Fundamental Matrix / Image Rectification

COMPSCI 773 S1 T

VISION GUIDED CONTROL
A/P Georgy Gimel'farb

Epipolar Geometry

- $O_{l} O_{r}$ - projection centres
- Origins of the reference frames
- $f_{b} f_{r}$ - focal lengths of cameras
- π_{l}, π_{r} - image planes
- 3D reference frame for each camera: Z-axis $=$ the optical axis
$\mathbf{P}_{l}=\left[X_{l}, Y_{l}, Z_{l}\right]^{\top}, \mathbf{P}_{r}=\left[X_{r}, Y_{r}, Z_{r}\right]^{\top}$ - the same 3D point P in the reference frames
$\mathbf{p}_{l}=\left[x_{l}, y_{l}, z_{l}=f_{l}\right]^{\top}, \mathbf{p}_{r}=\left[x_{r}, y_{r}, z_{r}=f_{r}\right]^{\top}$
- projections of P onto the image planes

- Epipoles

Basics of Epipolar Geometry

- Reference frames of the left and right cameras - related via the extrinsic parameters
- Translation vector $\mathbf{T}=\left(O_{r}-O_{l}\right)$ and a rotation matrix R defining a rigid transformation in 3-D space, given a 3-D point P, between \mathbf{P}_{l} and $\mathbf{P}_{r}: \mathbf{P}_{r}=R\left(\mathbf{P}_{l}-\mathbf{T}\right)$
- Epipoles \mathbf{e}_{l} and \mathbf{e}_{r} - the points at which the line through the centres of projection intersects the image planes
- Left epipole - the image of the right projection centre
- Right epipole - the image of the left projection centre
- Canonical geometry: the epipole is at infinity of the baseline

Basics of Epipolar Geometry

- 3-D point $\mathbf{P}=[X, Y, Z]^{\top} \Leftrightarrow$ its projections \mathbf{p}_{l} and \mathbf{p}_{r} :

$$
\mathbf{p}_{l}=\frac{f_{1} \mathbf{P}_{l}}{Z_{l}} ; \quad \mathbf{p}_{r}=\frac{f_{\mathbf{P}} \mathbf{P}_{r}}{Z_{r}}
$$

- Epipolar plane: the plane through P, O_{l}, and O_{r}
- Epipolar line: its intersection with each image plane
- Conjugated lines: both the lines for an epipolar plane
- Given \mathbf{p}_{l}, the 3-D point P can lie anywhere on the ray $\mathbf{p}_{l} O_{l}$ depicted by the epipolar line through the corresponding \mathbf{p}_{r}
- Epipolar constraint: the true match lies on the epipolar line

Basics of Epipolar Geometry

- All epipolar lines go through the epipole
- With the exception of the epipole, only one epipolar line goes through any image point
- Mapping between points on one image and corresponding epipolar lines on the other image \Rightarrow the 1-D search region
- Rejection of false matches due to occlusions
- Corresponding points must lie on conjugated epipolar lines
- The obvious question: how to estimate the epipolar geometry, i.e. determine the 'point-to-line' mapping for images

The Essential Matrix, E

- Determining the mapping between points in one image and epipolar lines in the other image:
- The equation of the epipolar plane through a 3-D point P as the co-planarity of the vectors $\mathbf{P}_{l}, \mathbf{T}$, and $\mathbf{P}_{l}-\mathbf{T}$:

$$
\begin{aligned}
& \left(\mathbf{P}_{l}-\mathbf{T}\right)^{\top}\left(\mathbf{T} \times \mathbf{P}_{l}\right)=0 \\
& \Rightarrow\left(R^{\top} \mathbf{P}_{r}\right)^{\top}\left(\mathbf{T} \times \mathbf{P}_{l}\right)=0 \Rightarrow \mathbf{P}_{r}^{\top} R\left(\mathbf{T} \times \mathbf{P}_{l}\right)=0
\end{aligned}
$$

The Essential Matrix, E

- By construction, the matrix S (and thus E) are of rank 2
- The essential matrix gives a natural link between the epipolar constraint and the extrinsic parameters of the stereo system:

$$
\mathbf{P}_{l}=\frac{Z_{l} \mathbf{p}_{l}}{f_{l}} ; \mathbf{P}_{r}=\frac{Z_{r} \mathbf{p}_{r}}{f_{r}} \Rightarrow \frac{Z_{l} Z_{r}}{f_{l} f_{r}} \mathbf{p}_{r}^{\top} E \mathbf{p}_{l}=0 \Rightarrow \mathbf{p}_{r}^{\top} E \mathbf{p}_{l}=0
$$

