
of manipulating the extra-diegetic effects of the game en-
gine as well as the semi-autonomous virtual actors. Extra-
diegetic aspects of the game engine are those involving the
visualization of the world such as music, cinematography
(e.g. [Jhala, 2004]), and lighting (e.g. [Seif El- Nasr and
Horswill, 2003]), and not the actual simulation state.
 Each non-player character (NPC) that the trainee will be
expected to interact with is represented by a pairing of two
components: a bot and an AI controller called an actor.
Bots are described in Section 2. An actor2 contains within it
an autonomous agent decision-making process that has be-
liefs, desires, and intentions and uses sensors to react to the
environment as it attempts to achieve its intentions. Exam-
ples of AI character technologies that have been applied to
animated, virtual agents are Soar [Rickel et al., 2002], HAP
[Loyall, 1997], ABL [Mateas and Stern, 2003], and hierar-
chical task networks [Cavazza, Charles, and Mead, 2002].
We do not make any commitment to the type of agent tech-
nology used in the narrative-based training simulation ex-
cept that the agent decision-making process is wrapped in
additional logic that is aware of the narrative goals of the
automated director and is directable. A directable agent is
one whose behavior and reasoning can be manipulated by an
external process [Blumberg and Galyean, 1995; Assanie,
2002]. The actor itself is aware of the narrative goals of the
automated director and takes direction from the automated
director. Direction from the automated director takes one of
two forms:

• Direction to achieve some world state that is desirable
to the automated director and moves the plot forward.

• Direction that constrains the internal, reactive decision-
making process – which is only aware of its own be-
liefs, desires, intentions and sensory input from the
environment – from choosing actions, behaviors, or

2 Gordon and van Lent [2002] lay out the pros and cons of agents
that are realistic models of humans versus agents that are actors.

dialogue that contradicts or invalidates the automated
director’s narrative model.

Both types of direction are essential. The first type of direc-
tion is the primary mechanism through which the automated
director pushes a story forward and is necessary because the
actors cannot be relied on to autonomously make decisions
that are always favorable to the automated director. The
second type of direction is important in any situation where
actors do have some autonomy to form and reactively pur-
sue their own goals. Autonomy means that actors can po-
tentially choose actions, behaviors, or dialogue that contra-
dicts the narrative model of the automated director and even
make it impossible for the narrative and all of its branches to
continue coherently.
 The final component in Figure 3 is a blackboard. Rist,
André, and Baldes [2003] demonstrate a blackboard to be an
effective channel of communication between autonomous
agents and story directors. Here, the blackboard serves two
purposes. First it contains a specific world state that is
shared between the director and the actors. Note that this
world state may be different than the world state held by the
actor’s internal agent processes because the internal agent
processes are responsible for reacting to local environmental
conditions and should not necessarily be aware of things
outside the scope of its senses. Actors only receive state
updates and knowledge about user avatar actions that are
within range of the bots’ senses and necessary for reactivity
within the environment. The blackboard, however, contains
a global representation of the entire virtual world, including
the internal state of all the NPCs. This privileged informa-
tion is only accessible to the directable processes that wrap
the autonomous agent decision-making processes.

The second purpose of the blackboard is a communica-
tion channel between the automated story director and the
actors. In particular, the director sends directives to the ac-
tors so that they will achieve certain world states that are
advantageous to the narrative development as well as con-
straints so that the actors do not perform actions that make it
impossible for the plot to advance. Conceivably, actors can
also communicate amongst themselves to coordinate their
performances.

5 Conclusions
In an interactive storytelling system such as the narrative-
based training simulator described here, the graphical ren-
dering of the virtual world and story world characters is
separate from the AI control processes for story direction
and agent decision-making. Game engines notoriously use
proprietary and procedural representations for world state
whereas AI controllers such as an automated story director
often use declarative and/or symbolic world state represen-
tations. The approach presented here is a middleware sub-
strate that uses actor and state detectors to produce declara-
tions about the simulation world state and push state
changes onto the story director and autonomous actors.
While this approach is taken in the context of the architec-
ture for a narrative-based training simulator, the middleware

Game
Engine

Avatar Bot2 acts

vis.

Bot1

 Actor1

Agent

 Actor2

Agent

Director

Exec.
Monitor

Branching Narrative Model

Blackboard

Figure 3: Architecture for a narrative-based training simula-
tor.

Middleware
substrate

data requests

extra-
diegetic
control

updates updates updates acts

acts

88

substrate approach is expected to be general enough to be
applicable to many interactive storytelling systems.

Acknowledgements
The project or effort described here has been sponsored by
the U.S. Army Research, Development, and Engineering
Command (RDECOM). Statements and opinions expressed
do not necessarily reflect the position or the policy of the
United States Government, and no official endorsement
should be inferred.

References
[Assanie, 2002] Mazin Assanie. Directable synthetic charac-

ters. In Proceedings of the AAAI Spring Symposium on
Artificial Intelligence and Interactive Entertainment,
2002.

[Aylett, 2000] Ruth Aylett. Emergent narrative, social im-
mersion and “storification.” In Proceedings of the 1st In-
ternational Workshop on Narrative and Interactive
Learning Environments, 2000.

[Blumberg and Galyean, 1995] Bruce Blumberg and Tinsley
Galyean. Multi-level direction of autonomous agents for
real-time virtual environments. In Proceedings of
SIGGRAPH, 1995.

[Cavazza, Charles, and Mead, 2002] Marc Cavazza, Fred
Charles, and Steven Mead. Planning characters’ behav-
iour in interactive storytelling. Journal of Visualization
and Computer Animation, 13: 121-131, 2002.

[Gordon and van Lent, 2002] Andrew Gordon and Michael
van Lent. Virtual humans as participants vs. virtual hu-
mans as actors. In Proceedings of the AAAI Spring Sym-
posium on Artificial Intelligence and Interactive Enter-
tainment, 2002.

[Kelso, Weyhrauch, and Bates, 1993] Margaret Kelso, Peter
Weyhrauch, and Joseph Bates. Dramatic presence. Pres-
ence: The Journal of Teleoperators and Virtual Envi-
ronments, 2(1), 1993.

[Jhala, 2004] Arnav Jhala. An Intelligent Cinematic Camera
Planning System for Dynamic Narratives. Masters The-
sis, North Carolina State University.

[Loyall, 1997] Brian Loyall. Believable Agents: Building
Interactive Personalities. Ph.D. Dissertation, Carnegie
Mellon University, 1997.

[Magerko et al., 2004] Brian Magerko, John Laird, Mazin
Assanie, Alex Kerfoot, and Devvan Stokes. AI charac-
ters and directors for interactive computer games. In
Proceedings of the 16th Innovative Applications of Artifi-
cial Intelligence Conference, 2004.

[Mateas and Stern, 2003] Michael Mateas and Andrew
Stern. Integrating plot, character, and natural language

processing in the interactive drama Façade. In Proceed-
ings of the 1st International Conference on Technologies
for Interactive Digital Storytelling and Entertainment,
2003.

[Orkin, 2004] Jeff Orkin. Symbolic representation of game
world state: Towards real-time planning in games. In
Proceedings of the AAAI Workshop on Challenges in
Game Artificial Intelligence, 2004.

[Rickel et al., 2002] Jeff Rickel, Jon Gratch, Randall Hill,
Stacy Marsella, David Traum, and Bill Swartout. To-
ward a new generation of virtual humans for interactive
experiences. IEEE Intelligent Systems, July/August
2002.

[Riedl and Young, 2005] Mark Riedl and R. Michael
Young. From linear story generation to branching story
graphs. In Proceedings of the 1st Conference on Artificial
Intelligence and Interactive Digital Entertainment, 2005.

[Rist, André, and Baldes, 2003] Thomas Rist, Elisabeth
André, and Stephen Baldes. A flexible platform for
building applications with life-like characters. In Pro-
ceedings of the 2003 International Conference on Intel-
ligent User Interfaces, 2003.

[Seif El-Nasr and Horswill, 2003] Magy Seif El-Nasr and
Ian Horswill. Real-time lighting design for interactive
narrative. In Proceedings of the 2nd International Con-
ference on Virtual Storytelling, 2003.

[Szilas, 2003] Nicolas Szilas. IDtension: A narrative engine
for interactive drama. In Proceedings of the 1st Interna-
tional Conference on Technologies for Interactive Digi-
tal Storytelling and Entertainment, 2003.

[van Lent, 2004] Michael van Lent. Combining gaming and
game visualization with traditional simulation systems.
Invited talk at the Serious Games Summit, 2004.

[Weyhrauch, 1997] Peter Weyhrauch. Guiding Interactive
Fiction. Ph.D. Dissertation, Carnegie Mellon University.

[Young, 1999] R. Michael Young. Notes on the use of plan-
ning structures in the creation of interactive plot. In Pro-
ceedings of the AAAI Fall Symposium on Narrative Intel-
ligence, 1999.

[Young and Riedl, 2003] R. Michael Young and Mark
Riedl. Towards an architecture for intelligent control of
narrative in interactive virtual worlds. In Proceedings of
the 2003 International Conference on Intelligent User
Interfaces, 2003.

[Young et al., 2004] R. Michael Young, Mark Riedl, Mark
Branly, Arnav Jhala, R.J Martin, and C.J. Saretto. An ar-
chitecture for integrating plan-based behavior generation
with interactive game environments. Journal of Game
Development, 1: 51-70, 2004.

89

An intelligent decision module based on CBR for C-evo
Rubén Sánchez-Pelegrı́n

CES Felipe II, Aranjuez, Madrid
rsanchez@cesfelipesegundo.com

Belén Dı́az-Agudo
Departamento de Sistemas Informáticos y Programación

Universidad Complutense de Madrid
belend@sip.ucm.es

Abstract
C-evo is a non-commercial free open-source game
based on “Civilization”, one of the most popular
turn-based strategy games. One of the most impor-
tant goals in the development of C-evo is to support
the creation of Artificial Intelligence (AI) modules.
Thus everyone can develop his own AI algorithm
and watch it play against humans or against other
modules. We have developed one of such AI mod-
ules. In this paper we describe it and test some
techniques based on Case Based Reasoning, a well-
known AI technique that has not very commonly
been used in video games.

1 Introduction
C-evo is a non-commercial game project based on the famous
Sid Meier’s “Civilization II” by Microprose and has many
basic ideas in common with it. C-evo is a turn-based empire
building game about the origination of the human civilization,
from the antiquity until the future1.

One of the most important goals in the development of C-
evo is to support the creation of AI modules. Thus everyone
can develop his own AI algorithm and watch it play against
humans, or against other AI modules. C-evo provides an in-
terface with the game engine that enables developers to create
an AI module for managing a civilization. AI modules can
gather exactly the same information that a human player can,
and can make exactly the same actions.

There are another projects similar to C-evo. Probably the
most popular is FreeCiv2[Houk, 2004; Ulam et al., 2004],
also an open-source game based on Civilization. We chose
C-evo because is more oriented to AI development. There
are many different AI modules developed for C-evo, and this
makes it a good testbed for evaluating the performance of our
module.

Section 2 briefly summarizes the main rules of the game.
Section 3 describes our AI module using CBR to select a mil-
itary unit behavior. Section 4 concludes this paper and de-
scribes some lines of future work.

1http://www.c-evo.org/
2http://www.freeciv.org/

2 Game rules
To play this game means ”to lead the nation of your choice
through six millenia, from the first settlement until the colo-
nization of space. Your way is full of difficulties. Resources
are limited, wild areas take centuries for cultivation. Famine
and disorder will be a constant threat for your growing cities.
Your foresight is in demand. Expand your empire and im-
prove your cities. Build barracks, universities and power
plants, or even some of the famous wonders of the world.
Discover new technologies and weapons. Carry on with ex-
ploration in order to search for fertile lands and to complete
your world maps. Build sails to discover far continents.”

There are different nations coexisting during each game.
The way to win this game is either exterminate all the other
civilizations or colonize the stars, i.e, complete a transstellar
colony ship.

Each nation is formed by units and cities. Units are the
mobile part of the nation. While units are good for explo-
ration, conquest and defense, cities are the source of growth,
production and research.

The world map is divided into square tiles. Each tile has
a certain terrain type, which defines its properties: resource
production, defense bonus and cost of movement for units
which move onto it. One tile can not contain more than one
city, but an unlimited number of units of one tribe.

A nation can discover several advances. Most of them
make special buildings, unit features, unit designs and/or gov-
ernment forms available. To pursue a particular advance, the
knowledge of its prerequisites is required.

During its turn a nation could order as many actions as it
desires. Each action can be related with cities, units or gen-
eral actions.

To support the creation of Artificial Intelligence(AI) the
game has a special architecture, based on exchangeable com-
petitor modules, that allows the exchange of the AI for every
single player. Thus anyone can develop his own AI algorithm
in a DLL apart from the game in the language of his choice,
and watch it play against humans, against the standard AI or
other AI modules3.

3The manual to create an artificial intelligence module for C-evo
is found in http://www.c-evo.org/aidev.html

90

Figure 1: C-evo screenshot

3 AI project for C-evo
As we have introduced, C-evo provides an interface with the
game engine that enables developers to create an AI module
for managing a civilization. AI modules can gather exactly
the same information that a human player can and make ex-
actly the same actions. Indeed, the player interface is another
module that uses the same interface to communicate with the
game core. This way AI modules can’t cheat, a very typical
way of simulating intelligence in video games.

Our goal is to develop an AI module, using advanced
AI techniques. In particular we use Case-Based Reasoning
(CBR) [Leake, 1996; Kolodner, 1993] for solving some of
the decision problems presented in the management of an em-
pire. There are low-level problems (tactical decisions) and
high-level (global strategy of the empire). Examples of low-
level problems are choosing next advance to develop, select-
ing government type, setting tax rates, diplomacy, city pro-
duction, behavior of a unit.

Even there are different problems that could be solved us-
ing CBR, in this first stage we are focusing in a single prob-
lem: the selection of a military unit behavior, a tactical prob-
lem concerning action selection.

3.1 A concrete problem: military unit behavior
We have focused on a low-level problem: the control of mil-
itary units. We have chosen this as the first problem to work
on because we think it have big impact in the result of the
game.

At this time all the other decisions are taken by hand writ-
ten code. We haven’t put much effort on developing it, so
we can’t expect our AI module to be really competitive with
others.

For controlling units, our AI module assigns missions to
them. These missions take control of the unit behavior, until
the mission is completed. When a new unit is created, or an
existing one completes its mission, a new one is assigned to
the unit, using CBR for making this decision.

We have created three missions for military units:

• Exploring unknown tiles around a given one. The unit

goes to the selected tile and moves to the adjacent tile
which has more unknown tile around it. If none of its
adjacent tiles has unknown adjacent tiles, the mission
concludes.

• Defending a given tile. The unit goes to the tile and stay
there to defend the position.

• Attacking a given tile. The unit goes to the tile and at-
tacks any enemy defending it.

Our cases are stored in a XML file, and each one is comp-
posed of:

• A description of the unit features, and the state of the
game relevant to the problem. This description gathers
information about the military unit and about its envi-
ronment. There are features that stores the values for
attack, defence, movement and experience of the unit.
From the environment, we are interested on information
about own cities, enemy cities and unknown tiles. For
every city (own or enemy) there are features that stores
its distance to the unit, and defence of the unit that de-
fend the city tile. For our own cities, there is also a fea-
ture for the number of units in the city tile.4 For every
known tile surrounded by any unknown tile there are a
feature that stores its distance to the unit.

• The solution of the problem, that is the mission assigned
to the unit. It can be attack one of the enemy cities,
defend one of the own cities, or explore from one of the
known tiles surrounded by unknown tiles.

• The result of the case; a description of the outcome of the
mission, composed by figures extracted from the game
engine. It provides features that stores the duration in
turns of the mission, number of attacks won, number of
defences won, number of cities enemy conquered, num-
ber of own cities lost during the mission, number of ex-
plored tiles, and whether the unit died or not during the
mission.

When a new problem comes up, we select the solution we
are going to take basing on the cases stored in the case base.

We follow the next steps:
• We create a new query, which description is that of the

problem we are dealing with. We are going to call it
query problem. Description features are obtained from
the game engine.

• We retrieve from the case base a set of cases relevant
for the current problem. In particular, we retrieve the
50 most similar cases to that of the query problem. Our
similarity function, as usual, gets two case description,
and returns a measure of how similar they are.
In the last term, we compare individual features and
combination of two or more of them. For example, we
not only compare attack with attack and defense with
defense, but also the proportion between attack and de-
fense. This is because units with similar attack-defense
ratios usually are used in a similar way, although the
total amount of attack and defense was very different.

4The AI interface doesn’t provide this figure for enemy cities.

91

They could be units from different stages of history.
Similarity between individual features is the proportion
between them:

sim(x, y) =
min(x, y)
max(x, y)

For determining the similarity between two problem de-
scriptions, we calculate two partial similarities, the sim-
ilarity between unit features Su and the similarity be-
tween world situations Ss.
Similarity between unit features is obtained using
weighted average of its local features, considering the
attack, defense and experience feature less relevant than
movement and proportions between attack and defense:

Su =
Sa + Sd + Se + 2Sm + 2Sar + 2Sdr

9

Where: Sa – similarity between attack feature.
Sd – similarity between defense feature.
Se – similarity between experience feature.
Sm – similarity between movement feature.
Sar – similarity between attack ratio.
Sdr – similarity between defense ratio.

Similarity between world situations Ss is calculated us-
ing arithmetic average of several similarities of features
and combinations of features.
Finally, the global similarity S is the product of local
similarities:

S = SuSs

• We calculate the profit (P) obtained in each of the re-
trieved cases. For this purpose we use a function that ag-
gregates the case result features, returning a single value
that is the measure of the success obtained in the mis-
sion. The case result features are number of explored
tiles (t), number of attacks won (a), number of defences
won (d), number of conquered enemy cities (cw), num-
ber of own cities lost during the mission (cl), number of
turns that the mission took (t) and a boolean feature (e)
that says if the unit died (e = 1) or not (e = 0) during
the mission.

P =
(t + 5a + 10d + 50cw − 100cl)2

1 + 3e

• We select the set of possible missions we can assign to
the unit. Initially they are exploring each of the known
tiles with an adjacent unknown tile, defending each of
own cities, attacking each of enemy cities. Simplifying,
we are going to consider only up to five possible mis-
sions; exploring the nearest known tile with an adjacent
unknown tile, defending the nearest own city, defending
the weakest own city, attacking the nearest enemy city
or attacking the weakest enemy city. For each of this
possible missions, we select among the retrieved cases
those which have that mission as its solution. With these
cases, we calculate an expected profit E for the mission.

It is an average of the profits of those cases, weighted by
the similarity of each case with the problem case.

E =
∑

SiPi∑
Si

We also calculate an uncertainty measure U for each of
the possible missions. It depends on the number of cases
used for calculating the expected profit, the variance of
their profit, and their similarity with the problem case.
This way, if we have got similar expected profit from
many cases, probably the real profit of the mission will
be very close to the expected profit. In this case we have
a low amount of uncertainty. On the other hand, if we
have calculated the expected profit from few cases, or
from cases with very different profits, the uncertainty
will be high.

U =
∑

Si(Pi − E)2∑
Si

• We randomly modify the expected profit of each of the
possible missions. The randomness of the modification
depends on the uncertainty; the higher it is, the bigger
the randomness is. This way we avoid the algorithm to
be too much conservative. If we didn’t use this random
factor, the algorithm would discard some solutions bas-
ing on a single case which gave a bad result. Given the
complex nature of the game, this bad result could be a bit
of bad luck, and it is good to give a second opportunity
to solutions, although once they worked badly.

E′ = E + rand(0, U)

• We select the mission with the highest expected profit.
We assign it to the unit, and store it as the solution of
the problem case. The problem case is not stored yet in
the case based. The mission is tracked for obtaining the
result of the case until it is completed.

• When the mission is completed, the query problem be-
comes a full case, with its result obtained from the game
engine. Then this new case is stored in the case base.

The success of the algorithm strongly depends on the rep-
resentation of the description, solution and result of the cases,
and on the functions used for calculating similarity, profit, ex-
pected profit, uncertainty and the randomness modifying of
the expected profit. All these functions are hand coded, writ-
ten based on our knowledge of the game. In section 3.3 we
discuss how learning could be used for improving them.

3.2 Evaluation
C-evo allows to play an AI tournament consistent on several
games between several AI modules. We tried to confront our
module with a version of itself without learning (a AI dummy
module); all we did was disabling the case storing, so the
module had always an empty case base. In all the games
played the result was a tie. Although the learning could im-
prove slightly the performance of the AI module, it was not
enough to beat the opponent. We state that this is because the
problem solved is only a small part of all the decisions that an

92

AI module must take. The rest of the module was hand coded
in a very simple way, so it doesn’t play well enough to get a
win. Also, the performance of the algorithm can be improved
in several ways, some of them discussed in the next section.

The efficiency was good while the size of the case base
was not so big to fill RAM memory. When the case base size
grows much the efficiency falls. In next subsection we also
discuss some solutions to these problem.

3.3 Extensions to the basic approach
In the previously described algorithm, some hand tuned func-
tions were used for calculating things as similarity between
cases or profit of a result. This way, the success of the algo-
rithm heavily depends on the accuracy of the human expert
modifying these functions. It would be better to use some
machine learning technique for these.

To learn the profit of a mission, we can associate each mis-
sion result with the final result (win, lost or draw) that the AI
module got in the game where the mission took place. This
information enables machine learning to associate which mis-
sion results tend to lead to each final result. For those results
which occurs in a victory, the profit function would tend to
give higher values. This way we would have a two level rea-
soning between raw data extracted from the game engine and
decisions taken. For this purpose, Genetic Algorithms, Neu-
ronal Nets, Bayesian Nets or CBR could be used to learn the
profit function.

Similarity measure could be learned considering that truly
similar cases with similar solutions would tend to lead to sim-
ilar results. Based on this hypothesis we could learn a similar-
ity function that gave high values of similarity for cases with
similar results under the same mission, finding which features
of cases are more relevant on this similarity, and to what ex-
tent. For this purpose could be used some classical learning
algorithms, or other techniques, like genetic algorithms.

A very serious trouble of the algorithm is the growth of
the case base, that hurts the efficiency. Usually, case-based
systems solve this problem storing only new cases different
enough from existent cases. However, case-based systems
usually only need to recover the most similar case with the
problem, and they reason only from one case. This is possi-
ble because identical problems should have identical outputs.
In our problem this is false; identical decisions taken on iden-
tical situations could lead to different results, due to the free-
dom of choice of the opponent. Randomness would take part
too in most games, although in this one it doesn’t exist. We
need to store somehow the information of all cases produced,
or we will lose valuable information.

A system of indexing the cases would lighten this problem
very much. This way wouldn’t be needed to calculate the
similarity measure for all cases in the database, but only those
that are solid candidates to be similar enough to the problem.
However, it would not be a complete solution, because the
case base size would keep growing indefinitely. It only defers
the problem.

The solution to the growth of case base would be cluster-
ing cases. If we have identical cases, then we have no need
of storing it separately; we can store one case, and have a
counter for the number of times it have happened. When rea-

soning, this case would be weighted by this counter for calcu-
lating expected profit and uncertainty. However, case descrip-
tions are complex enough for allowing a very high number of
different possible cases. So it would be needed to group very
similar cases together in a cluster. A general case would rep-
resent the cluster, using a counter for the number of cases
implied. The description of the case that represented a cluster
would have an average measure of the features that distin-
guish them, instead of the exact values of each one. Some
information would be lost on this process, but it is necessary
to maintain the computational feasibility of this method.

The use of CBR could be extended to another low level
problems of the game. Each problem would have one case
base, with a case representation suitable to that problem.
However, some problems could share the same case base; for
example, the problem of selecting the military unit to be built
in a city could use the case base used for the problem of the
military unit behavior. Units produced should be those that
produce better results for the current situation of the game.
The reasoning would be completely different, but the data
would be the same.

High level problems could lead to more challenging strate-
gic decisions, where we think CBR could be a very useful
technique, given that it usually works well in situations where
the environment is complex, and the rules of its behavior are
unknown or fuzzy. Examples of such problems are coordi-
nating units action, or selection of the global strategy for the
game.

4 Conclusions and Related Work
To the author’s knowledge CBR has not typically been used
as the main underlying AI technique in commercial video
games. There are some research papers like [Gabel and
Veloso, 2001; Fagan and Cunningham, 2003], but the indus-
try seems not to use CBR in commercial games, although
there are several descriptions of similar techniques, without
naming it CBR [Rabin, 2002]. Even so, we consider it is a
promising technique for AI in computer games. CBR an AI
technique close to human thinking. AI for computer games
should not only be intelligent, but also believable [Nareyek,
2004]. We think this makes CBR specially suitable to AI for
computer games.

CBR is a natural alternative to rule based system. One of
the advantages of CBR is the less effort needed to acquire the
knowledge. Rule based systems has been used for example in
[Champandard, 2003] and Age of Empires: the Conquerors
Expansion [AOE, 2004].

There are also some publications about AI for strategy
games. [Ulam et al., 2004] address a tactical decision, the
defend city task, using learning by model-based reflection
and self-adaptation; when the AI loses a game examines its
own reasoning process to identify the failure and repair it.
[Houk, 2004] describes a whole AI agent for FreeCiv. For
some tasks it uses qualitative spatial reasoning, as proposed
before in [Forbus et al., 2002].

Though we already have some experimental results, this
project is in an early stage. As shown in Section 3.3, there are
still several improvements to be developed.

93

Also, we want to integrate our AI module with TIELT sys-
tem [TIELT, 2004] in order to standardize the evaluation.
This system enables to give a definition of the game model
and a model of the interface with the game engine. This
two models will be used for gather and store the information
needed by the AI module, and for transmitting its decisions
to the game engine. Two more models, the decisions system
model and the agent description model define the core of the
AI module. And a fifth model, the experiment methodology
model defines the test for the evaluation. Implementing the
system conforming to this models allows evaluating the sys-
tem in a standard way.

References
[AOE, 2004] AOE. Age of empires: the conquerors ex-

pansion. http://www.microsoft.com/games/aoeexpansion/,
2004.

[Champandard, 2003] Alex J. Champandard. AI Game De-
velopment. Chapters 11 and 12. New Riders Publishing,
2003.

[Fagan and Cunningham, 2003] Michael Fagan and Padraig
Cunningham. Case-based plan recognition in computer
games. In ICCBR, pages 161–170, 2003.

[Forbus et al., 2002] Kenneth D. Forbus, James V. Mahoney,
and Kevin Dill. How qualitative spatial reasoning can
improve strategy game ais. IEEE Intelligent Systems,
17(4):25–30, 2002.

[Gabel and Veloso, 2001] Thomas Gabel and Manuela M.
Veloso. Selecting heterogeneous team players by case-
based reasoning: A case study in robotic soccer simula-
tion. Technical report CMU-CS-01-165, Computer Sci-
ence Department, Carnegie Mellon University, 2001.

[Houk, 2004] Phillip A. Houk. A strategic game play-
ing agent for freeciv. Technical report NWU-CS-04-29,
Evanston, IL: Northwestern University, Department of
Computer Science, 2004.

[Kolodner, 1993] J.L. Kolodner. Case-based reasoning.
Morgan Kaufmann, Calif., US., 1993.

[Leake, 1996] D. Leake. Case-Based Reasoning: Experi-
ences, Lessons, & Future Directions. AAAI Press / The
MIT Press. ISBN 0-262-62110-X, 1996.

[Nareyek, 2004] Alexander Nareyek. Ai in computer games.
ACM Queue, 1(10):58–65, 2004.

[Rabin, 2002] Steve Rabin. AI Game Programming Wisdom.
Charles River Media, Inc., Rockland, MA, USA, 2002.

[TIELT, 2004] TIELT. http://nrlsat.ittid.com/, 2004.
[Ulam et al., 2004] Patrick Ulam, Ashok Goel, and Joshua

Jones. Reflection in action: Model-based self-adaptation
in game playing agents. In Dan Fu and Jeff Orkin, editors,
Challenges in Game Artificial Intelligence: Papers from
the AAAI Workshop. San Jose, CA: AAAI Press, 2004.

94

A Model for Reliable Adaptive Game Intelligence

Pieter Spronck
Universiteit Maastricht

Institute for Knowledge and Agent Technology
P.O. Box 616, 6200 MD Maastricht, The Netherlands

{p.spronck}@cs.unimaas.nl

Abstract

Adaptive game AI aims at enhancing computer-
controlled game-playing agents with the ability to
self-correct mistakes, and with creativity in re-
sponding to new situations. Before game publish-
ers will allow the use of adaptive game AI in their
games, they must be convinced of its reliability. In
this paper we introduce a model for Reliable Adap-
tive Game Intelligence (RAGI). The purpose of the
model is to provide a conceptual framework for the
implementation of reliable adaptive game AI. We
discuss requirements for reliable adaptive game AI,
the RAGI model’s characteristics, and possible im-
plementations of the model.

1 Introduction
The behaviour of computer-controlled agents in modern com-
puter games is determined by so-called ‘game AI’. For ar-
tificial intelligence research, game AI of complex modern
games (henceforth called ‘games’) is a truly challenging ap-
plication. We offer four arguments for this statement: (1)
Games are widely available, thus subject to the scrutiny of
hundreds of thousands of human players[Laird and van Lent,
2001; Sawyer, 2002]; (2) Games reflect the real world, and
thus game AI may capture features of real-world behaviour
[Sawyer, 2002; Graepelet al., 2004]; (3) Games require
human-like (realistic, believable) intelligence, and thus are
ideally suited to pursue the fundamental goal of AI, i.e., to
understand and develop systems with human-like capabilities
[Laird and van Lent, 2001; Sawyer, 2002]; and (4) Games
place highly-constricting requirements on implemented game
AI solutions [Laird and van Lent, 2001; Nareyek, 2002;
Charles and Livingstone, 2004; Sproncket al., 2004b].

We define ‘adaptive game AI’ as game AI that employs un-
supervised online learning (‘online’ meaning ‘during game-
play’). Adaptive game AI has two main objectives, namely
(1) to enhance the agents with the ability to learn from
their mistakes, to avoid such mistakes in future play (self-
correction), and (2) to enhance the agents with the abil-
ity to devise new behaviour in response to previously un-
considered situations, such as new tactics used by the hu-
man player (creativity). Although academic researchers have
achieved successful results in their exploration of adaptive

game AI in recent research (e.g.,[Demasi and Cruz, 2002;
Sproncket al., 2004b; Graepelet al., 2004]), game publish-
ers are still reluctant to release games with online-learning
capabilities[Funge, 2004]. Their main fear is that the agents
learn inferior behaviour[Woodcock, 2002; Charles and Liv-
ingstone, 2004]. Therefore, the few games that contain online
adaptation, only do so in a severely limited sense, in order to
run as little risk as possible[Charles and Livingstone, 2004].

Regardless of the usefulness of adaptive game AI, to con-
vince game publishers to allow it in a game, thereliability
of the adaptive game AI should be guaranteed, even against
human players that deliberately try to exploit the adaptation
process to elicit inferior game AI. Reliability of adaptive
game AI can be demonstrated by showing that it meets eight
requirements[Spronck, 2005], which are discussed in Sec-
tion 2. However, meeting the requirements is easier said than
done, because they tend to be in conflict with each other.

In this paper, we propose a model for Reliable Adaptive
Game Intelligence (RAGI). The purpose of the model is to
provide a conceptual framework for the implementation of re-
liable adaptive game AI. The model makes explicit two con-
cepts which, in our view, are necessary for the design of re-
liable adaptive game AI, namely a knowledge base, and an
adaptive opponent model.

The outline of this paper is as follows. In Section 2 we dis-
cuss requirements for the creation of reliable adaptive game
AI. In Section 3 we discuss domain knowledge and opponent
models for adaptive game AI. The RAGI model is introduced
in Section 4. In section 5 we argue that the proposed model
is a suitable framework for implementing reliable adaptive
game AI. Section 6 describes possible implementations of the
model. Finally, Section 7 concludes and looks at future work.

2 Requirements for Reliability
We define ‘reliable adaptive game AI’ as adaptive game AI
that meets the eight requirements for online learning of game
AI specified by Spronck [2005], who indicated that adaptive
game AI that meets these eight requirements will go a long
way in convincing game publishers to adopt it. The eight re-
quirements are divided into four computational requirements
and four functional requirements. The computational require-
ments are necessities: failure of adaptive game AI to meet the
computational requirements makes it useless in practice. The
functional requirements are not so much necessities, as strong

95

preferences by game developers: failure of adaptive game AI
to meet the functional requirements means that game devel-
opers will be unwilling to include it in their games, even when
it yields good results (e.g., improves the effectiveness ofagent
behaviour) and meets all four computational requirements.

The four computational requirements are the following.

Speed: Adaptive game AI must be computationally fast,
since learning takes place during game-play[Laird and
van Lent, 2001; Nareyek, 2002; Charles and Living-
stone, 2004; Funge, 2004].

Effectiveness: Adaptive game AI must be effective during
the whole learning process, to avoid it becoming inferior
to manually-designed game AI, thus diminishing the en-
tertainment value for the human player[Charles and Liv-
ingstone, 2004; Funge, 2004]. Usually, the occasional
occurrence of non-challenging game AI is permissible,
since the player will attribute an occasional easy win to
luck.

Robustness:Adaptive game AI has to be robust with respect
to the randomness inherent in most games[Chanet al.,
2004; Funge, 2004].

Efficiency: Adaptive game AI must be efficient with respect
to the number of trials needed to achieve successful
game AI, since in a single game, only a limited number
of occurrences happen of a particular situation which the
adaptive game AI attempts to learn successful behaviour
for. Note that the level of intelligence of the adaptive
game AI determines how many trials can still be con-
sidered efficient adaptation; on an operational level of
intelligence (as in the work by Graepelet al. [2004]),
usually many more trials are available for learning than
on a tactical or strategic level of intelligence (as in the
work by Sproncket al. [2004b] and the work by Ponsen
et al. [2005]).

The four functional requirements are the following.

Clarity: Adaptive game AI must produce easily inter-
pretable results, because game developers distrust learn-
ing techniques of which the results are hard to under-
stand.

Variety: Adaptive game AI must produce a variety of differ-
ent behaviours, because agents that exhibit predictable
behaviour are less entertaining than agents that exhibit
unpredictable behaviour.

Consistency: The average number of trials needed for adap-
tive game AI to produce successful results should have
a high consistency, i.e., a low variance, to ensure that it
is rare that learning in a game takes exceptionally long.

Scalability: Adaptive game AI must be able to scale the ef-
fectiveness of its results to match the playing skills of
the human player[Lidén, 2004]. This last functional re-
quirement may be considered optional: without it, adap-
tive game AI aims to be as strong as possible; with it,
adaptive game AI aims to be an appropriate match for
the human player.

We observe that there are conflicts between several of these
requirements. For instance, the requirements of speed and ef-
ficiency are in conflict with the requirements of robustness
and consistency, because in a non-deterministic learning en-
vironment, robustness and consistency are typically acquired
by always basing the learning on several repetitions of each
test, which is costly in computation time and required number
of trials. Also, the requirement of effectiveness is in conflict
with the requirement of variety, because, in general, enforced
variations on game AI make it less effective.

The core problem for online learning, especially in a
non-deterministic, complex environment, is finding the right
balance between exploitation and exploration[Carmel and
Markovitch, 1997]. During exploitation, adaptive game AI
does not learn, but deploys its learned knowledge to elicit
successful agent behaviour in the game. During exploration,
adaptive game AI attempts to learn new behaviour. If there is
insufficient exploration, the adaptive game AI learns slowly,
and may remain stuck in a local or even a false optimum, and
thus fails to meet the requirement of efficiency. If there is too
much exploration, the adaptive game AI will often generate
inferior agent behaviour, and thus fails to meet the require-
ment of effectiveness. A possible solution for this issue is
to automatically tune the amount of exploration to the ob-
served results of the agent behaviour: good results requirea
low degree of exploration, while unsatisfying results require
a higher degree of exploration. However, note that due to
the non-determinism of most game environments, unsatisfy-
ing results may be the effect of a string of chance runs, in
which case these results preferably should not lead to a higher
degree of exploration[Spronck, 2005].

3 Necessary Concepts for Adaptive Game AI
In the few published games that contain online adaptation,
changes made by the adaptive game AI are almost always lim-
ited to updating a small number of in-game parameters, such
as the agents’ strength and health. In the rare cases where a
published game allows an agent’s behaviour to be influenced,
it is either through supervised learning (i.e., the human player
actively training the agent to exhibit certain behaviour, as in
BLACK & W HITE [Evans, 2001]), or through choosing be-
tween a few pre-programmed behaviours, such as different
formations of enemy groups. Most academics will hesitate to
call this ‘adaptive game AI’, since the agents do not design
new behaviour autonomously (professional game developers
might disagree, but they interpret the term ‘artificial intelli-
gence’ much broader than academics[Tomlinson, 2003]).

In academic research of adaptive game AI, it is typically
implemented as a direct feedback loop (cf.,[Demasi and
Cruz, 2002; Bakkes, 2003; Graepelet al., 2004; Sproncket
al., 2004b]). In a direct feedback loop for agent control in a
game (illustrated in Figure 1), the agent interacts with a game
world. The agent’s actions are determined by game AI. The
agent feeds the game AI with data on its current situation, and
with the observed results of its actions. The game AI adapts
by processing the observed results, and generates actions in
response to the agent’s current situation.

Adaptive game AI is necessarily based on two concepts.

96

Figure 1: Game AI feedback loop.

The first concept isdomain knowledgeof the game environ-
ment. The reasoning behind this concept is that, to meet the
four computational requirements, adaptive game AI must be
of ‘high performance’. According to Michalewicz and Fogel
[2000], the two main factors of importance when attempt-
ing to achieve high performance for a learning mechanism
are the exclusion of randomness and the addition of domain-
specific knowledge. Since randomness is inherent in most
games, it cannot be excluded. Therefore, it is imperative that
the learning process is based on domain-specific knowledge
[Manslow, 2002].

The second concept is anopponent model. The task of an
opponent model is to understand and mimic the opponent’s
behaviour, to assist the game AI in choosing successful ac-
tions against this opponent. Without an opponent model, the
game AI is unable to adapt adequately to human player be-
haviour.

The opponent model can be eitherexplicit or implicit. An
opponent model is explicit in game AI when a specification of
the opponent’s attributes exists separately from the decision-
making process. An opponent model is implicit in game AI
when the game AI is fine-tuned to a specific (type of) oppo-
nent, without the game AI actually referring that opponent’s
attributes[van den Heriket al., 2005]. With an implicit oppo-
nent model, the adaptive game AI basically is a process that
updates its opponent model by improving its decision making
capabilities against particular human-player behaviour.

In most, if not all published research on adaptive game AI,
the opponent model is implicit. However, in the comparable
research field of adaptive multi-agent systems, Carmel and
Markovitch [1997] have shown that adaptive agents that use
an explicit opponent model are more effective than adaptive
agents that use an implicit opponent model. Furthermore, the
use of explicit opponent models is considered a necessary re-
quirement for successful game-play in the research of such
classical games as ROSHAMBO [Egnor, 2000] and POKER
[Billings et al., 2000], which have many features in com-
mon with modern commercial games. Therefore, we feel that
there are sufficient reasons to suppose that an explicit oppo-
nent model is highly desired for adaptive game AI.

Figure 2 presents the feedback loop of Figure 1, enhanced
with a data store of domain knowledge and an explicit oppo-
nent model. Examples are given, derived from a Computer
RolePlaying Game (CRPG), of (1) a piece of domain knowl-
edge, (2) an attribute of the opponent model, and (3) a rule
of the game AI which takes the domain knowledge and oppo-
nent model into account. Note that, by simply removing the
explicit opponent model from the figure, the opponent model
becomes implicit in the game AI. Under the condition that we

Figure 2: Game AI with domain knowledge and an explicit
opponent model.

know that the game AI is effective, we can derive the explicit
opponent model to a great extent by analysing the game AI.

Typically, opponent models of human players are not im-
plemented statically, but are learned from observed behaviour
[Carmel and Markovitch, 1997]. In contrast, domain knowl-
edge for game AI is typically manually designed by game
developers, usually by programming static game AI. How-
ever, as Ponsenet al. [2005] show, it is possible to generate
domain knowledge automatically from game-play data.

In conclusion, we propose that successful adaptive game
AI should incorporate a knowledge base of domain knowl-
edge, and an adaptive opponent model of the human player
(preferably explicit).

4 The Model
In this section we present our model for Reliable Adaptive
Game Intelligence (RAGI). The RAGI model is illustrated in
Figure 3. It is described below.

Basically, the RAGI model implements a feedback loop,
as represented in Figure 1. The two differences between the
feedback loop of Figure 1, and the RAGI model of Figure
3, are that (1) the RAGI model extends the feedback loop
with explicit processing of observations distinguished from
the game AI, and (2) the RAGI model also allows the use of
game world attributes which are not directly observed by the
agent (e.g., observations concerning different agents).

The RAGI model collects agent observations and game
world observations, and extracts from those a ‘case base’.
The case base contains all observations relevant for the adap-
tive game AI, without redundancies, time-stamped, and struc-
tured in a standard format for easy access. A case consists of
a description of a game-play situation, comprising selected
features and actions undertaken by agents in that situation.
All cases in the case base contain an identification of the par-
ticular agents involved, whether controlled by the computer
or by a human player. In the case of multi-player games, we
may expect the case base to expand rather fast. In the case
of single-player games, the case base will probably expand
slowly. Consequently, the RAGI model is most applicable to
multi-player games, although under certain conditions it may
be applicable to single-player games, too.

The case base has two uses. The first use is to build an op-
ponent model. The second use is to generate domain knowl-
edge.

97

Figure 3: The RAGI model.

To build an opponent model, a ‘conjecture generator’ cre-
ates conjectures (i.e., statements and observations) on the
way human players interact with the game world and with
computer-controlled agents. These conjectures may not be
generally applicable for all human players. However, a
‘prover’ (not to be confused with a theorem prover) selects
those conjectures that might be of interest in building an op-
ponent model of a specific human player, and uses the case
base to attach a degree of confidence to the selected conjec-
tures in this respect. Conjectures with a sufficiently high de-
gree of confidence are stored as the opponent model of the
human player. The representation of the conjectures depends
on the application: for example, it might be in the form of
first-order logic, or simply in the form of a collection of val-
ues for certain variables.

To generate domain knowledge, a ‘knowledge generator’,
which can be considered a data mining process, analyses the
case base and extracts relevant statements and rules. These
are stored in a knowledge base. As with the opponent model,
the case base is used to attach a degree of confidence to each
statement in the knowledge base.

The opponent model and the knowledge base are used by
a ‘game AI generator’ to create new game AI. Depending on
the contents of the knowledge base, the game AI generator
can be used to imitate the play of successful agents (for in-
stance, those that are controlled by expert human players),or
to design completely new tactics and strategies.

Through changes in the case base, changes might be caused
in the opponent model and/or the knowledge base, which will
automatically generate new game AI. For instance, if the hu-
man player changes his behaviour, the prover may assign a
lower confidence to certain statements in the opponent model
of this human player, which will influence the game AI gen-
erator to update the game AI.

Usually, there are connections between ‘conjectures’ and
the ‘knowledge base’. For instance, a conjecture might state
that the human player has a preference for certain actions,

while the knowledge base specifies a good defence against
these actions. It is a good idea for implementations of the
RAGI model to make these connections explicit. In Figure 3,
this is represented by a dotted line between the conjectures
and the knowledge base. Since the opponent model consists
of a subset of the conjectures (enhanced with a degree of con-
fidence), the same connections exist between the opponent
model and the knowledge base.

5 Reliability
Why do we expect the RAGI model to be a good starting point
for the creation of reliable adaptive game AI?

Besides the fact that the RAGI model encompasses an ex-
plicit opponent model and explicit domain knowledge, which
we argued in Section 3 to be necessary for successful adap-
tive game AI, the RAGI model may meet the requirements
specified in Section 2 as follows.

• The speed of the adaptive game AI relies, of course, on
the speed of its components. In the past, authors have
investigated speedy implementations of several of the
components (e.g., for the knowledge generator[Ponsen
et al., 2005], and for the game AI generator[Spronck
et al., 2004b]). However, even if some components re-
quire too much processing time, since the model uses a
case base the adaptive game AI may learn on a computer
separate from the computer used to play the game, or in
a separate thread, or on down-time of the game-playing
computer (admittedly, in the last case this would amount
to offline learning). This may allow the RAGI model to
meet the requirement of speed, even when the process-
ing itself is computationally intensive.

• Inferior behaviour on the part of any agent will automat-
ically be translated into instances in the case base, that
are processed into the opponent model or the knowledge
base, to generate new game AI. This allows the RAGI
model to meet the requirement of effectiveness.

98

• A lower limit to the required degree of confidence can
be set so that the quality of the domain knowledge and
of the opponent model is at an appropriate level. This
allows the RAGI model to meet the requirement of ro-
bustness.

• The adaptive game AI does not learn only from expe-
riences of the agent it controls, but also from the expe-
riences of all other agents in the game world, whether
controlled by the human or by the computer. It is even
possible, in the case of single-player games, to collect
cases from games played on different computers through
the internet. Therefore, for the RAGI model the require-
ment of efficiency is simply not an issue.

• The use of an explicit opponent model and explicit do-
main knowledge helps the RAGI model in meeting the
requirement of clarity.

• By varying over the domain knowledge used, the RAGI
model meets the requirement of variety.

• Since the case base can be shared between all players of
a game (whether in single-player or multi-player mode),
all instances of the adaptive game AI learn at the same
rate. This allows the RAGI model to meet the require-
ment of consistency.

• By using statements in the opponent model or the knowl-
edge base with a lower confidence, or by excluding high-
confidence domain knowledge, the generated game AI
may function at an arbitrary level of skill[Sproncket
al., 2004a]. This allows the RAGI model to meet the
requirement of scalability.

Depending on the implementation of the various processes,
arguably the RAGI model may be too complex, and thus
too computationally intensive, to be used for online learning.
This issue holds in particular for single-player games, when
only a single computer is available. It has less impact on
multi-player games, where the case base is preferably situated
on the game server, and domain knowledge and conjectures
are generated centrally, so that they can be shared amongst
all players. On the client computer, at maximum only two
processes need to be executed, namely (1) the maintenance of
the opponent model of the human player that uses the com-
puter, and (2) the generation of new game AI on the basis
of the opponent model and the centralised knowledge base.
In general, opponent models do not change quickly. Further-
more, if connections between the conjectures and the domain
knowledge (i.e., the dotted lines in Figure 3) are maintained
centrally, the generation of new game AI can be fast.

6 Implementations
When implementing adaptive game AI according to the RAGI
model, many findings of previous research can be incorpo-
rated. For instance, Sproncket al. [2004b] designed ‘dy-
namic scripting’, an adaptive-game-AI technique that makes
use of a rulebase, which is equivalent to a knowledge base
with domain knowledge. Ponsenet al. [2005]) investigated
the automatic generation of domain knowledge for adap-
tive game AI, i.e., a knowledge generator. There is plenty

of research available on the generation of opponent mod-
els (cf., [Fürnkranz, 1996; Carmel and Markovitch, 1997;
Davison and Hirsh, 1998; Billingset al., 2000; Egnor, 2000]),
even in the area of commercial games (cf.,[Alexander, 2002;
McGlinchey, 2003]).

An interesting aspect of the RAGI model is that it can be
implemented in stages. An easy implementation would use a
static data store of manually-designed conjectures, and a sta-
tic knowledge base of manually-designed knowledge, with
the connections between the conjectures and the knowledge
also programmed manually. Only the ‘prover’ would need to
use the case base to constitute the opponent model, by select-
ing the conjectures that are most likely to be true. Depending
on how the knowledge is formulated, the game AI generator
would be trivial, because it only would need to select from
the knowledge that is connected with the opponent model.

At a moderate level of difficulty for the implementation of
the model, the connections between the conjectures and the
knowledge base could be generated automatically. And at a
high level of difficulty, a knowledge generator and conjecture
generator could be implemented.

The possibility to start an implementation of the RAGI
model at an easy level, gradually expanding it to become
more complex, makes the model ideal for explorative re-
search. The RAGI model can also be combined easily with
the TIELT architecture[Aha and Molineaux, 2004], since
TIELT has been designed to work with a task model (i.e.,
game AI), a player model (i.e., an opponent model), and a
game model (i.e., a case base).

7 Conclusions and Future Work
In this paper we argued that reliable adaptive game AI needs
to meet eight requirements, namely the requirements of (1)
speed, (2) effectiveness, (3) robustness, (4) efficiency, (5)
clarity, (6) variety, (7) consistency, and (8) scalability. Fur-
thermore, we argued that successful adaptive game AI is nec-
essarily based on domain knowledge and on an adaptive op-
ponent model. We proposed a model for Reliable Adaptive
Game Intelligence (RAGI), that is indeed based on domain
knowledge and an explicit adaptive opponent model, and that
may meet the eight specified requirements (at least for multi-
player games).

Of course, the RAGI model must still undergo the proof of
the pudding. In future work, we intend to structure our re-
search into adaptive game AI around the RAGI model, and to
explore to what extent elements of the model can learn while
the adaptive game AI as a whole remains a reliable process.

Acknowledgments
This research is supported by a grant from the Dutch Organi-
sation for Scientific Research (NWO grant No. 612.066.406).

References
[Aha and Molineaux, 2004] D.W. Aha and M. Molineaux.

Integrating learning in interactive gaming simulators. In
D. Fu, S. Henke, and J. Orkin, editors,Proceedings of the
AAAI-04 Workshop on Challenges in Game Artificial In-
telligence, pages 49–53, 2004. AAAI Press.

99

[Alexander, 2002] T. Alexander. GoCap: Game observation
capture. In S. Rabin, editor,AI Game Programming Wis-
dom, pages 579–585, 2002. Charles River Media, Inc.

[Bakkes, 2003] S. Bakkes.Learning to Play as a Team: De-
signing an Adaptive Mechanism for Team-Oriented Arti-
ficial Intelligence. M.Sc. thesis. Universiteit Maastricht,
Maastricht, The Netherlands, 2003.

[Billings et al., 2000] D. Billings, A. Davidson, J. Schaeffer,
and S. Szafron. The challenge of poker.Artificial Intelli-
gence, 134(1–2):201–240, 2000.

[Carmel and Markovitch, 1997] D. Carmel and
S. Markovitch. Exploration and adaptation in multi-
agent systems: A model-based approach. InProceedings
of the Fifteenth International Joint Conference on
Artificial Intelligence, pages 606–611, 1997. Morgan
Kaufmann.

[Chanet al., 2004] B. Chan, J. Denzinger, D. Gates,
K. Loose, and J. Buchanan. Evolutionary behavior test-
ing of commercial computer games. InProceedings of the
2004 IEEE Congress on Evolutionary Computation, pages
125–132, 2004. IEEE Press.

[Charles and Livingstone, 2004] D. Charles and D. Living-
stone. AI: The missing link in game interface design. In
M. Rauterberg, editor,Entertainment Computing – ICEC
2004, Lecture Notes in Computer Science 3166, pages
351–354, 2004. Springer-Verlag.

[Davison and Hirsh, 1998] B.D. Davison and H. Hirsh. Pre-
dicting sequences of user actions. InPredicting the Fu-
ture: AI Approaches to Time-Series Problems, pages 5–
12, 1998. AAAI Press. Proceedings of AAAI-98/ICML-
98 Workshop, published as Technical Report WS-98-07.

[Demasi and Cruz, 2002] P. Demasi and A.J. de O. Cruz.
Online coevolution for action games.International Jour-
nal of Intelligent Games and Simulation, 2(2):80–88,
2002.

[Egnor, 2000] D. Egnor. Iocaine powder.ICGA Journal,
23(1):33–35, 2000.

[Evans, 2001] R. Evans. The future of game AI: A personal
view. Game Developer Magazine, 8(8):46–49, 2001.

[Funge, 2004] J.D. Funge. Artificial Intelligence for Com-
puter Games. A K Peters, Ltd., Wellesley, MA, 2004.

[Fürnkranz, 1996] J. F̈urnkranz. Machine learning in com-
puter chess: The next generation. ICCA Journal,
19(3):147–161, 1996.

[Graepelet al., 2004] T. Graepel, R. Herbrich, and J. Gold.
Learning to fight. In Q. Mehdi, N.E. Gough, S. Natkin,
and D. Al-Dabass, editors,Computer Games: Artificial In-
telligence, Design and Education (CGAIDE 2004), pages
193–200, 2004. University of Wolverhampton.

[Laird and van Lent, 2001] J.E. Laird and M. van Lent.
Human-level’s AI killer application: Interactive computer
games. Artificial Intelligence Magazine, 22(2):15–26,
2001.

[Lidén, 2004] L. Lidén. Artificial stupidity: The art of mak-
ing intentional mistakes. In S. Rabin, editor,AI Game Pro-
gramming Wisdom 2, pages 41–48, 2004. Charles River
Media, Inc.

[Manslow, 2002] J. Manslow. Learning and adaptation. In
S. Rabin, editor,AI Game Programming Wisdom, pages
557–566, 2002. Charles River Media, Inc.

[McGlinchey, 2003] S.J. McGlinchey. Learning of AI play-
ers from game observation data. In Q. Mehdi, N. Gough,
and S. Natkin, editors,Proceedings of the 4th Interna-
tional Conference on Intelligent Games and Simulation
(GAME-ON 2003), pages 106–110, 2003. EUROSIS.

[Michalewicz and Fogel, 2000] Z. Michalewicz and D.B.
Fogel. How To Solve It: Modern Heuristics. Springer-
Verlag, Berlin, Germany, 2000.

[Nareyek, 2002] A. Nareyek. Intelligent agents for computer
games. In T.A. Marsland and I. Frank, editors,Computers
and Games, Second International Conference, CG 2000,
volume 2063 ofLecture Notes in Computer Science, pages
414–422, 2002. Springer-Verlag.

[Ponsenet al., 2005] M.J.V. Ponsen, H. Mũnoz-Avila,
P. Spronck, and D.W. Aha. Acquiring adaptive real-time
strategy game opponents using evolutionary learning.
In Proceedings of the IAAI-05, 2005. Accepted for
publication.

[Sawyer, 2002] B. Sawyer.Serious Games: Improving Pub-
lic Policy through Game-based Learning and Simulation.
Foresight & Governance Project, Woodrow Wilson Inter-
national Center for Scolars, Washington, DC, 2002.

[Sproncket al., 2004a] P.H.M. Spronck, I.G. Sprinkhuizen-
Kuyper, and E.O. Postma. Difficulty scaling of game AI.
In A. El Rhalibi and D. Van Welden, editors,GAME-ON
2004 5th International Conference on Intelligent Games
and Simulation, pages 33–37, 2004. EUROSIS.

[Sproncket al., 2004b] P.H.M. Spronck, I.G. Sprinkhuizen-
Kuyper, and E.O. Postma. Online adaptation of game op-
ponent AI with dynamic scripting.International Journal
of Intelligent Games and Simulation, 3(1):45–53, 2004.

[Spronck, 2005] Pieter Spronck.Adaptive Game AI. Ph.D.
thesis, Universiteit Maastricht. Universitaire Pers Maas-
tricht, Maastricht, The Netherlands, 2005.

[Tomlinson, 2003] S.L. Tomlinson. Working at thinking
about playing or a year in the life of a games AI pro-
grammer. In Q. Mehdi, N. Gough, and S. Natkin, editors,
Proceedings of the 4th International Conference on Intel-
ligent Games and Simulation (GAME-ON 2003), pages 5–
12, 2003. EUROSIS.

[van den Heriket al., 2005] H.J. van den Herik, H.H.L.M.
Donkers, and P.H.M. Spronck. Opponent modelling and
commercial games. In G. Kendall and S. Lucas, editors,
IEEE 2005 Symposium on Computational Intelligence and
Games, pages 15–25, 2005.

[Woodcock, 2002] S. Woodcock. AI roundtable moderator’s
report, 2002. www.gameai.com/cgdc02notes.html.

100

Knowledge-Intensive Similarity-based Opponent Modeling

Timo Steffens
Institute of Cognitive Science

Kolpingstr. 7, 49074 Osnabrueck, Germany
tsteffen@uos.de

Abstract

Similarity-based opponent modeling predicts the
actions of an agent based on previous observations
about the agent’s behavior. The assumption is that
the opponent maps similar situations to similar ac-
tions. Since agents are likely to use domain knowl-
edge to reason about situations, it is reasonable
to incorporate domain knowledge into the mod-
eling system. We propose a knowledge-intensive
similarity-based approach for opponent modeling
in multi-agent systems. The classification accu-
racy is increased by adding domain knowledge to
the similarity measure. The main contribution is
to propose a hierarchy of knowledge types that can
be incorporated into similarity measures. The ap-
proach has been implemented and evaluated in the
domain of simulated soccer.

1 Introduction
An important factor effecting the behavior of agents in multi-
agent systems (MAS) is the knowledge which they have about
each other[Carmel and Markovich, 1996]. Predicting the
actions of other agents has been shown to positively influ-
ence the behavior of an agent (e. g.[Denzinger and Hamdan,
2004]). However, in many MAS predicting agent actions is
difficult due to the fact that many MAS (most prominently
RoboCup[Kitano et al., 1997], and also GameBots[Adob-
bati et al., 2001]) are open systems where a variety of agents
are encountered which are not known to an agent or its de-
signers beforehand. In this paper we present an approach to
opponent modeling which relies on the observation that the
agents and their behavior are constrained by the properties
of the environment. These properties are part of the domain
knowledge and we show how such domain knowledge can be
incorporated into similarity-based opponent modeling.

The remainder of this paper is organized as follows. The
next section describes similarity-based opponent modelling
and identifies issues that have to be coped with if the ap-
proach is applied to multi-agent systems. Section 3 intro-
duces the domain of simulated soccer, a multi-agent sys-
tem which serves as the evaluation domain. In section 4 we
present our taxonomy of knowledge types and show how the

knowledge can be incorporated into similarity measures. Ex-
perimental results are presented in section 5. Section 6 dis-
cusses related work, and finally the last section concludes.

2 Similarity-based Opponent Modeling

Case-based reasoning (CBR) is a common method for op-
ponent modeling in MAS (e. g. [Ahmadi et al., 2003;
Wendler, 2004; Denzinger and Hamdan, 2004]). In a MAS
several autonomous agents are active. From a CBR view,
the classification goal is to predict the action of an opponent
agent in a situationS. The CBR system comparesS to a case-
base of previously observed situations, selects the situationS′

that is most similar toS, and returns the action inS′.
The classification- or prediction-accuracy of CBR depends

on the quality of the similarity measure. Unfortunately, im-
plementing a similarity measure for opponent modeling is not
trivial due to a number of issues:

Context: Similarity is not an absolute quantity but depends
on the context. The similarity must be adapted to the
game situation and role of the agent whose action is to
be predicted. Consider situations in a soccer game: The
positions of team B’s defenders will be rather irrelevant
if the classification goal is the action of team A’s goalie,
but rather relevant if the classification goal is the ac-
tion of team A’s forwards. For these two classification
goals, the similarity measure must weight attributes (i. e.
player positions) differently.

Sparseness of data: Often, in CBR it is assumed that there
is an abundance of data. However, in many opponent
modeling domains this is not the case, since cases en-
ter the case-base over time as observations are made.
For example, in an open multi-agent system such as
RoboCup[Kitano et al., 1997], new opponents may be
encountered without the possibility to gather data about
them beforehand. Thus, a requirement for similarity-
based opponent modeling is that it has to perform well
with sparse data. Fortunately, the lack of knowledge in
the case knowledge container can be compensated by
moving additional knowledge into the similarity mea-
sure knowledge container[Richter, 1995]. In this paper
we explore how different forms of knowledge can be in-
corporated into similarity measures.

101

Attribute matching: In most CBR applications, matching at-
tributes is straight-forward, as equally named attributes
or attributes at the same vector position are matched.
But when applying CBR to opponent modeling in MAS,
matching of attributes is not trivial. The agents of the
two situations have to be matched in a situation-specific
way, so that their properties (e. g., their positions and ve-
locities) can be compared. This matching has to take the
agents’ roles and goals into account.

In this paper we tackle the first two issues by incorporating
domain knowledge into the similarity measure.

3 An Example MAS: RoboCup
The RoboCup domain is a typical MAS where opponent
modeling is crucial for successfully counteracting adversary
agents[Kitanoet al., 1997]. Two teams of autonomous agents
connect to a server and play simulated soccer against each
other. Each player is an autonomous process. This is a chal-
lenge for opponent modeling, since the behavior of each op-
ponent player has to be approximated individually.

Decision making is done in near real-time, that is, in dis-
crete time steps. Every 100ms the agents can execute a prim-
itive action and the world-state changes based on the actions
of all players. Basically, the action primitives aredash, turn,
kick, which must be combined in consecutive time steps in or-
der to form high-level actions such as passes or marking. The
agents act on incomplete and uncertain information: Their
visual input consists of noisy information about objects in
their limited field of vision. There is an additional privileged
agent, the online coach, which receives noise-free and com-
plete visual input of the playing field. The interface for online
coaches has been included into the server for opponent mod-
eling purposes[Chenet al., 2001]. Every 100 ms it receives
information about the position and velocity of all objects on
the playing field (22 players and the ball). The agents’ actions
cannot be observed directly, but can be inferred from the dif-
ferences between consecutive world-states. E. g., in our im-
plementation the coach assumes that the player controlling
the ball executed a kick, if the ball’s velocity increases.

Cases for our CBR system are generated from the obser-
vations of the coach. A case is represented in two parts: 46
attributes (23 positions and 23 velocities) specifying thesit-
uation, and 22 attributes storing the actions. In a prediction
task, only the situation is known and one of the actions serves
as the classification goal; the other actions are ignored.

RoboCup is an ideal domain for evaluating our approach,
because it is complex enough to use the various knowledge
types we introduce in the next section.

4 Knowledge Types for Similarity Measures
This section discusses which types of knowledge can be in-
corporated into similarity measures for similarity-basedop-
ponent modeling. Knowledge types will be grouped into a
hierarchy (see figure 1) based on the integration methods that
are applicable to each type. Incorporation methods applica-
ble to a type are also applicable to its subtypes. This way,
several knowledge types that were previously researched in

Virtual attributes

Matching knowl.

Continuous Distinct

Transformational

knowledge

Inferential knowlegde

Relational knowledge

Ordering

Contextual knowl.

=Attribute importance

Weights

Distributional

knowledge

Knowledge

Figure 1: Hierarchy of knowledge types.

isolation in knowledge-intensive CBR can now be integrated
into a common framework.

We group the types by the way they can be used and incor-
porated into similarity measures. It should be noted that we
do not start from the knowledge types as proposed by knowl-
edge representation work, such as frames, scripts, or semantic
networks. These mechanisms are a mixture of the types that
we discuss in the following.

For the examples, we use the following notation:
C1, C2, C3 ∈ R are continuous attributes.D1, D2 ∈ Z are
discrete attributes.P (x) is a binary concept applicable to in-
stancex. Ci(x) or Di(x) denote the value of instancex for
attributeCi or Di. w ∈ R is a weight.

At the most general level, we distinguishvirtual attributes
[Richter, 2003] from distributional knowledge. The latter
includes knowledge about the range and distribution of at-
tributes and their values. Knowledge about the range of an
attribute is commonly used to normalize the attribute similar-
ity to [0,1]. Since this type of knowledge is widely used in
CBR, we focus on the less researched type of knowledge that
can be formalized as virtual attributes.

Virtual attributes are not directly represented in the cases
but can be inferred from other attributes[Richter, 2003]. They
are common in database research. In CBR, virtual attributes
are useful if the similarity does not depend on the case at-
tributes themselves, but on their relation to each other. For ex-
ample, ifC1 is the position of player A andC2 is the position
of player B, then a virtual attributeC3(x) = C1(x) − C2(x)
could be the distance between A and B.

We further distinguish betweeninferential and matching
knowledge. Discrete matching knowledge states that two val-
ues of an attribute are equivalent. The famous PROTOS sys-
tem made extensive use of this type of knowledge[Porteret
al., 1990]. Also taxonomies are instantiations of matching
knowledge and were used in CBR[Bergmann, 1998]. Con-
tinuous matching knowledge defines intervals in an attribute
stating that the exact value of the attribute in the intervalis ir-
relevant. Examples:C1(x) > 30 ∧ C1(x) < 50 (continuous)
andD1(x) ≡ D1(y) (discrete). This can be easily formulated
as virtual attribute, stating that an attribute is a member of the
interval or is identical to one of the equivalent values.

Matching knowledge can be used to match syntactically
different attributes that are semantically equivalent. For ex-
ample, in our opponent modelling approach two different
players will be treated as equivalent if they have the same

102

role (such as defender).
Transformational knowledgeis a specialization of match-

ing knowledge where geometric operations are used to map
a point in the instance-space to another point. For example,
transformational knowledge has been used to establish iden-
tity despite geometric rotation (e. g.[Schaaf, 1994]). Ex-
ample:C1(x) = rotate(C1(y), 30). In our RoboCup imple-
mentation, transformational knowledge is used to match local
scenes from one wing to the other. That is, the similarity of
two attributes is maximal if they can be transformed into each
other or if they are identical.

Inferential knowledgespecifies the value of an attribute
that is inferrable from other attributes’ values. This typeof
knowledge has been used in explanation-based CBR (e. g.,
[Aamodt, 1994]). Example:P (x)← C1(x) > 30∧C1(x) <
50 Note that the condition makes use of matching knowledge.
An example from RoboCup is to define offside as virtual at-
tribute over the player and ball positions.

Contextual knowledgeis a special form of inferential
knowledge. It states that some feature is important given
some other features. Knowledge about contextual features
has been shown to improve classification accuracy[Aha and
Goldstone, 1992]. Example:important(P (x)) ← C1(x) >
30 ∧ C1(x) < 50 We use contextual knowledge to code that
a team’s defenders’ positions are irrelevant if the team’s for-
ward controls the ball close to the opponent goal.

In our hierarchy,weightsare a special form of contextual
knowledge. They allow us to express the importance of a fea-
ture on a continuous scale. We can express feature weights in
a global wayimportant(P (x), w) ← TRUE, or in a local
way important(P (x), w)← C1(x) > 30 ∧ C1(x) < 50.

In other words, contextual knowledge and weights can be
called ”attribute importance” knowledge.

Relationsare a subtype of inferential knowledge. The con-
dition part uses at least two different attributes. Relational
knowledge for similarity is prominent in computational mod-
elling of human categorization[Medin et al., 1993]. Exam-
ple: P (x) ← C1(x) > C2(x). Note that relations usually
make use of matching knowledge in the condition part, as
they define regions in which the relation holds. Relations are
for example necessary to code wether a certain opponent is
between the ball and the goal.

Ordering of nominal feature valuesis distributional knowl-
edge. It establishes a dimension in the instance space. In
[Surma, 1994] it was shown that knowledge of the ordering
of discrete feature values can increase classification accuracy.

According to the knowledge container approach[Richter,
1995], knowledge in the similarity measure can be simulated
by moving knowledge into the case representation. However,
moving contextual knowledge into the case-representationis
not straight-forward (if possible at all) and has to dynami-
cally interact with the similarity measure, since it is decided
at classification time which attributes are used.

5 Evaluation
The following experiments tested whether the prediction ac-
curacy for player actions increases if the similarity mea-
sure is extended with domain knowledge. Both the standard

(knowledge-poor) and extended (knowledge-rich) similarity
measures are tested on the same case-base and test cases. The
test domain is RoboCup. We used 21 publicly available log-
files of recorded games between 19 different teams. The log-
files were taken from different rounds of the RoboCup-2002
tournament, so that they have a mixture of weak and good
teams. Logfiles contain the same data that the online coach
(refer to section 3) would receive. For each game, the first
1000,2000,3000 or 4000 cycles of the match were recorded
into the case-base. A complete game lasts 6000 time steps.
The test cases were drawn from the remaining time steps at
fixed intervals of 50 time steps. The classification goal was
the action of the ball owner.

5.1 The similarity measures
The non-extended similarity measure is defined as follows:

sim(S1, S2) = (1)
22∑

i=1

[ωi ∗∆(p(i, S1), p(i, S2)) +

ω′

i ∗∆(v(i, S1), v(i, S2))] +

ω0 ∗∆(bp(S1), bp(S2)) + ω′

0
∗∆(bv(S1), bv(S2))

where S1 and S2 are the two situations in comparison,
p(i, Sj) andv(i, Sj) are the position and velocity of player
i in situationSj , respectively,bp(Sj) andbv(Sj) are the ball-
position and ball-velocity inSj , respectively.∆(A,B) is the
Euclidean distance betweenA andB, andωk andω′

k with∑
22

k=0
(ωk +ω′

k) = 1 are weights for positions and velocities,
respectively.

The non-extended similarity measure uses some distribu-
tional knowledge for normalizing positions and velocities.

In comparison, the extended similarity measure is defined
as follows: In line with the well-known local-global princi-
ple [Bergmann, 2002], we compute the similarity between
two situations as the weighted average aggregation of the at-
tributes’ local similarities:

sim(S1, S2) =

n∑

i=1

(ωi ∗ si)

wheresi are the local similarity values (i. e.,si is the similar-
ity for attributei), and theωi are the corresponding weights.

sim(S1, S2) = ω1 ∗ 1(role(S1), role(S2)) +

ω2 ∗ 1(region(S1), region(S2)) +

ω3 ∗ 1(offside(S1), offside(S2)) +

ω4 ∗ 1(pressing(S1), pressing(S2)) +

ω5 ∗

22∑

i=1

1(free(S1, i), free(S2, i)) +

ω6 ∗ 1(ahead(S1), ahead(S2)) +

ω7 ∗∆(positions(S1), positions(S2)) +

ω8 ∗∆(velocities(S1), velocities(S2)) (2)

where1(X,Y) = 1 iff X = Y , and 0 otherwise.

103

The attributesrole and region make use of matching
knowledge as they define hyper-planes in the instance-
space. role(S) ∈ {forward, defender,midfielder}
denotes the role of the ball owner. region(S) ∈
{inFrontOfGoal, penaltyArea, corner, wing,midfield}
denotes the region the ball is in. Note that no distinction
is made between left and right wing, and between the four
corners, which is achieved by transformational knowledge
about mirroring and rotating.

The attributesoffside, pressing, and free make use
of inferential knowledge.offside(S) is a binary predicate
that checks whether the situation is offside.pressing(S)
checks whether pressing is performed in the situation, that
is, whether the opponent attacks the ball owner with two or
more players.free(S, i) checks whether playeri stands free
(i. e., no player of the opponent is within a certain distance).

The predicateahead(S) makes use of relational knowl-
edge. It denotes the number of opponents that are between
the ball and the goal.

positions(S) andvelocities(S) are examples for contex-
tual knowledge. They denote the positions and velocities of
the players that are relevant in the given situation. Relevance
of a player is computed by its role and the role of the ball
owner. If the ball owner is a forward, its own defenders and
the opponent’s forwards are deemed irrelevant. If the ball
owner is a defender, its own forwards and the opponent’s de-
fenders are deemed irrelevant.

The attribute weights of both similarity measures are re-
learned for each game with RELIEF[Kira and Rendell,
1992], using the case-base as training data.

5.2 Focus on high-level actions
In a complex domain such as RoboCup it is infeasible to pre-
dict an agent’s behavior in terms of primitive actions. For
individual skills (e. g., dribbling), primitive actions are of-
ten combined by neural networks. These are trained using
amounts of training instances that are typically one or two
levels of magnitude greater than the amount of observations
available for opponent modelling. Hence, it is infeasible to
predict an agent’s primitive actions. Rather, in our experi-
ments we predicted the high-level actionshoot on goal. We
assume that for taking countermeasures it is sufficient to an-
ticipate high-level actions within a certain time window. For
example, if a defender knows that within the next 20 time
steps an opponent will shoot on the goal, it can position it-
self accordingly (and maybe even inhibit the shot by doing
so. Therefore, in our prediction experiments the agents do
not use the predictive information. This way they do not in-
terfere with the prediction accuracy.) For both the standard
and the extended similarity measures, the prediction of an ac-
tion is counted as correct if the action occurs within 20 time
steps after the prediction.

5.3 Results
The mean prediction accuracy of both similarity measures
are shown in figure 2. For small case-bases, the predic-
tion accuracies are almost the same. The extended similarity
measure predicts better than the standard similarity measure
for medium case-base sizes. If more data is available, the

1000 2000 3000 4000

Number of cases

84,00

84,50

85,00

85,50

86,00

86,50

87,00

M
e

a
n

a
c

c
u

ra
c
y

standard

extended

Figure 2: Mean accuracies of the standard and the extended
similarity measures for different sizes of the case-base.

standard measure outperforms the extended measure. How-
ever, opponent modeling in open multi-agent systems does
not have plenty of data, that is, the system can not wait until
late in the game. Thus, a method that performs well with few
and medium amounts of data should be preferred.

The accuracy difference between the two measures is
small. Our analysis suggest that the small impact of the
extended similarity measure is due to the fact that any in-
crease of prediction accuracy is difficult, since the behaviors
of the player agents are implemented as many different meth-
ods. Player implementations range from simple decision trees
[Buttinger et al., 2001], over probabilistic approaches[de
Boeret al., 2002] to neural networks[Riedmilleret al., 2003].
Particularly if behaviors are learned, the partitioning ofthe
situation space can be highly irregular and complex. Further-
more, it is very unlikely that the opponent players used the
same domain knowledge. Hence, their situation space will be
different from the situation space of our case-base. Consider-
ing this, we believe that the accuracy increase is substantial.

The most surprising result, though, is that the accuracy
of the knowledge-poor (i. e. standard) similarity measure
does not increase monotonically as the size of the case-
base increases. We also observed that the accuracy of the
knowledge-poor similarity measure did not always benefit
from learning weights, that is, the unweighted measure per-
formed as well or slightly better than the measure with learnt
weights. While this needs more analysis, we believe that both
observations can be explained by overfitting to the case-base.

6 Related Work
We already gave references to several knowledge-intensive
CBR approaches in section 4. In addition to such approaches
that incorporated domain knowledge for case retrieval, much
effort has been done to use domain knowledge for adapt-
ing retrieved solutions (e. g.[Bergmann and Wilke, 1998;
Wilke and Bergmann, 1996]). In knowledge-intensive CBR,

104

knowledge has typically not been regarded in terms of types,
but rather each approach used knowledge in its own ad-hoc
and domain-specific way (cf.[Aamodt, 2001]).

Explanation-based CBR (EBCBR) uses inference rules to
create so-called explanations describing why a solution isap-
propriate for a given case[Cainet al., 1991]. If an attribute
was not used in the explanation, it is regarded as irrelevant
and ignored in future similarity assessment. Another branch
of EBCBR uses explanations to ”explain away” differences
that are either irrelevant or only syntactical rather than se-
mantical[Aamodt, 1994]. Similarly, while not regarded as
EBCBR, the famous PROTOS system[Porteret al., 1990]
uses domain-knowledge for matching syntactically different
features, too. The main difference to our approach is that
those methods process only attributes that are already explic-
itly represented in the cases and do not infer additional ones.

Generating additional features has been researched in con-
structive induction (CI)[Matheus, 1991]. While CI focussed
mainly on rule-based expert systems, there are also CI ap-
proaches for instance-based learning showing that learning
additional features can improve classification accuracy[Aha,
1991] even if the knowledge is vague[Steffens, 2004].

Apart from the similarity-based approach, there are several
different approaches to opponent modeling. However, not
all of them are well-suited for a continuous, real-time multi-
agent game such as RoboCup.

In game theory there are approaches to learn opponent
models from action sequences[Carmel and Markovich,
1996]. Usually a payoff-matrix is necessary, but for pre-
dicting the opponent’s actions this requirement does not hold
[Rogowski, 2004]. Unfortunately, these learning techniques
assume that the opponent strategy can be described by a de-
terministic finite automaton, which might not always be the
case in a complex domain. Most importantly, game theory
can describe game states only as a history of actions, which is
infeasible in complex games such as RoboCup, where subse-
quent game states are not only determined by player actions
but also by the game physics.

Predicting opponent actions can also be done via plan-
recognition [Kaminka and Avrahami, 2004], but reactive
agents cannot be modeled. When classifying opponents into
classes and selecting appropriate counter strategies[Steffens,
2002; Riley and Veloso, 2000] domain knowledge in the form
of pre-defined model libraries is a non-optional requirement.
In contrast, CBR only requires a set of observations, adding
domain knowledge is optional. However, up to now our ap-
proach does not provide an appropriate counter-action, but
only predicts the opponent’s actions.

An approach that avoids predicting the opponent’s actions
is to adapt probability weights of action rules by reinforce-
ment[Sproncket al., 2003]. Instead of choosing actions that
counter-act the opponent’s next move, the own behavior is
adapted to the opponent based on rewards and penalties.

7 Conclusion
We presented a hierarchy of knowledge types that can be
incorporated into similarity measures for opponent model-
ing. Knowledge types from knowledge-intensive CBR that

were previously seen as unrelated have been integrated intoa
framework. An implementation for simulated soccer suggests
that predictive accuracy can benefit from domain knowledge.

References
[Aamodt, 1994] Agnar Aamodt. Explanation-driven case-

based reasoning. In Stefan Wess, Klaus-Dieter Althoff,
and Michael M. Richter, editors,Topics in Case-Based
Reasoning, pages 274–288. Springer, 1994.

[Aamodt, 2001] Agnar Aamodt. Modeling the knowledge
contents of CBR systems. In Agnar Aamodt, David Pat-
terson, and Barry Smyth, editors,Proc. of the Workshop
Program at ICCBR 2001, pages 32–37, 2001.

[Adobbatiet al., 2001] R. Adobbati, Andrew N. Marshall,
Andrew Scholer, S. Tejada, Gal A. Kaminka, S. Schaffer,
and C. Sollitto. Gamebots: A 3D virtual world test-bed
for multi-agent research. In Tom Wagner, editor,Proceed-
ings of the Second International Workshop on Infrastruc-
ture for Agents, MAS, and Scalable MAS, pages 47–52.
ACM Press, 2001.

[Aha and Goldstone, 1992] David W. Aha and Robert L.
Goldstone. Concept learning and flexible weighting. In
Proc. of the 14th Annual Conf. of the Cognitive Science
Society, pages 534–539, Hillsdale, New Jersey, 1992.
Lawrence Erlbaum.

[Aha, 1991] David W. Aha. Incremental constructive induc-
tion: An instance-based approach. In Lawrence Birn-
baum and Gregg Collins, editors,Proceedings of the 8th
Intern. Workshop on Machine Learning, pages 117–121,
Evanston, IL, 1991. Morgan Kaufmann.

[Ahmadiet al., 2003] M. Ahmadi, A. K. Lamjiri, M. M.
Nevisi, J. Habibi, and K. Badie. Using two-layered
case-based reasoning for prediction in soccer coach. In
Hamid R. Arabnia and Elena B. Kozerenko, editors,Proc.
Intern. Conf. of Machine Learning; Models, Technologies
and Applications, pages 181–185. CSREA Press, 2003.

[Bergmann and Wilke, 1998] Ralph Bergmann and Wolf-
gang Wilke. Towards a new formal model of transforma-
tional adaptation in case-based reasoning. In Henri Prade,
editor, ECAI98, Thirteenth European Conference on Ar-
tificial Intelligence, pages 53–57. John Wiley and Sons,
Chichester, 1998.

[Bergmann, 1998] Ralph Bergmann. On the use of tax-
onomies for representing case features and local similarity
measures. In Lothar Gierl and Mario Lenz, editors,Pro-
ceedings of the Sixth German Workshop on CBR, pages
23–32, 1998.

[Bergmann, 2002] Ralph Bergmann. Experience Manage-
ment. Springer, Berlin, 2002.

[Buttingeret al., 2001] Sean Buttinger, Marco Diedrich,
Leonhard Hennig, Angelika Hoenemann, Philipp
Huegelmeyer, Andreas Nie, Andres Pegam, Collin Ro-
gowski, Claus Rollinger, Timo Steffens, and Wilfried
Teiken. Orca project report. Technical report, University
of Osnabrueck, 2001.

105

[Cainet al., 1991] Timothy Cain, Michael J. Pazzani, and
Glenn Silverstein. Using domain knowledge to influence
similarity judgements. InProceedings of the Case-Based
Reasoning Workshop, pages 191–198, Washington D.C.,
U.S.A., 1991.

[Carmel and Markovich, 1996] David Carmel and Shaul
Markovich. Learning models of intelligent agents. In
Howard Shrobe and Ted Senator, editors,Proceedings of
AAAI-96 and the 8th IAAI, Vol. 2, pages 62–67, Menlo
Park, California, 1996. AAAI Press.

[Chenet al., 2001] Mao Chen, Ehsan Foroughi, Fredrik
Heintz, ZhanXiang Huang, Spiros Kapetanakis, Kostas
Kostiadis, Johan Kummeneje, Itsuki Noda, Oliver Obst,
Patrick Riley, Timo Steffens, Yi Wang, and Xiang Yin.
Soccerserver manual v7, 2001.

[de Boeret al., 2002] Remco de Boer, Jelle Kok, and Frans
C. A. Groen. Uva trilearn 2001 team description. In An-
dreas Birk, Silvia Coradeschi, and Satoshi Tadokoro, edi-
tors,RoboCup 2001: Robot Soccer World Cup V. Lecture
Notes in Computer Science 2377, pages 551–554, Berlin,
2002. Springer.

[Denzinger and Hamdan, 2004] Joerg Denzinger and Jas-
mine Hamdan. Improving modeling of other agents using
stereotypes and compactification of observations. InPro-
ceedings of AAMAS 2004, pages 1414–1415. IEEE Com-
puter Society, 2004.

[Kaminka and Avrahami, 2004] Gal A. Kaminka and Dorit
Avrahami. Symbolic behavior-recognition. In Math-
ias Bauer, Piotr Gmytrasiewicz, Gal A. Kaminka, and
David V. Pynadath, editors,AAMAS-Workshop on Model-
ing Other Agents from Observations, pages 73–80, 2004.

[Kira and Rendell, 1992] Kenji Kira and Larry A. Rendell. A
practical approach to feature selection. In Derek H. Slee-
man and Peter Edwards, editors,Proceedings of the Ninth
International Workshop on Machine Learning, pages 249–
256. Morgan Kaufmann Publishers Inc., 1992.

[Kitanoet al., 1997] Hiroaki Kitano, Milind Tambe, Peter
Stone, Manuela Veloso, Silvia Coradeschi, Eiichi Os-
awa, Hitoshi Matsubara, Itsuki Noda, and Minoru Asada.
The robocup synthetic agent challenge,97. InInter-
national Joint Conference on Artificial Intelligence (IJ-
CAI97), pages 24–29, San Francisco, CA, 1997. Morgan
Kaufmann.

[Matheus, 1991] Christopher J. Matheus. The need for
constructive induction. In Lawrence A. Birnbaum and
Gregg C. Collins, editors,Proc. of the 8th Intern. Work-
shop on Machine Learning, pages 173–177. Morgan Kauf-
mann, 1991.

[Medinet al., 1993] Douglas L. Medin, Robert L. Gold-
stone, and Dedre Gentner. Respects for similarity.Psy-
chological Review, 100(2):254–278, 1993.

[Porteret al., 1990] Bruce W. Porter, Ray Bareiss, and
Robert C. Holte. Concept learning and heuristic classi-
fication in weak-theory domains.Artificial Intelligence,
45(1-2):229–263, 1990.

[Richter, 1995] Michael Richter. The knowledge contained
in similarity measures. Invited talk at ICCBR-95, 1995.

[Richter, 2003] Michael M. Richter. Fallbasiertes
Schliessen. Informatik Spektrum, 3(26):180–190,
2003.

[Riedmilleret al., 2003] Martin Riedmiller, Arthur Merke,
W. Nowak, M. Nickschas, and Daniel Withopf. Brain-
stormers 2003 - team description. In Daniel Polani, An-
drea Bonarini, Brett Browning, and Kazuo Yoshida, edi-
tors,Pre-Proceedings of RoboCup 2003, 2003.

[Riley and Veloso, 2000] Patrick Riley and Manuela Veloso.
On behavior classification in adversarial environments. In
Lynne E. Parker, George Bekey, and Jacob Barhen, editors,
Distributed Autonomous Robotic Systems 4, pages 371–
380. Springer, 2000.

[Rogowski, 2004] Collin Rogowski. Model-based opponent-
modelling in domains beyond the prisoner’s dilemma. In
Mathias Bauer, Piotr Gmytrasiewicz, Gal A. Kaminka, and
David V. Pynadath, editors,Workshop on Modeling Other
Agents from Observations at AAMAS 2004, pages 41–48,
2004.

[Schaaf, 1994] Joerg W. Schaaf. Detecting gestalts in CAD-
plans to be used as indices. In Angi Voss, editor,FABEL
- Similarity concepts and retrieval methods, pages 73–84.
GMD, Sankt Augustin, 1994.

[Sproncket al., 2003] Pieter Spronck, Ida Sprinkhuizen-
Kuyper, and Eric Postma. Online adaptation of game
opponent AI in simulation and in practice. In Quasim
Mehdi and Norman Gough, editors,Proc. of the 4th In-
ter. Conf. on Intelligent Games and Simulation (GAME-
ON’03), pages 93–100, Belgium, 2003. EUROSIS.

[Steffens, 2002] Timo Steffens. Feature-based declarative
opponent-modelling in multi-agent systems. Master’s the-
sis, Institute of Cognitive Science Osnabrueck, 2002.

[Steffens, 2004] Timo Steffens. Virtual attributes from im-
perfect domain theories. In Brian Lees, editor,Proceed-
ings of the 9th UK Workshop on Case-Based Reasoning at
AI-2004, pages 21–29, 2004.

[Surma, 1994] Jerzy Surma. Enhancing similarity measure
with domain specific knowledge. InProceedings of the
Second European Conference on Case-Based Reasoning,
pages 365–371, Paris, 1994. AcknoSoft Press.

[Wendler, 2004] Jan Wendler. Recognizing and predicting
agent behavior with case-based reasoning. In Daniel
Polani, Andrea Bonarini, Brett Browning, and Kazuo
Yoshida, editors,RoboCup 2003: Robot Soccer World Cup
VII, Lecture Notes in Artificial Intelligence, pages 729–
738, Berlin, 2004. Springer.

[Wilke and Bergmann, 1996] Wolfgang Wilke and Ralph
Bergmann. Adaptation with the INRECA system. In Angi
Voss, editor,Proceedings of the ECAI 96 Workshop: Adap-
tation in CBR, 1996.

106

Using Model-Based Reflection to Guide Reinforcement Learning

Patrick Ulam
�
, Ashok Goel

�
, Joshua Jones

�
, and William Murdock

�

1. College of Computing, Georgia Institute of Technology, Atlanta, USA 30332
2. IBM Watson Research Center, 19 Skyline Drive, Hawthorne, USA 10532

pulam, goel, jkj@cc.gatech.edu, murdockj@us.ibm.com

Abstract

In model-based reflection, an agent contains a
model of its own reasoning processes organized
via the tasks the agents must accomplish and the
knowledge and methods required to accomplish
these tasks. Utilizing this self-model, as well as
traces of execution, the agent is able to localize
failures in its reasoning process and modify its
knowledge and reasoning accordingly. We apply
this technique to a reinforcement learning prob-
lem and show how model-based reflection can be
used to locate the portions of the state space over
which learning should occur. We describe an ex-
perimental investigation of model-based reflection
and self-adaptation for an agent performing a spe-
cific task (defending a city) in a computer war strat-
egy game called FreeCiv. Our results indicate that
in the task examined, model-based reflection cou-
pled with reinforcement learning enables the agent
to learn the task with effectiveness matching that of
hand coded agents and with speed exceeding that
of non-augmented reinforcement learning.

1 Introduction
In model-based reflection/introspection, an agent is endowed
with a self-model, i.e., a model of its own knowledge and rea-
soning. When the agent fails to accomplish a given task, the
agent uses its self-model, possibly in conjunction with traces
of its reasoning on the task, to assign blame for the failure(s)
and modify its knowledge and reasoning accordingly. Such
techniques have been used in domains ranging from game
playing [B. Krulwich and Collins, 1992], to route planning
[Fox and Leake, 1995; Stroulia and Goel, 1994; 1996], to as-
sembly and disassembly planning [Murdock and Goel, 2001;
2003]. It has proved useful for learning new domain con-
cepts [B. Krulwich and Collins, 1992], improving knowl-
edge indexing [Fox and Leake, 1995], reorganizing domain
knowledge and reconfiguring the task structure [Stroulia and
Goel, 1994; 1996], and adapting and transferring the domain
knowledge and the task structure to new problems [Murdock
and Goel, 2001; 2003].

However, [Murdock and Goel, 2001; 2003] also showed
in some cases model-based reflection can only localize the

causes for its failures to specific portions of its task structure,
but not necessarily identify the precise causes or the mod-
ifications needed to address them. They used reinforcement
learning to complete the partial solutions generated by model-
based reflection: first, the agent used its self-model to localize
the needed modifications to specific portions of its task struc-
ture, and then it used Q-learning within the identified parts of
the task structure to precisely identify the needed modifica-
tions.

In this paper, we evaluate the inverse hypothesis, viz.,
model-based reflection may be useful for focusing reinforce-
ment learning. The learning space represented by combi-
nations of all possible modifications to an agent’s reason-
ing and knowledge can be extremely large for reinforcement
learning to work efficiently. If, however, the agent’s self-
model partitions the learning space into much smaller sub-
spaces and model-based reflection localizes the search to spe-
cific subspaces, then reinforcement learning can be expedi-
ent. We evaluate this hypothesis in the context of game play-
ing in a highly complex, extremely large, non-deterministic,
partially-observable environment. This paper extends our ear-
lier work reported in [Ulam et al., 2004] which used only
model-based reflection.

2 Reinforcement Learning

Reinforcement learning (RL) is a machine learning technique
in which an agent learns through trial and error to maxi-
mize rewards received for taking particular actions in partic-
ular states over an extended period of time [Kaelbling et al.,
1996]. Given a set of environmental states

�
, and a set of

agent actions � , the agent learns a policy, � , which maps the
current state of the world ��� �

, to an action �	�
� , such
that the sum of the reinforcement signals � are maximized
over a period of time. One popular technique is Q-Learning.
In Q-Learning, the agent calculates Q-Values, the expected
value of taking a particular action in a particular state. The Q-
Learning update rule can be described as ��
�������������
�����������
����! #"%$'&)(+*,�.-/
��0����12�435��
���������� , where r is the reward
received for taking the action, "6$/& (*)�.-0
�������17� is the reward
that would be received by taking the optimal action after that,� is a parameter to control the learning rate, and is a param-
eter to control discounting.

107

2.1 Hierarchical Reinforcement Learning

Although reinforcement learning is very popular and has been
successful in many domains (e.g., [Tesauro, 1994]), its use is
limited in some domains because of the so-called curse of
dimensionality: the exponential growth of the state space re-
quired to represent additional state variables. In many do-
mains, this prevents the use of reinforcement learning with-
out significant abstraction of the state space. To overcome
this limitation, much research has investigated the use of hier-
archical methods of reinforcement learning. There are many
variants of hierarchical reinforcement learning most of which
are rooted the the theory of Semi-Markov decision processes
[Barto and Mahadevan, 2003]. Hierarchical reinforcement
learning techniques such as MAXQ value decomposition [Di-
etterich, 1998] rely on domain knowledge in order to deter-
mine the hierarchy of tasks that must be accomplished by the
agent, as does our approach. However, in our approach, the
agent uses model-based reflection to determine the portion of
the task structure over which the reward should be applied af-
ter task execution. Furthermore, many hierarchical methods
focus on abstractions of temporally extended actions for the
hierarchy [Sutton et al., 1999]; our approach uses the hierar-
chy to delimit natural partitions in non-temporally extended
tasks.

3 The FreeCiv Game

The domain for our experimental investigation is a popu-
lar computer war strategy game called FreeCiv. FreeCiv is
a multiple-player game in which a player competes either
against several software agents that come with the game or
against other human players. Each player controls a civi-
lization that becomes increasingly modern as the game pro-
gresses. As the game progresses, each player explores the
world, learns more about it, and encounters other players.
Each player can make alliances with other players, attack
the other players, and defend their own assets from them.
In the course of a game (that can take a few hours to play)
each player makes a large number of decisions for his civi-
lization ranging from when and where to build cities on the
playing field, to what sort of infrastructure to build within
the cities and between the civilizations’ cities, to how to de-
fend the civilization. FreeCiv provides a highly complex, ex-
tremely large, non-deterministic, partially-observable domain
in which the agent must operate.

Due the highly complex nature of the FreeCiv game, our
work so far has addressed only two separate tasks in the do-
main: Locate-City and Defend-City. Due to limitations of
space, in this paper we describe only the Defend-City task.
This task pertains to the defense of one of the agent’s cities
from enemy civilizations. This task is important to the cre-
ation of a general-purpose FreeCiv game playing agent in that
the player’s cities are the cornerstone in the player’s civiliza-
tion. This task is also common enough such that the agent
must make numerous decisions concerning the proper de-
fense of the city during the time span of a particular game.

4 Agent Model

We built a simple agent (that we describe below) for the
Defend-City task. The agent was then modeled in a vari-
ant of a knowledge-based shell called REM [Murdock, 2001]
using a version of a knowledge representation called Task-
Method-Knowledge Language (TMKL). REM agents written
in TMKL are divided into tasks, methods, and knowledge. A
task is a unit of computation; a task specifies what is done
by some computation. A method is another unit of computa-
tion; a method specifies how some computation is done. The
knowledge portion of the model describes the different con-
cepts and relations that tasks and methods in the model can
use and affect as well as logical axioms and other inferencing
knowledge involving those concepts and relations. Formally,
a TMKL model consists of a tuple
��4��� ��� � in which � is
a set of tasks, � is a set of methods, and � is a knowledge
base. The representation of knowledge (�) in TMKL is done
using using Loom, an off-the-shelf knowledge representation
(KR) framework. Loom provides not only all of the KR ca-
pabilities found in typical AI planning system (the ability to
assert logical atoms, to query whether a logical expression
holds in the current state, etc.), but also an enormous vari-
ety of more advanced features (logical axioms, truth main-
tenance, multiple inheritance, etc.). In addition, Loom pro-
vides a top-level ontology for reflective knowledge. Through
the use of a formal framework such as this, dependencies be-
tween the knowledge used by tasks as well as dependencies
between tasks themselves can be described in such a way that
an agent will be able to reason about the structure of the tasks.
A thorough discussion of TMKL can be found in [Murdock
and Goel, 1998].

Table 1 describes the functional model of the Defend-
City task as used by model-based reflection. The overall
Defend-City task is decomposed into two sub-tasks by the
Evaluate-then-Defend method. These subtasks are the eval-
uation of the defense needs for a city and the building of a
particular structure or unit at that city. One of the subtasks,
Evaluate-Defense-Needs, can be further decomposed through
the Evaluate-Defense method into two additional subtasks: a
task to check internal factors in the city for defensive require-
ments and a task to check for factors external to the imme-
diate vicinity of the city for defensive requirements. These
subtasks are then implemented at the procedural level for ex-
ecution as described below.

The Defend-City task is executed each turn that the agent
is not building a defensive unit in a particular city in order
to determine if production should be switched to a defensive
unit. It is also executed each turn that a defensive unit has
finished production in a particular city. The internal evalua-
tion task utilizes knowledge concerning the current number
of troops that are positioned in and around a particular city
to determine if the city has an adequate number of defenders
barring any extraneous circumstances. This is implemented
as a relation in the form of the evaluation of the linear ex-
pression: �����	��
'�
��/� �
����� where �����	��
'�
��/� is the number of
allies within radius � , � is the number of defenders in the city
and � is a threshold value. The external evaluation of a city’s
defenses examines the area within a specified radius around a

108

Table 1: TMKL Model of Defend-City Task
TMKL Model of the Defend-City Task

Task Defend-City
by Evaluate-Then-Build

makes City-Defended
Method Evaluate-Then-Build
transitions:

state: s1 Evaluate-Defense-Needs
success s2

state: s2 Build-Defense
success success

additional-result City-Defended, Unit-Built
Wealth-Built

Task Evaluate-Defense-Needs
input External/Internal-Defense-Advice

output Build-Order
by UseDefenseAdviceProcedure

makes DefenseCalculated
Method Evaluate-Defense-Needs
transitions:

state: s1 Evaluate-Internal
success s2

state: s2 Evaluate-External
success success

additional-result Citizens-Happy, Enemies-Accounted
Allies-Accounted

Task Evaluate-Internal
input Defense-State-Info

output Internal-Defense-Advice
by InternalEvalProcedure

makes Allies-Accounted, Citizens-Happy
Task Evaluate-External

input Defense-State-Info
output External-Defense-Advice

by ExternalEvalProcedure
makes Enemies-Accounted

Task Build-Defense
input BuildOrder

by BuildUnitWealthProcedure
makes Unit-Built, Wealth-Built

city for nearby enemy combat units. It utilizes the knowledge
of the number of units, their distance from the city, and the
number of units currently allocated to defend the city in order
to provide an evaluation of the need for additional defense.
This is also implemented as a relation in the form of the lin-
ear expression
��
�� ��
'�
��/���
�� � � where
��
�� ��
'�
��/� is
the number of enemies in radius � of the city,
 � is a thresh-
old value, and � is the number of defenders in the city. These
tasks produce knowledge states in the form of defense recom-
mendations that are then utilized by the task that builds the
appropriate item at the city. The Build-Defense task utilizes
the knowledge states generated by the evaluation subtasks,
knowledge concerning the current status of the build queue,
and the technology currently available to the agent to deter-

mine what should be built for a given iteration of the task.
The Build Defense task will then proceed to build a defen-
sive unit, either a warrior or a phalanx based on the technol-
ogy level achieved by the agent at that particular point in the
game, or wealth to keep the citizens of the city happy. The
goal of the Defend-City task is to provide for the defense of
a city for a certain number of years. The task is considered
successful if the city has not been conquered by opponents by
the end of this time span. If the enemy takes control of the
city the task is considered a failure. In addition, if the city
enters civil unrest, a state in which the city revolts because
of unhappiness, the task is considered failed. Civil unrest is
usually due the neglect of infrastructure in a particular city
that can be partially alleviated by producing wealth instead
of additional troops.

5 Experimental Setup
We compared four variations of the Defend-City agent to de-
termine the effectiveness of model-based reflection in guiding
reinforcement learning. These were a control agent, a pure
model-based reflection agent, a pure reinforcement learning
agent, and a reflection-guided RL agent. The agents are de-
scribed in detail below.

Each experiment was composed of 100 trials and each trial
was set to run for one hundred turns at the hardest difficulty
level in FreeCiv against eight opponents on the smallest game
map available. This was to ensure that the Defend-City task
would be required by the agent. The same random seed was
utilized in all the trials to ensure that the same map was used.
The random seed selected did not fix the outcome of the com-
bats, however. The Defend-City task is considered successful
if the city neither revolted nor was defeated. If the task was
successful no adaptation of the agent occurred. If the agent’s
city is conquered or the city’s citizens revolt, the Defend-City
task is considered failed. Execution of the task is halted and
adaptation appropriate to the type of agent is initiated. The
metrics measured in these trials include the number of suc-
cessful trials in which the city was neither defeated nor did
the city revolt. In addition, the number of attacks successfully
defended per game was measured under the assumption that
the more successful the agent in defending the city, the more
attacks it will be able to successfully defend against. The fi-
nal metric measured was the number of trials run between
failures of the task. This was included as a means of deter-
mining how quickly the agent was able to learn the task and
is included under the assumption that an agent with longer
periods between task failures indicate that the task has been
learned more effectively.

5.1 Control Agent
The control agent was set to follow the initial model of the
Defend-City task and was not provided with any means of
adaptation. The initial Defend-City model used in all agents
executes the Evaluate-External only looking for enemy units
one tile away from the city. The initial Evaluate-Internal task
only looks for defending troops in the immediate vicinity of
the city and if there are none will build a single defensive
unit. The control agent will not change this behavior over the
lifetime of the agent.

109

Table 2: State variables for RL Based Agents

Pure RL State Variables Additional State Variables Associated Sub-Task
�

1 Allies in City Evaluate-Internal
�

3 Allies in City Evaluate-Internal
�

6 Allies in City Evaluate-Internal
�

1 Allies Nearby Evaluate-Internal
�

2 Allies Nearby Evaluate-Internal
�

4 Allies Nearby Evaluate-Internal
�

1 Enemies Nearby Evaluate-External
�

3 Enemies Nearby Evaluate-External
�

6 Enemies Nearby Evaluate-External
Internal Recommend Evaluate-Defense
External Recommend Evaluate-Defense

Table 3: Failure types used in the Defend-City task
Model Location (task) Types of Failures
Defend-City Unit-Build-Error,

Wealth-Build-Error,
Citizen-Unrest-Miseval,
Defense-Present-Miseval,
Proximity-Miseval,
Threat-Level-Miseval,
None

Build-Defense Unit-Build-Error,
Wealth-Build-Error,
None

Evaluate-Internal Citizen-Unrest-Miseval,
Defense-Present-Miseval,
None

Evaluate-External Proximity-Miseval,
Threat-Level-Miseval,
None

5.2 Pure Model-Based Reflection Agent
The second agent was provided capabilities of adaption
based purely on model-based reflection. Upon failure of the
Defend-City task, the agent used an execution trace of the last
twenty executions of the task, and in conjunction with the cur-
rent model, it performed failure-driven model-based adapta-
tion. The first step is the localization of the error through
the use of feedback in the form of the type of failure, and
the model of the failed task. Using the feedback, the model
is analyzed to determine in which task the failure has oc-
curred. For example, if the the Defend-City task fails due to
citizen revolt the algorithm would take as input: the Defend-
City model, the traces of the last twenty executions of the
task, and feedback indicating that the failure was a result of
a citizen revolt in the city. The failure localization algorithm
would take the model as well as the feedback as input. As
a city revolt is caused by unhappy citizens, this information
can be utilized to help localize where in the model the fail-
ure may have occurred. This algorithm will go through the
model, looking for methods or tasks that result in knowledge
states concerning the citizens’ happiness. It will first locate

the method Evaluate-Defense-Need and find that this method
should result in the assertion Citizens-Happy. It will con-
tinue searching the sub-tasks of this method in order to find if
any sub-task makes the assertion Citizens-Happy. If not, then
the error can be localized to the Evaluate-Defense-Need task
and all sub-tasks below it. In this case, the Evaluate-Internal
task makes the assertion Citizens-Happy and the failure can
be localized to that particular task. An extensive discussion
on failure localization in model-based reflection can be found
in [Murdock, 2001]. Given the location in the model from
which the failure is suspected to arise, the agent then analyzes
the execution traces available to it to determine to the best of
its ability what the type of error occurred in the task execu-
tion through the use of domain knowledge. For this agent,
this is implemented through the use of a failure library con-
taining common failure conditions found within the Defend-
City task. An example of a failure library used in this task is
shown in Table 3. If a failure has been determined to have
occurred, it is then used to index into a library of adaptation
strategies that will modify the task in the manner indicated by
the library. These adaptations consist of small modifications
to the subtasks in the defend city tasks, such as changing the
Evaluate-External subtask to look for enemies slightly fur-
ther away. This is a slight variation on fixed value production
repair [Murdock, 2001], as instead of adding a special case
for the failed task, the agent replaces the procedure with a
slightly more general version. If multiple errors are found
with this procedure, a single error is chosen stochastically so
as to minimize the chance of over-adaptation of the agent.

5.3 Pure Reinforcement Learning Agent

The third agent used a pure reinforcement learning strategy
for adaptation implemented via Q-Learning. The state space
encoding used by this agent is a set of nine binary variables
as seen in Table 2. This allows a state space of 512 distinct
states. It should be noted, however, that not all states are
reachable in practice. The set of actions available to the agent
were: Build Wealth, Build Military Unit. The agent received
a reward of -1 when the the Defend-City task failed and a
reward of 0 otherwise. In all trials alpha was kept constant at
0.8 and gamma was set to 0.9.

110

Number of Failures

0

20

40

60

80

100

Control Model-

Based

Pure RL Model+RL

Type of Adaptation

F
a
il

u
re

s

Figure 1: Number of Failures

5.4 Reflection-Guided RL Agent

The final agent utilized model-based reflection in conjunction
with reinforcement learning. The Defend-City task model
was augmented with reinforcement learning by partitioning
the state space utilized by the pure reinforcement learning
agent into three distinct state spaces that are then associ-
ated with the appropriate sub-tasks of the Defend-City task.
This essentially makes several smaller reinforcement learn-
ing problems. Table 2 shows the states that are associated
with each sub-task. The Evaluate-External task is associated
with three binary state variables. Its actions are the equivalent
of the knowledge state produced via the Evaluate-External re-
lation in the pure model-based agent, namely a binary value
indicating if the evaluation procedure recommends that de-
fensive units be built. In a similar manner, Evaluate-Internal
is associated with six binary state variables as shown Table
2. The actions are also a binary value representing the rela-
tion used in the pure model-based agent. There are two ad-
ditional state variables in this agent that are associated with
the Evaluate-Defenses sub-task. The state space for this par-
ticular portion of the model are the outputs of the Evaluate-
External and Evaluate-Internal tasks and is hence two binary
variables. The actions for this RL task is also a binary value
indicating a yes or no decision on whether defensive units
should be built. It should be noted that while the actions of
the individual sub-tasks are different from the pure reinforce-
ment learning agent, the overall execution of the Defend-City
task results in two possible actions for all agents, namely an
order to build wealth or to build a defensive unit. Upon a
failure in the task execution, the agent initiates reflection in
a manner identical to the pure model-based reflection agent.
Utilizing a trace of the last twenty executions of the Defend-
City task as well as its internal model of the Defend-City task,
the agent localizes the failure to a particular portion of the
model as described in section 5.2. If an error in the task ex-
ecution is detected, instead of utilizing adaptation libraries
to modify the model of the task as in the pure model-based
reflection agent, the agent applies a reward of -1 to the sub-
task’s reinforcement learner as indicated via reflection. The
reward is used to update the Q-values of the sub-task via Q-
Learning at which point the adaptation for that trial is over. If
no error is found, then a reward of 0 is given to the appropri-
ate reinforcement learner. In all trials alpha was kept constant
at 0.8 and gamma was set to 0.9.

of Attacks Survived Per Trial

0

1

2

3

4

5

6

7

Control Model

Based

Pure RL Model+RL

Adaptation Method

#
 o

f
A

tt
a
c
k
s

Figure 2: Average Attacks Resisted

Average Trials beween Failures

0

1

2

3

4

5

1 3 5 7 9 11 13 15 17 19 21

Failures

T
ri

a
ls

 B
e
tw

e
e
n

 F
a
il

u
re

s

Control

RL

Model

Model+RL

Figure 3: Average Number of Trials Between Failures

6 Results and Discussion

Figure 1 depicts the number of trials in which a failure oc-
curred out of the one hundred trials run for each agent. The
more successful adaptation methods should have a lower fail-
ure rate. As can be seen from the results, the reflection-guided
RL agent proved most effective at learning the Defend-City
task, with a success rate of around twice that of the control
agent. The pure model-based reflection agent with the hand
designed adaptation library proved to be successful also with
a failure rate slightly higher then that of the reflection-guided
RL agent. The pure RL agent’s performance did not match
either of the other two agents in this metric, indicating that
most likely the agent had not had enough trials to successful
learn the Defend-City task. The pure reinforcement learning
agent’s failure rate did improve over that of the control, how-
ever, indicating that some learning did take place, but not at
the rate of either the pure model-based reflection agent or the
reflection-guided RL agent.

The second metric measured was the number of attacks
successfully defended by the agent in its city. This serves as
another means of determining how effectively the agent has
been able to perform the Defend-City task. The more attacks
that the agent was able to defend, the more successfully the
agent had learned to perform the task. The results from this
metric can be seen in Figure 2. Both the pure model-based
reflection and reflection-guided RL agent were able to defend
against an equal number of attacks per trial indicating that
both methods learned the task to an approximately equal de-
gree of effectiveness. The pure RL based agent performed
around twice as well as the control but was less then half
as effective as the model-based methods, once again lend-

111

ing support to the conclusion that the pure RL based agent is
hampered by its slow convergence times. This result, coupled
with the number of failures, provide significant evidence that
the model-based methods learned to perform the task with a
significant degree of precision. They not only reduced the
number of failures when compared to the control and pure
RL based agent, but were also able to defend the city from
more than twice as many attacks per trial.

Figure 3 depicts the average number of trials between
failures for the first twenty-five failures of each agent aver-
aged over a five trial window for smoothing purposes. This
metric provides a means of measuring the speed of conver-
gence of each of the adaptation methods. As can be seen,
the reflection-guided RL agent shows the fastest convergence
speed followed by the non-augmented model-based reflec-
tion. The pure RL did not appear to improve the task’s ex-
ecution until around the twelfth failed trial. After this point
the control and the pure RL inter-trial failure rate begin to
deviate slowly. Though not depicted in the figure, the perfor-
mance of the pure RL based agent never exceeded a inter-trial
failure rate of three even after all trials were run. This lends
further evidence to the hypothesis that pure RL cannot learn
an appropriate solution to this problem in the alloted number
of trials though it should be noted that the performance of
this agent did slightly outperform that of the control, indicat-
ing that some learning did occur. Surprisingly, the reflection-
guided RL agent outperformed the pure model-based agent in
this metric.

7 Conclusions

This work describes how model-based reflection may guide
reinforcement learning. In the experiments described, this
has been shown to have two benefits. The first is a reduction
in learning time as compared to an agent that learns the task
via pure reinforcement learning. The model-guided RL agent
learned the task described, and did so faster then the pure RL
based agent. In fact, the pure RL based agent did not converge
to a solution that equaled that of either the pure model-based
reflection agent or the reflection-guided RL agent within the
alloted number of trials. Secondly, the reflection-guided RL
agent shows benefits over the pure model-based reflection
agent, matching the performance of that agent in the metrics
measured in addition to converging to a solution in a fewer
number of trials. In addition, the augmented agent eliminates
the need for an explicit adaptation library such as is used in
the pure-model based agent and thus reduces the knowledge
engineering burden on the designer significantly. This work
has only looked at an agent that can play a small subset of
FreeCiv. Future work will focus largely on scaling up this
method to include other aspects of the game and hence larger
models and larger state spaces.

References
[B. Krulwich and Collins, 1992] L. Birnbaum B. Krulwich

and G. Collins. Learning several lessons from one experi-
ence. In Proceedings of the 14th Annual Conference of the
Cognitive Science Society, pages 242–247, 1992.

[Barto and Mahadevan, 2003] A. G. Barto and S. Mahade-
van. Recent advances in hierarchical reinforcement learn-
ing. Discrete Event Dynamic Systems, 13(4):341–379,
2003.

[Dietterich, 1998] Thomas G. Dietterich. The MAXQ
method for hierarchical reinforcement learning. In Pro-
ceedings of the Fifteenth International Conference on Ma-
chine Learning, pages 118–126, 1998.

[Fox and Leake, 1995] Susan Fox and David B. Leake. Us-
ing introspective reasoning to refine indexing. In Proceed-
ings of the Thirteenth International Joint Conference on
Artificial Intelligence, 1995.

[Kaelbling et al., 1996] Leslie P. Kaelbling, Michael L.
Littman, and Andrew P. Moore. Reinforcement learn-
ing: A survey. Journal of Artificial Intelligence Research,
4:237–285, 1996.

[Murdock and Goel, 1998] J. William Murdock and
Ashok K. Goel. A functional modeling architecture for
reflective agents. In AAAI-98 workshop on Functional
Modeling and Teleological Reasoning, 1998.

[Murdock and Goel, 2001] W. Murdock and A. K. Goel.
Meta-case-based reasoning: Using functional models to
adapt case-based agents. In Proceedings of the 4th Inter-
national Conference on Case-Based Reasoning, 2001.

[Murdock and Goel, 2003] W. Murdock and A. K. Goel. Lo-
calizing planning with functional process models. In Pro-
ceedings of the Thirteenth International Conference on
Automated Planning and Scheduling, 2003.

[Murdock, 2001] J. W. Murdock. Self-Improvement Through
Self-Understanding: Model-Based Reflection for Agent
Adaptation. PhD thesis, Georgia Institute of Technology,
2001.

[Stroulia and Goel, 1994] E. Stroulia and A. K. Goel. Learn-
ing problem solving concepts by reflecting on problem
solving. In Proceedings of the 1994 Euopean Conference
on Machine Learning, 1994.

[Stroulia and Goel, 1996] E. Stroulia and A. K. Goel. A
model-based approach to blame assignment: Revising the
reasoning steps of problem solvers. In Proceedings of
AAAI’96, pages 959–965, 1996.

[Sutton et al., 1999] Richard S. Sutton, Doina Precup, and
Satinder P. Singh. Between MDPs and semi-MDPs:
A framework for temporal abstraction in reinforcement
learning. Artificial Intelligence, 112:181–211, 1999.

[Tesauro, 1994] Gerald Tesauro. TD-Gammon, a self-
teaching backgammon program, achieves master-level
play. Neural Computation, 6(2):215–219, 1994.

[Ulam et al., 2004] P. Ulam, A. Goel, and J. Jones. Reflec-
tion in action: Model-based self-adaptation in game play-
ing agents. In AAAI Challanges in Game AI Workshop,
2004.

112

Abstract
The goal of this paper is to define a design space
for the control of multiple intelligent entities in
computer games and to begin to evaluate options in
this design space. While both finite state machine
and agent technologies have been used in games,
these approaches alone are usually insufficient to
meet the competing requirements of game AI. We
introduce new control options, based on heteroge-
neous application of existing technologies, entity
aggregation, and different controller points-of-
view. We then provide a preliminary evaluation of
these options against believability, multi-entity
scalability, knowledge scalability, and systems en-
gineering criteria. Several options that potentially
reduce the limitations of the individual approaches
and enhance their strengths are identified.

1 Introduction
Game players crave both intelligent entities to play with and
against and realistic worlds populated by large numbers of
diverse, intelligent characters. These desires are inherently
in conflict since, with fixed processing power, designers
must choose between fewer, but more complex entities or
greater numbers of less complex entities. The goal of this
paper is to examine the requirements and enabling technol-
ogy to increase the number of intelligent, synthetic entities
that can be fielded in desk-top computer games while main-
taining some degree of complex, intelligent entity behavior.

Typical game behavior technology often requires guidance
from human players (or “cheating”) to provide believable
performance. For example, in real-time strategy (RTS)
games, human players intervene and micro-manage individ-
ual entities when they reach tactically important decision
points (such as engagements with other entities) because the
entities generally lack the situation awareness and tactical
knowledge to act successfully themselves.

More advanced technology exists for behavior modeling
that can provide greater believability. For example, TacAir-
Soar, a virtual pilot, has flown with and against human pi-
lots in distributed simulation with full autonomy and believ-

able interaction (via simulated speech) [1]. The primary
limitation of this technology is its high computational over-
head, relative to the behavior technology typically used in
games. To fly hundreds of simulated TacAir-Soar entities,
one usually needs tens of workstations with current technol-
ogy. This requirement may be reasonable in distributed
simulation, but will not provide large numbers of realistic
entities in desk-top games.

Moore’s Law and specialized hardware may one day solve
this problem, just as these advances have reduced the com-
putational challenges of three-dimensional, real-time render-
ing in computer games. However, it may be possible today
to construct more believable systems by using combinations
and hybridizations of existing behavior technology. This
paper introduces a number of these options for the control of
individual entities in games. We further outline the tech-
nologies for controlling entities in games as well as factors
impacting their evaluation. We then describe a number of
additional options based on heterogeneous use of the tech-
nologies, entity aggregation, and different controller points-
of-view and discuss a preliminary evaluation of these op-
tions against the evaluation criteria.

2. Technologies for behavior representation
There are two general classes of technologies that have been
deployed to represent behaviors in computer games: simpler
approaches, such as finite state machines (FSMs), and agent
architectures.

2.1 Finite State Machines
FSMs are a frequently used control structure in computer
games for many reasons including: ease of implementation,
efficiency, familiarity of technology, predictability, and
player control. Ease of implementation allows rapid proto-
typing and enables more development iterations, producing
a more polished product. Efficiency is always important in
real-time systems; FSMs are lightweight and fast. Devel-
oper familiarity also helps with rapid prototyping; learning
to use FSMs is relatively easy. Predictability helps quality
assurance. Compared to other control schemes FSMs are
easier to test and validate. Player control leads to ‘gaming

The Design Space of Control Options for AIs in Computer Games

Robert E. Wray1, Michael van Lent2, Jonathan Beard1, Paul Brobst2
1Soar Technology

3600 Green Road Suite 600
Ann Arbor, MI 48105 USA

{wray,beard}@soartech.com

2Institute for Creative Technologies
University of Southern California

13274 Fiji Way
Marina del Rey, CA 90292 USA

{vanlent,brobst}@ict.usc.edu

113

the system.’ Once players learn reactions of the entities they
can use that information to their advantage. Some designers
use this aspect of FSMs deliberately in design making
“gaming the AI” part of the game experience.

Individual FSMs scale poorly as additional behaviors are
added. Further, coordination between the entities is often
desirable for increased believability. Entity coordination
increases the behavioral complexity greatly in FSMs and, as
the complexity of an FSM increases, the difficulty of au-
thoring, maintaining, and augmenting these systems in-
creases at a faster rate. Hierarchical state machines can be
used to alleviate poor scalability, but do not solve the prob-
lem. Due to the scalability challenge, entity behaviors
based on FSMs are usually fairly simple, which leads to
greater predictability. In entertainment, predictability can
cause boredom. In training uses of games, predictable enti-
ties can again allow a trainee to ‘game the system’ in ways
that negatively impact learning.

2.2 Agent Approaches
There are many different agent architectures; most share
some common functional capabilities that provide more run-
time flexibility and autonomy than FSM approaches:

Context-based reasoning/action: Control and decision
making in agent systems are based on the current situation,
which includes both the external situation and internally
recorded features (such as a history). Unlike FSMs, the
allowable transitions between “states” in agent-based sys-
tems are not prescribed at design time. The agent interprets
its situation from moment to moment and decides what ac-
tions should be considered based on that interpretation.

Least commitment/run-time decision making: Decisions
(commitments) in agent systems are postponed as long as
possible. Run-time decision-making gives the agent the
ability to collect and interpret its situation before making a
decision. Least commitment provides agent systems with
significant flexibility in behavior, and avoids the predict-
ability of behaviors that often results with FSMs.

Knowledge-based conflict resolution: An agent must be
able to choose among any available options. Conflict resolu-
tion mechanisms provide the means to make choices among
competing options. Critically, choices must be dependent
on the context as well. Thus, agent knowledge will not only
identify particular options, but will also provide help when
evaluating them.

Scalable knowledge bases: Run-time decision making and
knowledge-based conflict resolution generally require more
explicit agent knowledge than FSM approaches. The addi-
tional knowledge requirements then force a requirement on
the agent system to support large knowledge bases.

Learning: At least some agent architectures support learn-
ing. Learning can be used to improve reactivity (by compil-
ing reasoning), acquire new knowledge, and adapt to new
situations (new entity tactics).

Table 1: A comparison of FSM and agent technology.

Evaluation Dimensions FSMs Agents

Believability Low High

Multi-entity scalability High Low

Knowledge scalability Low High

Simplicity of systems engineering High Low

2.3 Evaluation dimensions for entity control
Both FSM and agent technology are important in game en-
vironments. However, they each bring individual strengths
and limitations to the representation of entity behavior in
those games. Table 1 lists four dimensions that are impor-
tant for computer games and a qualitative, comparative
evaluation of the technologies introduced above against
those dimensions. The dimensions are:

Believability: This dimension refers to the quality of be-
havior generated by the entities. Believability improves the
player’s immersion in the game experience and the likeli-
hood players will play against AIs repeatedly. In general,
agent technology offers the potential for greater believabil-
ity than FSMs, because the agent technology provides more
flexibility and variability for behavior representation.

Multi-entity scalability: This dimension measures the
maximum number of entities that can be represented in a
desktop game. The greater the scalability, the richer the
potential population of entities and interactions among them
and game players. FSMs, because of their relatively light
computational overhead, can support many more individual
entities than most agent systems.

Knowledge scalability: This dimension refers to the ability
of the technology to support an increasingly large knowl-
edge store. Knowledge scalability includes both the ability
to engineer increasingly large knowledge bases as well as
the ability to execute them efficiently. Games increasingly
require complex, on-going interactions among entities and
players. These interactions, in order to offer variable, un-
predictable, and believable experiences, require much
greater knowledge resources, including deeper and broader
domain knowledge and the ability to communicate and co-
ordinate with other entities and players. Agent technology
is generally designed to gracefully handle increasingly large
stores of knowledge and it often includes many encapsula-
tion and abstraction mechanisms to aid behavior developers
in managing larger knowledge stores. While FSMs do not
necessarily slow with increasing knowledge stores, they
become significantly more complex with large knowledge
stores. Most FSMs approaches offer only the state as a de-
sign abstraction, which can lead to combinatorial numbers
of states in behavior representation.

Simplicity of systems engineering: This dimension refers
to the ease of using a behavior system and integrating it with
a game environment. C0mplex integrations can signifi-

114

cantly slow software development and increase develop-
ment costs. FSMs generally provide simple integration and
some FSM developers provide tools to explicitly support
integration and behavior development in game environ-
ments [2]. Agent technologies generally do not yet provide
interfaces geared specifically for games (one exception is
Gamebots [3]), but increasingly offer tool suites to simplify
integration and support behavior development.

3. Control architectures for game AIs
The evaluation in Table 1 assumed that a single technology
was used for all entities in a game and each entity was rep-
resented with a single instance of each technology. How-
ever, there are a number of additional options that could be
considered when creating AIs for a game. In particular,
aggregating entities and/or using a combination of FSM and
agent technologies might offer a way to capitalize on the
strengths of the individual approaches and minimize their
weaknesses. We consider the following three dimensions in
the design space:

Implementation technology: The technology used to im-
plement behavior in the environment. For this analysis, we
assume the implementation technology is either FSMs or an
agent architecture or a heterogeneous mix of both technolo-
gies (other approaches to behavior representation could be
considered in future work).

Grain-size of the behavior representation: A single in-
stance of a behavior representation technology can be used
to control an individual entity or groups of entities. Aggre-
gated representations are common for vehicles (e.g., a tank
crew is typically represented as one agent or FSM). How-
ever, it might also be possible to group the control of related
entities together under a single control process, even when
the behavior of the single entities is distinct. We consider
two values in this analysis: single entity and aggregated
entities. We assume the level of aggregation is small (e.g.,
aggregation of a squad of 10 vs. the individual members of a
company of 100’s).

Controller point-of-view: Thus far, the point-of-view of
the control process was assumed to be that of an individual
entity. However, another common point-of-view in games
(especially RTS games) is that of the player or “com-
mander.” Typically, the commander perspective offers a
more global view of the game.

Table 2 lists the control options generated from the combi-
nation of the values for the dimensions proposed above.
The first two options correspond to the approaches to entity
representation in Sections 2.1 and 2.2. Other options are
described in Section 3, as noted in the table.

Some additional options are not discussed in the paper.
Option 4, in which an FSM is used to control an aggregation
of entities is not necessary because FSMs generally have
acceptable performance at the individual entity level. Be-
cause there is no advantage of aggregation for FSMs, option

6 is effectively identical to option 5, in which agent-
controlled entities are aggregated.

Table 2: Options for game AI control architecture.

 Point of
View

Grain-
size

Tech. Additional Notes

1 Entity Single FSM Typical approach;
see Section 2.1

2 Entity Single Agent Section 2.2

3 Entity Single Hetero Multiple control-
lers/entity; Sec.3.1

4 Entity Aggregate FSM Not needed; single
entity control is ok

5 Entity Aggregate Agent Multiple enti-
ties/agent control-
ler; Sec. 3.2

6 Entity Aggregate Hetero Not considered;
identical to #5

7 Command Single FSM Game player con-
trollers; Sec. 3.3

8 Command Single Agent Game player con-
trollers; Sec. 3.3

9 Command Single Hetero Game player con-
trollers; Sec. 3.3

10 Command Aggregate FSM Not considered;
single commander

11 Command Aggregate Agent Not considered;
single commander

12 Command Aggregate Hetero Not considered;
single commander

13 Mixed (either) Hetero Commander +
individual entity
control; Section
3.4

Options 10-12 (Command, Aggregate, *) are also not dis-
cussed. For this analysis, we assume that there is a single
player or commander for the entities in the game. While it
might be beneficial to populate the game with multiple
commanders (as discussed in Section 3.4), in most games,
there is only a single overall commander or player and thus
aggregation at the level of the commander is meaningless.

Finally, we have added a 13th option representing both a
mixed point of view (player and individual entities) and a
heterogeneous mix of implementation technologies. While
this mixed point-of-view could be considered with homoge-
neous implementation technologies, we focus on this option
because FSM and agent technologies are particularly well-
suited to the entity and commander points-of-view respec-
tively (detailed in Section 3.4).

115

3.1 Multiple controllers per entity
Option 3 in Table 2 combines both FSM and agent technol-
ogy for the control of individual entities. There are two
different ways in which this heterogeneous option could be
approached. Option 3a is to use agents and FSMs together
to control individual entities. Option 3b is to dynamically
switch between control technologies.

In option 3a, illustrated in Figure 1, agent reasoning could
focus on high level actions such as tactical behavior and
then execute this behavior by triggering specific FSMs de-
signed to accomplish the action. This approach is roughly
equivalent to the sequencing and reactive layers of 3T(iered)
architectures [4].

The option 3a approach does match both FSMs and agents
to appropriate levels of representation. For example, indi-
vidual FSMs could be used to execute low-level behaviors
such as navigation but need not be connected together to
form a complete set of entity behaviors. Agent execution
can focus on high level behaviors without decomposing
them to very fine-grained behaviors, which reduces the
overall representation requirements for the agent.

The primary drawback of this approach is that it requires the
computational overhead of both FSMs and agent technology
for each entity. Thus, it is unlikely to scale to games where
many entities are needed. To address this drawback, one
could design the system so that when the FSM was execut-
ing, the agent was “paused” and not consuming system re-
sources. This option may be worth additional exploration.
However, it requires solutions to the problem of maintaining
situation awareness when the agent component is sus-
pended. For example, if the agent initiated a move-to-x
FSM in a situation where the entity was not under fire, if the
entity comes under fire in the course of execution, the agent
needs to be aware of this new situation, in order to possibly
reconsider or interrupt the executing FSM.

Option 3b is to switch control of the entity from one type of
controller to another. In RTS games, human players inter-
vene and micro-manage individual entities when they reach
tactically important decision points (such as engagements
with other entities). FSMs entities often lack the situation
awareness and tactical knowledge to manage the situation
believably themselves. However, in other situations, the
human player is content to allow the built-in behaviors to
execute with little oversight, because the lack of believabil-
ity does not impact game outcomes. If an agent could be
triggered when the situation required more powerful reason-

ing, then an improved level of believability might be real-
ized when it really mattered. At any point in time, only a
subset of the total number of entities would need to be con-
trolled by agents, making the approach more scalable than
agents alone. This option is different than 3a because the
agent knowledge would cover all behavior when it was “ac-
tivated.” While not necessarily a drawback, it is not known
how and when to switch controllers and how computation-
ally demanding switching might be. In particular, the FSM
controller will need to save situation interpretation informa-
tion from the FSM and then communicate it to the newly
initiated agent, which could be resource intensive.

3.2 Multiple entities per agent controller
Figure illustrates option 5 from Table 2. There is a single
instance of an agent but the single instance controls multiple
entities simultaneously. Knowledge is represented much as
it is in the baseline option (2.2), so that the agent is reason-
ing about each individual entity in the system.

The main advantage of this approach is that it amortizes the
relatively high overhead cost of the agent architecture over
multiple entities. For example, a small number of entities
(~10) might be implemented with about the same perform-
ance cost as a single agent. This hypothesis assumes that
the entity knowledge representations are somewhat homo-

geneous across entities
(a squad of infantry).

This option would sim-
plify some knowledge
representation (e.g.,
behavior coordination
between aggregated
entities). The agent
would maintain aware-
ness of the state of a
collection of entities

and generate coordinated behaviors within the unit.

One challenge to this approach is to develop the knowledge
for organizing and controlling the team, because this knowl-
edge is often implicit in human systems and must be made
explicit in the knowledge encodings for the entities.

This option imposes some additional requirements on the
agent system. In particular, it must be capable of represent-
ing and pursuing multiple, simultaneous goals in parallel.
Without this capability present in the architecture, control
and task-switching algorithms between the entities must be
created by hand, using the knowledge representations of the
architecture. Without careful design, such as hand-shaking
protocols, it may be possible to enter deadlock situations
where two entities controlled by the architecture are each
awaiting actions from the other. It may also be possible to
create a general solution to manage multiple goals in single
goal systems. For example, Soar Technology has developed
a behavioral design pattern [5] for individual Soar agents
that allows an agent using declared (non-architectural) goals

Figure 1: Using multiple controllers/entity (Opt. 3a).

Figure 2: Using a single agent
to control multiple entities.

116

to create and manage multiple hierarchical decompositions
of goals in agent memory.

3.3 Game player controllers
This section reviews options 7-9 from Table 2. Control is
initiated from a commander’s point of view, comparable to
the role and actions a human player takes in RTS games

Categorical examples of this approach are chess playing
programs. A chess program takes the global battlefield
view and (a good program) takes into account the specific
situations of all the individual entities when making deci-
sions. Individual entities are fully controlled by the player,
who dictates if, when, and where an entity will act.

In chess, however, individual entities (pieces) do not need
any local autonomy. The environmental complexity and
richness of most current computer games, however, makes
the computational demands of determining actions for each
entity and the communicating those commands to the game
infeasible from just the point-of-view of the commander.
These options are similar to the aggregation options in Sec-
tion 3.2, but the level of aggregation is over all entities.

3.4 Commander + individual entity control
Option 13 in Table 2 represents a combination of both the
commander and single entity points-of-view. Just like a
human RTS player, the commander in this option employs
other controllers to execute behavior at the entity level. We
assume the commander is implemented with agent technol-
ogy and the individual entities as FSMs. This approach
capitalizes on the knowledge scalability strengths of agent
technology, which is important for the commander as it in-
terprets the overall situation and considers tactical decisions,
and the multi-entity scalability of FSMs, which control the
many individual entities in the game. This approach has
been used at ICT in the Adaptive Opponent project [6] and
at Soar Technology in a command and control simulation
[7]. In the Soar Tech simulation, 5 Soar agents lead a com-
pany of about 100 FSM entities. This approach is also
comparable to the approach to coordination and teamwork
in the JACK agent architecture [8].

Likely limitations of this approach are increased communi-
cation bandwidth and possibly a lower level of believability
of individual entities. The commander agent will issue
many orders to the individual FSM entities, especially at
times when a high degree of coordination or interaction is
necessary. The communication bandwidth requirements can
then become the limiting factor in performance. For exam-
ple in the command and control application mentioned
above, the additional cost of communication limited the
addition of more FSM entities. Communication latencies
and the limited capacity of the commander to respond im-
mediately to every entity also may limit the believability of
the overall system. Without commander input, believability
of individual FSM entities is generally low (Table 1). The
open question is whether the addition of the commander can
significantly improve believability by “filling in” some of

the missing capabilities of the FSM and in, doing so,
whether the overall scalability of the system is maintained.

4. Initial evaluation of new control options
Figure 3 summarizes each option in comparison to the tech-
nology evaluation criteria introduced in Section 2. Each
option is cast relative to FSM and agent technologies, based
on the discussion of possible strengths and limitations in
Section 3. These evaluations are preliminary and further
analysis is planned.

Believability: Both options 3 and 5 should provide in-
creased believability over FSMs, because they employ the
more flexible agent technology at the entity level. We sug-
gest option 3 may provide increased believability over op-
tion 5 because the control algorithms needed for option 5
may force some serialization in behavior. Option 13 can
only be placed into the believability spectrum with empiri-
cal analysis. The key question is the extent to which the
commander’s oversight can lessen the believability limita-
tions of the individual entity FSM controllers. However,
regardless of the impact of the commander, it is doubtful
that believability comparable to single entity, single agent
controllers could be achieved.

Multi-entity scalability: Both options 3 and 5 are likely to
scale only marginally better than agent controllers alone,
because they depend on individual (or aggregate) agent con-
trollers. Option 13, which introduces a single (or a few)
commander agents along with FSM entity controllers should
scale very well, comparable to FSM technology alone.

Knowledge scalability: Options 3 and 13 should both scale
well in terms of the richness of individual entity knowledge
representations. Option 3 uses agent systems to represent
high level tactical knowledge including coordination, com-
munication and teamwork. Option 13 leverages the addi-
tional commander agent(s) to improve overall knowledge
scalability of the system. Individual FSMs remain relatively
simple while increasing overall behavioral sophistication.
Option 5 should scale reasonably well, but an unknown is
the complexity of the algorithms used for switching between
agents and the extent to which underlying agent architec-
tures can naturally support these algorithms.

Simplicity of systems engineering: Both options 3 and 5
are likely to be more complex (and thus lower on the sim-
plicity scale) than individual agent controllers. Option 3
requires one to develop a solution that integrates agent and
FSM controllers. Option 5 requires the development of the
switching algorithms and interfaces to each individual entity
in the aggregate. In contrast to these approaches, Option 13
is relatively simple. It does add agent controllers, but only
one (or a few). There is a natural knowledge representation
for these entities, corresponding to knowledge a player uses
when playing the game. Option 13 does require the addition
of communication infrastructure between the commander
and the FSM controlled entities.

117

Based on this analysis, the commander + individual entity
control (Option 13) appears to be the most promising option
to explore, because it is the only option to appear on the
“high side” of the evaluation dimensions at least three times.
Developing multiple, heterogeneous controllers/individual
entity (Option 3) may also be a reasonable option to pursue.
If general, reusable interfaces between FSMs and agent
technologies can be developed, this would lessen the nega-
tive impact of simplicity in its evaluation. Option 5 does
not appear very promising, as the increased complexity of
the system does not appear to offer clear benefits elsewhere.
However, if the switching algorithms turned out to be rela-
tively simple and the agent architecture directly supported
multiple, simultaneous goals, then both believability and
knowledge scalability might be more akin to those of indi-
vidual agent controllers and make this option more viable.

5. Conclusions
This paper has introduced a number of different options for
achieving large numbers of believable, knowledge rich
agents using technologies that are relatively easy to inte-
grate with game environments. We provided a preliminary
comparative evaluation of the options. Empirical evaluation
is needed to determine the exact properties of each option
but the evaluation here prioritizes the different options and
suggests questions to ask in an empirical evaluation.

The evaluation dimensions are concerned with the effect on
gameplay and game production. Different or additional
criteria may be appropriate for different uses of games. For
example, in training environments, rather than believability
(a subjective, vague concept), fidelity with human behavior
might be more important than other dimensions.

Finally, we evaluated only two technologies, the finite state
machines typical of modern computer game AIs and agent
architectures. Other technologies could also be evaluated
against the dimensions proposed here and, importantly, new
options generated via the combination of promising tech-
nologies with FSMs and agents.

Acknowledgements
The project or effort depicted is sponsored by the U.S.
Army Research, Development, and Engineering Command
(RDECOM), and that the content of the information does
not necessarily reflect the position or the policy of the Gov-
ernment, and no official endorsement should be inferred.

References
[1] R. M. Jones, J. E. Laird, P. E. Nielsen, K. J. Coulter, P.

G. Kenny, and F. V. Koss, "Automated Intelligent Pi-
lots for Combat Flight Simulation," AI Magazine, vol.
20, pp. 27-42, 1999.

[2] R. Houlette, D. Fu, and R. Jensen, "Creating an AI
Modeling Application for Designers and Developers,"
presented at AeroSense-2003 (Proceedings SPIE Vol.
5091), Orlando, 2003.

[3] R. Adobbati, A. N. Marshall, G. Kaminka, A. Scholer,
and S. Tejada, "Gamebots: A 3D Virtual World Test-
Bed For Multi-Agent Research," presented at 2nd In-
ternational Workshop on Infrastructure for Agents,
MAS, and Scalable MAS, Montreal, Canada, 2001.

[4] R. P. Bonasso, R. J. Firby, E. Gat, D. Kortenkamp, D.
P. Miller, and M. G. Slack, "Experiences with an Archi-
tecture for Intelligent, Reactive Agents," Journal of Ex-
perimental and Theoretical Artificial Intelligence, vol.
9, pp. 237-256, 1997.

[5] G. Taylor and R. E. Wray, "Behavior Design Patterns:
Engineering Human Behavior Models," presented at
2004 Behavioral Representation in Modeling and Simu-
lation Conference, Arlington, VA, 2004.

[6] M. van Lent, M. Riedl, P. Carpenter, R. McAlinden,
and P. Brobst, "Increasing Replayability with Delibera-
tive and Reactive Planning," presented at Artificial In-
telligence and Interactive Digital Entertainment Con-
ference, Marina del Rey, CA, 2005.

[7] S. Wood, J. Zaientz, J. Beard, R. Frederiksen, and M.
Huber, "CIANC3: An Agent-Based Intelligent Interface
for the Future Combat System," presented at 2003 Con-
ference on Behavior Representation in Modeling and
Simulation (BRIMS), Scottsdale, Arizona, 2003.

[8] N. Howden, R. Rönnquist, A. Hodgson, and A. Lucas,
"JACK: Summary of an Agent Infrastructure," pre-
sented at Workshop on Infrastructure for Agents, MAS,
and Scalable MAS at the Fifth International Conference
on Autonomous Agents, Montreal, Canada, 2001.

Figure 3: Prospective summary of options in com-
parison to evaluation dimensions in Table 1.

118

A Scheme for Creating Digital Entertainment with Substance

Georgios N. Yannakakis and John Hallam
Mærsk Mc-Kinney Møller Institute

for Production Technology
University of Southern Denmark

Campusvej 55, DK-5230, Odense M
{georgios;john}@mip.sdu.dk

Abstract

Computer games constitute a major branch of the
entertainment industry nowadays. The financial
and research potentials of making games more ap-
pealing (or else more interesting) are more than im-
pressive. Interactive and cooperative characters can
generate more realism in games and satisfaction for
the player. Moreover, on-line (while play) machine
learning techniques are able to produce characters
with intelligent capabilities useful to any game’s
context. On that basis, richer human-machine in-
teraction through real-time entertainment, player
and emotional modeling may provide means for
effective adjustment of the non-player characters’
behavior in order to obtain games of substantial
entertainment. This paper introduces a research
scheme for creating NPCs that generate entertain-
ing games which is based interdisciplinary on the
aforementioned areas of research and is founda-
tionally supported by several pilot studies on test-
bed games. Previous work and recent results are
presented within this framework.

1 Introduction
While game development has been concentrated primarily on
the graphical representation of the game worlds, minor fo-
cus has been given to non-player characters’ (NPCs’) behav-
ior. Simple scripted rules and finite-state or fuzzy-state ma-
chines are still used to control NPCs in the majority of games
[Woodcock, 2001; Cass, 2002]. The increasing number of
multi-player online games (among others) is an indication
that humans seek more intelligent opponents and richer inter-
activity. Advanced artificial intelligence techniques are able
to improve gaming experience by generating intelligent inter-
active characters and furthermore cover this human demand
[Funge, 2004]. Moreover, computational power may bring
expensive innovative AI techniques such as machine learning
to meet a game application in the near future.

Game players seek continually for more enjoyable games
as they spent 3.7 days per week playing an average of 2.01
hours per day[Rep, 2002], as stressed in[Fogelet al., 2004],
and this interest should somehow be maintained. It is only
very recently that game industry has begun to realize the great

(financial) importance of stronger AI in their products. Boon
[2002] stresses that the most common complaint that gamers
have is that the game is too short. However, as Boon claims,
rather than making games longer game developers should fo-
cus on making games more interesting and appealing to both
hard-core and soft-core gamers.

Intelligent interactive opponents can provide more enjoy-
ment to a vast gaming community of constant demand for
more realistic, challenging and meaningful entertainment
[Fogelet al., 2004]. However, given the current state-of-the-
art in AI in games, it is unclear which features of any game
contribute to the satisfaction of its players, and thus it is also
uncertain how to develop enjoyable games. Because of this
lack of knowledge, most commercial and academic research
in this area is fundamentally incomplete.

In this paper, a general scheme for obtaining digital en-
tertainment of richer interactivity and higher satisfaction is
presented. On that basis, previous achievements within this
framework are outlined and new promising results that rein-
force our intentions are portrayed. The challenges we con-
sider within the proposed scheme are to provide qualitative
means for distinguishing a game’s enjoyment value and to
develop efficient tools to automatically generate entertain-
ment for the player. In that sense, investigation of the fac-
tors/criteria that map to real-time enjoyment for the player as
well as the mechanisms that are capable of generating highly
entertaining games constitute our primary aims. The levels
of human-game interaction that we consider in this work are
focused on the player’s actions and basic emotions and their
impact to the behavior of the NPCs.

2 Related Work
This section presents a literature review on the interdisci-
plinary research fields that the proposed scheme attempts to
combine. These include entertainment metrics for computer
games; on-line adaptive learning approaches; user modeling
and player’s emotional flow analysis in computer games.

2.1 Entertainment metrics
Researchers in the AI in computer games field are based
on several empirical assumptions about human cognition
and human-machine interaction. Their primary hypothesis
is that by generating human-like opponents[Freedet al.,

119

2000], computer games become more appealing and enjoy-
able. While there are indications to support such a hypothesis
(e.g. the vast number of multi-player on-line games played
daily on the web) and recent research endeavors to investi-
gate the correlation between believability of NPCs and satis-
faction of the player[Taatgenet al., 2003], there has been no
evidence that a specific opponent behavior generates more or
less interesting games.

Iida’s work on measures of entertainment in board games
was the first attempt in this area. He introduced a general met-
ric of entertainment for variants of chess games depending on
average game length and possible moves[Iida et al., 2003].
On that basis, some endeavors towards the criteria that col-
lectively make simple online games appealing are discussed
in [Crispini, 2003]. The human survey-based outcome of this
work presents challenge, diversity and unpredictability as pri-
mary criteria for enjoyable opponent behaviors.

2.2 On-Line Adaptive Learning
There is a long debate on which form of learning is the
most appropriate and feasible for a computer game appli-
cation. In between off-line and on-line learning, the latter
can be slow and lead to undesired and unrealistic behavior
but it can demonstrate adaptive behaviors. Off-line learn-
ing is more reliable but it generally generates predictable be-
haviors [Manslow, 2002; Champandard, 2004]. However,
researchers have shown that on-line learning in computer
games is feasible through careful design and efficient learning
methodology[Demasi and de O. Cruz, 2002; Johnson, 2004;
Ponsen and Spronck, 2004; Stanleyet al., 2005].

2.3 User Modeling in Computer Games
Player modeling in computer games and its beneficial out-
comes have recently attracted the interest of a small but
growing community of researchers and game developers.
Houlette’s[2004] and Charles’ and Black’s[2004] work on
dynamic player modeling and its adaptive abilities in video
games constitute representative examples in the field. Ac-
cording to[Houlette, 2004], the primary reason why player
modeling is necessary in computer games is in order to rec-
ognize the type of player and allow the game to adapt to the
needs of the player. Many researchers have recently applied
such probabilistic network techniques for player modeling
on card[Korb et al., 1999] or board games ([Vomlel, 2004]
among others) in order to obtain adaptive opponent behaviors.

2.4 Real-time Emotional Flow
For modeling the player’s emotions real-time, we gain inspi-
ration primarily from the work of Kaiser et al.[1998]. They
attempted to analyze emotional episodes, facial expressions
and feelings — according to the Facial Coding Action System
[Eckman, 1979] — of humans playing a predator/prey com-
puter game similar to Pac-Man[Kaiser and Wehrle, 1996].

3 The Scheme
As previously mentioned, given the current state-of-the-art in
AI in games, it is unclear which features of any game con-
tribute to the enjoyment of its players, and thus it is also

doubtful how to generate enjoyable games. Research endeav-
ors aiming to do this without clear understanding of what fac-
tors yield enjoyable gaming experience will inevitably be un-
successful.

In order to bridge the current gap between human des-
ignation of entertainment and interest generated by com-
puter games and to find efficient and robust paths in ob-
taining appealing games, there is a need for an intensive
and interdisciplinary research within the areas of AI, human-
computer interaction and emotional and cognitive psychol-
ogy. We therefore aim at exploring the novel directions
opened by previous work on introducing entertainment mea-
surements and adaptive on-line learning tools for generating
interesting computer games[Yannakakis and Hallam, 2004a;
2005b]. The long-term target of this work is to reveal the di-
rect correlation between the player’s perceived entertainment
(I), his/her playing strategy (style)(U) and his/her emotional
state(E) — see Figure 1. Such a perspective will give in-
sights into how a game should adapt to and interact with hu-
mans, given their emotional state and playing skills, in or-
der to generate high entertainment. Towards this purpose,
an innovative computer game will be developed, based on an
interactive system that will allow one to study the ongoing
processes of situated game state, the user’s playing style and
emotional flow.

The steps towards meeting our objectives are described in
the following sections (see Figure 1). Previous and recent
research achievements at each part of the proposed scheme
are also presented.

4 Enjoyable Cooperative Opponents
Cooperation among multiple game characters portrays intel-
ligent behavior and exhibits more enjoyment for the player.
From that perspective, teamwork is a desired gaming oppo-
nent behavior. We therefore experiment with games of mul-
tiple opponents where cooperative behaviors could be gener-
ated and studied.

A set of games that collectively embodies all the above-
mentioned environment features is the predator/prey genre.
We choose predator/prey games as the initial genre of our
game research[Yannakakiset al., 2004; Yannakakis and Hal-
lam, 2004a] since, given our aims, they provide us with
unique properties. In such games we can deliberately abstract
the environment and concentrate on the characters’ behavior.
The examined behavior is cooperative since cooperation is a
prerequisite for effective hunting behaviors. Furthermore, we
are able to easily control a learning process through on-line
interaction. In other words, predator/prey games offer a well-
suited arena for initial steps in studying cooperative behav-
iors generated by interactive on-line learning mechanisms.
Other genres of game (e.g. first person shooters) offer sim-
ilar properties and will be studied later so as to demonstrate
the methodology’s generality over different genres of game.

4.1 Interest Metric
In order to find an objective measure of real-time entertain-
ment (i.e. interest) in computer games we first need to em-
pirically define the criteria that make a specific game inter-
esting. Then, second, we need to quantify and combine all

120

Figure 1: The proposed scheme.

these criteria in a mathematical formula. Subsequently, test-
bed games should be tested by human players to have this
formulation of interest cross-validated against the interest the
game produces in real conditions. To simplify this procedure
we will ignore the graphics’ and the sound effects’ contri-
butions to the interest of the game and we will concentrate
on the opponents’ behaviors. That is because, we believe,
the computer-guided opponent character contributes the vast
majority of qualitative features that make a computer game
interesting. The player, however, may contribute to its en-
tertainment through its interaction with the opponents of the
game and, therefore, it is implicitly included in the interest
formulation presented here.

In [Yannakakis and Hallam, 2004a], we introduced the cri-
teria that collectively define entertainment in predator /prey
games. According to these criteria a game is interesting
when: a) it is neither easy nor difficult to play; b) the oppo-
nents’ behavior is diverse over the game and c) the opponents
appear as they attempt to accomplish their predator task via
uniformly covering the game environment. The metrics for
the above-mentioned criteria are given byT (difference be-
tween maximum and average player’s lifetime over N games
— N is 50),S (standard deviation of player’s lifetime over N
games) andE{Hn} (stage grid-cell visit average entropy of
the opponents over N games) respectively. All three criteria
are combined linearly (1)

I =
γT + δS + εE{Hn}

γ + δ + ε
(1)

whereI is the interest value of the predator/prey game;γ, δ
andε are criterion weight parameters.

By using a predator/prey game as a test-bed, the interest
value computed by (1) proved to be consistent with the judge-

ment of human players[Yannakakis and Hallam, 2005b].
In fact, human player’s notion of interestingness seems to
highly correlate with theI value. Moreover, given each sub-
ject’s performance (i.e. score), it is demonstrated that humans
agreeing with the interest metric do not judge interest by their
performance. Or else, humans disagreeing with the interest
metric judge interest by their score or based on other criteria
like game control and graphics.

The metric (1) can be applied effectively to any preda-
tor/prey computer game because it is based on generic fea-
tures of this category of games. These features include the
time required to kill the prey as well as the predators’ en-
tropy throughout the game field. We therefore believe that
this metric — or a similar measure of the same concepts
— constitutes a generic interest approximation of preda-
tor/prey computer games. Evidence demonstrating the inter-
est metric’s generality are reported in[Yannakakis and Hal-
lam, 2004b; 2005a] through experiments on dissimilar preda-
tor/prey games. Moreover, given the two first interest criteria
previously defined, the approach’s generality is expandable
to all computer games. Indeed, no player likes any com-
puter game that is too hard or too easy to play and, further-
more, any player would enjoy diversity throughout the play of
any game. The third interest criterion is applicable to games
where spatial diversity is important which, apart from preda-
tor/prey games, may also include action, strategy and team
sports games according to the computer game genre classifi-
cation of Laird and van Lent[2000].

4.2 On-Line Learning
The next step we consider in our approach is to enhance the
entertainment value of the examined computer game play-
ers based on the above-mentioned interest metric. This is

121

0 200 400 600 800 1000 1200
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

Games

In
te

re
st

CB PacMan
RB PacMan
ADV PacMan

Figure 2: Game interest (average and confidence interval val-
ues) over the number of OLL games against different types
of Pac-Man player. For reasons of computational effort,
the OLL procedure continues for a number of games, large
enough to illustrate the mechanism’s behavior, after a game
of high interest (I ≥ 0.7) is found.

achieved collectively through evolutionary learning oppo-
nents via on-line interaction. We use an evolutionary machine
learning mechanism which is based on the idea of heteroge-
neous cooperative opponents that learn while they are playing
against the player (i.e. on-line). The mechanism is initial-
ized with some well-behaved opponents trained off-line and
its purpose is to improve the entertainment perceived by the
player. More comprehensively, at each generation of the al-
gorithm:

Step 1: Each opponent is evaluated periodically via an indi-
vidual reward function, while the game is played.

Step 2: A pure elitism selection method is used where only a
small percentage of the fittest solutions is able to breed.
The fittest parents clone a number of offspring.

Step 3: Offspring are mutated.

Step 4: The mutated offspring are evaluated briefly in off-
line mode, that is, by replacing the least-fit members of
the population and playing a short off-line game against
a selected computer-programmed opponent. The fitness
values of the mutated offspring and the least-fit members
are compared and the better ones are kept for the next
generation.

The algorithm is terminated when a predetermined number
of generations has elapsed or when theI value has reached
high values. Successful applications of this algorithm have
demonstrated its generality over predator/prey variants[Yan-
nakakis and Hallam, 2004b]; game complexity, game envi-
ronment topology, playing strategy and initial opponent be-
havior [Yannakakis and Hallam, 2005a]. Figure 2 illustrates
an example of the adaptability and robustness that on-line
learning (OLL) demonstrates in a predator/prey game (a mod-
ified version of Pac-Man).

0 20 40 60 80 100
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

Performance

In
te

re
st

5 Dogs
4 Dogs
3 Dogs

Figure 3: Scatter plot ofI and opponent (Dog) performance
(P) value instances for variants of the Dead End preda-
tor/prey game.

For justifiable and realistic character behaviors we fol-
low the animat approach as far as the control of the oppo-
nents is concerned. Consequently, we require opponents that
demonstrate emergent cooperative behaviors whose inter-
communication is based on indirect (implicit) and non-global
(partial) information of their game environment.

Figure 3 illustrates a test-bed game application of OLL
where the above-mentioned goal is achieved. Given the in-
terest criteria, behaviors of high performance ought to be
sacrificed for the sake of highly entertaining games. Con-
sequently, there has to be a compromise betweenP (perfor-
mance) andI values. However, as seen in Figure 3, team-
work features within the opponents (Dogs in the game of
‘Dead End’ as introduced in[Park, 2003] and[Yannakakiset
al., 2004]) behavior are maintained when interesting games
emerge through the on-line learning mechanism. It appears
that the most interesting games require a performance (50 <
P < 70 approximately) which is not achievable without co-
operation. Thus, teamwork is present during on-line learning
and it furthermore contributes to the emergence of highly in-
teresting games.

5 Player Modeling
The subsequent step to take is to study the players’ contri-
bution to their emergence of entertaining games as well as
to investigate the relation between the player’s type and the
generated interest. We do that by investigating Player Mod-
eling (PM) mechanisms’ impact on the game’s interest when
it is combined with on-line adaptive learning procedures. By
recording players’ actions real-time we dynamically model
the player and classify him/her into a player typeU (see Fig-
ure 1), which will determine features of the AI adaptive pro-
cess (e.g. on-line learning mechanism).

More specifically, we use Bayesian Networks (BN), trained
on computer-guided player data, as a tool for inferring ap-
propriate parameter values for the chosen OLL mechanism.
On-line learning is based on the idea of opponents that learn
while they are playing against the player which, as previously

122

0 20 40 60 80 100 120 140 160 180 200
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

Games

In
te

re
st

PM−OLL
OLL

Figure 4: Adaptability test in the Pac-Man game: Random
selection of hand-programmed strategies for the player every
10 games.

noted, leads to games of high interest. However, there are
a number of parameters and a set of machine learning vari-
ants that strongly influence the performance of the on-line
learning mechanism. Naive selection of the method and its
parameter values may result in disruptive phenomena on the
opponents’ controllers and lead to unrealistic behavior.

A BN-based mechanism designed to lead to more care-
ful OLL parameter value selection and furthermore to an in-
creasingly interesting game is presented in[Yannakakis and
Maragoudakis, 2005]. Results obtained show that PM pos-
itively affects the OLL mechanism to generate more enter-
taining games for the player. In addition, this PM-OLL com-
bination, in comparison to OLL alone, demonstrates faster
adaptation to challenging scenarios such as frequent changes
of playing strategies (see Figure 4).

6 Player’s Emotional Flow
The proposed scheme’s part of future work includes the
recording of players’ behavior real-time by visual means in
order to model their dynamical emotional flowE through fa-
cial coding procedures. Real-time video data obtained from
that environment will be analyzed through automatic face de-
tection and the derived facial expressions will be classified to
map basic emotions through algorithms based on the Facial
Action Coding System[Eckman, 1979]. This procedure will
effectively expose the relation of the player’s emotional flow
and his/her real-time entertainment which defines one of the
objectives of this work. Accordingly, given this relation, the
linkage between basic human emotions and features of the
on-line adaptive learning will be revealed.

7 AI server and Game test-beds
There is already much evidence for the effectiveness, ro-
bustness and adaptability of both OLL and PM mechanisms.
However, more complex cooperative games will demonstrate
the generality of the methodology over different genres of

games. Open source platform, multi-opponent, popularity
and on-line gaming potential are the basic game selection
criteria, which leave space for FPS and/or real-time strategy
(RTS) games.

To cope with the high computational effort, an on-line web
server that will host all AI processes (e.g. on-line adaptive
learning) needs to be constructed (see Figure 1). The server
will monitor game features (e.g. player’s actions), reinforce
the AI with its real-time generated interestI and adjust the
opponent behavior back to the game.

8 Conclusions & Discussion
In this paper we portrayed a scheme for obtaining computer
games of richer interactivity and higher entertainment by fo-
cusing on the real-time adjustment of the opponent’s con-
troller. New unreported results on predator/prey game test-
beds demonstrate the effectiveness and fast adaptability of the
method in its endeavor to increase the entertainment value of
the game and provide further evidence for its successful ap-
plication to the other genres of game. However, in order for
the proposed scheme to be complete, there are still steps that
need to be taken towards the automatic recognition of basic
emotions of players and their interactivity with the on-line
adaptive learning procedures.

The potential of the proposed scheme lies in its innovative
endeavor to bring emotional psychology, human-machine in-
teraction and advanced AI techniques to meet upon computer
game platforms. As soon as experiments with statistically
significant numbers of human subjects are held, this work’s
outcome will provide important insights to spot the features
of computer games — that map to specific emotions — that
make them appealing to most humans. Moreover, the playing
strategy and emotional features that generate entertainment
in games will be exposed contributing important input for the
game AI research community.

References
[Boon, 2002] R. Boon. The 40 hour millstone.Computer

Trade Weekly, (877), February 2002.
[Cass, 2002] S. Cass. Mind games.IEEE Spectrum, pages

40–44, 2002.
[Champandard, 2004] Alex J. Champandard.AI Game De-

velopment. New Riders Publishing, 2004.
[Charles and Black, 2004] D. Charles and M. Black. Dy-

namic player modelling: A framework for player-centric
digital games. InProceedings of the International Confer-
ence on Computer Games: Artificial Intelligence, Design
and Education, pages 29–35, 2004.

[Crispini, 2003] Nick Crispini. Considering the growing
popularity of online games: What contibutes to making
an online game attractive, addictive and compeling. Dis-
sertation, SAE Institute, London, October 2003.

[Demasi and de O. Cruz, 2002] Pedro Demasi and Adri-
ano J. de O. Cruz. On-line coevolution for action games. In
Proceedings of the 3rd Interational Conference on Intelli-
gent Games and Simulation (GAME-ON), pages 113–120,
2002.

123

[Eckman, 1979] P. Eckman. Facial expressions of emotions.
Annual Review of Psychology, 20:527–554, 1979.

[Fogelet al., 2004] David B. Fogel, Timothy J. Hays, and
Douglas R Johnson. A platform for evolving characters
in competitive games. InProceedings of the Congress on
Evolutionary Computation (CEC-04), pages 1420–1426,
June 2004.

[Freedet al., 2000] M. Freed, T. Bear, H. Goldman, G. Hy-
att, P. Reber, A. Sylvan, and J. Tauber. Towards more
human-like computer opponents. InWorking Notes of the
AAAI Spring Symposium on Artificial Intelligence and In-
teractive Entertainment, pages 22–26, 2000.

[Funge, 2004] John D. Funge. Artificial Intelligence for
Computer Games. A. K. Peters Ltd, 2004.

[Houlette, 2004] R. Houlette.Player Modeling for Adaptive
Games. AI Game Programming Wisdom II, pages 557–
566. Charles River Media, Inc, 2004.

[Hy et al., 2004] R. Le Hy, A. Arrigoni, P. Bessière, and
O. Lebeltel. Teaching bayesian behaviors to video game
characters.Robotics and Autonomous Systems, 47:177–
185, 2004.

[Iida et al., 2003] Hiroyuki Iida, N. Takeshita, and
J. Yoshimura. A metric for entertainment of boardgames:
its implication for evolution of chess variants. In
R. Nakatsu and J. Hoshino, editors,IWEC2002 Proceed-
ings, pages 65–72. Kluwer, 2003.

[Johnson, 2004] S. Johnson.Adaptive AI, pages 639–647.
Charles River Media, Hingham, MA, 2004.

[Kaiser and Wehrle, 1996] S. Kaiser and T. Wehrle. Situated
emotional problem solving in interactive computer games.
In N. H. Frijda, editor,Proceedings of the VIXth Confer-
ence of the International Society for Research on Emo-
tions, pages 276–280. ISRE Publications, 1996.

[Kaiseret al., 1998] S. Kaiser, T. Wehrle, and S. Schmidt.
Emotional episodes, facial expressions, and reported feel-
ings in human computer interactions. In A. H. Fisher,
editor, Proceedings of the Xth Conference of the Inter-
national Society for Research on Emotions, pages 82–86.
ISRE Publications, 1998.

[Korb et al., 1999] K. B. Korb, A. E. Nicholson, and N. Jit-
nah. Bayesian poker. uncertainty in artificial intelligence,
1999. Stockholm, Sweden.

[Laird and van Lent, 2000] John E. Laird and Michael van
Lent. Human-level AI’s killer application: Interactive
computer games. InProceedings of the Seventh National
Conference on Artificial Intelligence (AAAI), pages 1171–
1178, 2000.

[Manslow, 2002] John Manslow.Learning and Adaptation,
pages 557–566. Charles River Media, Hingham, MA,
2002.

[Park, 2003] Jeong Kung Park. Emerging complex behav-
iors in dynamic multi-agent computer games. M.Sc. the-
sis, University of Edinburgh, 2003.

[Ponsen and Spronck, 2004] Marc Ponsen and Pieter
Spronck. Improving adaptive game AI with evolutionaey
learning. InProceedings of the International Conference
on Computer Games: Artificial Intelligence, Design and
Education, pages 389–396, Microsoft Campus, Reading,
UK, November 2004.

[Rep, 2002] Credit Suiss First Boston Report. 11:7–8, May
15 2002.

[Stanleyet al., 2005] Kenneth Stanley, Bobby Bryant, and
Risto Miikkulainen. Real-time evolution in the NERO
video game. InProceedings of the IEEE Symposium on
Computational Intelligence and Games, pages 182–189,
Essex University, Colchester, UK, 4–6 April 2005.

[Taatgenet al., 2003] N. A. Taatgen, M. van Oploo,
J. Braaksma, and J. Niemantsverdriet. How to construct a
believable opponent using cognitive modeling in the game
of set. InProceedings of the fifth international conference
on cognitive modeling, pages 201–206, 2003.

[Vomlel, 2004] J. Vomlel. Bayesian networks in mastermind.
In Proceedings of the 7th Czech-Japan Seminar, 2004.

[Woodcock, 2001] Steven Woodcock. Game AI: The State of
the Industry 2000-2001: It’s not Just Art, It’s Engineering.
August 2001.

[Yannakakis and Hallam, 2004a] Georgios N. Yannakakis
and John Hallam. Evolving Opponents for Interesting
Interactive Computer Games. In S. Schaal, A. Ijspeert,
A. Billard, Sethu Vijayakumar, J. Hallam, and J.-A.
Meyer, editors,From Animals to Animats 8: Proceed-
ings of the8th International Conference on Simulation of
Adaptive Behavior (SAB-04), pages 499–508, Santa Mon-
ica, LA, CA, July 2004. The MIT Press.

[Yannakakis and Hallam, 2004b] Georgios N. Yannakakis
and John Hallam. Interactive Opponents Generate Inter-
esting Games. InProceedings of the International Confer-
ence on Computer Games: Artificial Intelligence, Design
and Education, pages 240–247, Microsoft Campus, Read-
ing, UK, November 2004.

[Yannakakis and Hallam, 2005a] Georgios N. Yannakakis
and John Hallam. A generic approach for generating inter-
esting interactive pac-man opponents. InProceedings of
the IEEE Symposium on Computational Intelligence and
Games, pages 94–101, Essex University, Colchester, UK,
4–6 April 2005.

[Yannakakis and Hallam, 2005b] Georgios N. Yannakakis
and John Hallam. How to generate interesting computer
games. submitted, January 2005.

[Yannakakis and Maragoudakis, 2005] Georgios N. Yan-
nakakis and Manolis Maragoudakis. Player modeling
impact on player’s entertainment in computer games. In
Proceedings of the 10th International Conference on User
Modeling, Edinburgh, 24–30 July 2005.

[Yannakakiset al., 2004] Georgios N. Yannakakis, John
Levine, and John Hallam. An Evolutionary Approach
for Interactive Computer Games. InProceedings of the
Congress on Evolutionary Computation (CEC-04), pages
986–993, June 2004.

124

Author Index

Aha, David W. 72, 78
Andersson, Peter J. 1
Andrade, Gustavo 7
Bakkes, Sander 13
Beard, Jonathan 113
Berndt, Clemens N. 19
Brobst, Paul 113
Corruble, Vincent7 7
Díaz-Agudo, Belén 90
Ferrein, Alexander 31
Gal, Ya’akov 25
Goel, Ashok 37, 107
Grosz, Barbara J. 25
Guesgen, Hans 19
Hallam, John 119
Holder, Lawrence 55
Jacobs, Stefan 31
Jones, Joshua 37, 107
de Jong, Steven 43
Kallmann, Marcelo 49
Kondeti, Bharat 55
Kraus, Sarit 25
Lakemeyer, Gerhard 31
Latham, David 67
Lee-Urban, Stephen 78
van Lent, Michael 113
Maclin, Rich 61
Marthi, Bhaskara 67
Molineaux, Matthew 72, 78
Muñoz-Avila, Héctor 78
Murdock, William 107
Nallacharu, Maheswar 55
Pfeffer, Avi 25
Ponsen, Marc J.V. 72, 78
Postma, Eric 13
Ramalho, Geber 7
Riedl, Mark O. 84
Roos, Nico 43
Russell, Stuart 67
Sánchez-Pelegrín, Rubén 90
Santana, Hugo 7
Shavlik, Jude 61
Shieber, Stuart 25
Spronck, Pieter 13, 43, 95
Steffens, Timo 101
Torrey, Lisa 61
Ulam, Patrick 107
Walker, Trevor 61
Watson, Ian 19
Wray, Robert E. 113
Yannakakis, Georgios N. 119
Youngblood, Michael 55

125

	3-berndt et al.pdf
	Abstract
	1. Introduction
	2. Standard Interfaces
	3. Related Work
	4. OASIS Architecture Design
	4.1 OASIS Concepts and Overview
	4.2 Object Access Layer
	4.3 Object Abstraction Layer
	4.4 Domain Access Layer
	4.4 Task Management Layer
	4.5 Domain Abstraction Layer

	5. Conclusion
	References