Matrix E : the mapping between the points and epipolar lines

- Vector $\mathbf{a}_{r}=E \mathbf{p}_{l} \rightarrow$ parameters of the epipolar line $\mathbf{p}_{r}{ }^{\top} \mathbf{a}_{r}=0$ in the right image corresponding to the point \mathbf{p}_{l} in the left image
- Vector $\mathbf{a}_{l}{ }^{\top}=\mathbf{p}_{r}{ }^{\top} E \rightarrow$ parameters of the epipolar line $\mathbf{a}_{l}{ }^{\top} \mathbf{p}_{l}=0$ in the left image corresponding to the point \mathbf{p}_{r} in the right image

The Fundamental Matrix, \boldsymbol{F}

- The mapping "points \leftrightarrow epipolar lines" can be obtained from corresponding points only
- No prior information on the stereo system!
- Points $\overline{\mathbf{p}}_{l,} \overline{\mathbf{p}}_{r}$ in pixel and $\mathbf{p}_{l,}, \mathbf{p}_{r}$ in camera coordinates:

$$
\begin{aligned}
\overline{\mathbf{p}}_{l} & \equiv\left[\begin{array}{c}
\bar{x}_{l} \\
\bar{y}_{l} \\
1
\end{array}\right]=M_{l} \mathbf{p}_{l} ; \quad \overline{\mathbf{p}}_{r} \equiv\left[\begin{array}{c}
\bar{x}_{r} \\
\bar{y}_{r} \\
1
\end{array}\right]=M_{r} \mathbf{p}_{r} \Leftrightarrow \mathbf{p}_{l}=M_{l}^{-1} \overline{\mathbf{p}}_{l} ; \mathbf{p}_{r}=M_{r}^{-1} \overline{\mathbf{p}}_{r} \\
& \Rightarrow \overline{\mathbf{p}}_{r}^{\top} \underbrace{M_{r}^{-\top} E M_{l}^{-1} \overline{\mathbf{p}}_{l} \Rightarrow \overline{\mathbf{p}}_{r}^{\top} F \overline{\mathbf{p}}_{l} \quad \begin{array}{l}
M_{l} \text { and } M_{r} \text { - matrices of the } \\
\text { intrinsic camera parameters }
\end{array}}_{\substack{\text { Fundamental } \\
\text { matiix } F}}
\end{aligned}
$$

The Fundamental Matrix, \boldsymbol{F}

- Matrix F - the "pixels - epipolar lines" mapping:
- Vector $\mathbf{a}_{r}=F \overline{\mathbf{p}_{l}} \rightarrow$ parameters of the epipolar line $\overline{\mathbf{p}}_{r}^{\top} \mathbf{a}_{r}=0$ in the right image related to the pixel $\overline{\mathbf{p}}_{l}$ in the left image
- Vector $\mathbf{a}_{l}{ }^{\top}=\overline{\mathbf{p}}_{r}^{\top} F \rightarrow$ parameters of the epipolar line $\mathbf{a}_{l}^{\top} \overline{\mathbf{p}}_{l}=0$ in the left image related to the pixel $\overline{\mathbf{p}}_{r}$ in the right image
- Just as the matrix E, the fundamental matrix F has rank 2
- F accounts for both the intrinsic and extrinsic parameters
- The epipolar constraint can be established with no prior knowledge of the stereo parameters!

The Eight-point Algorithm

- $n \geq 8$ corresponding points in the images are known
- Each correspondence i - a homogeneous linear equation:

$$
\begin{aligned}
& \overline{\mathbf{p}}_{r, i}^{\top} F \overline{\mathbf{p}}_{l, i}=0 \Rightarrow\left[\begin{array}{lll}
\bar{x}_{r, i} & \bar{y}_{r, i} & 1
\end{array}\right]\left[\begin{array}{lll}
F_{11} & F_{12} & F_{13} \\
F_{21} & F_{22} & F_{23} \\
F_{31} & F_{32} & F_{33}
\end{array}\right]\left[\begin{array}{c}
\bar{x}_{l, i} \\
\bar{y}_{l, i} \\
1
\end{array}\right]=0 \\
& \Rightarrow \bar{x}_{r, i} \bar{x}_{l i} F_{11}+\bar{x}_{r, i} \bar{y}_{l, i} F_{12}+\bar{x}_{r, i} F_{13}+\bar{y}_{r, i} \bar{x}_{l, i} F_{21}+\bar{y}_{r, i} \bar{y}_{l i,} F_{22} \\
& +\bar{y}_{r, i} F_{23}+\bar{x}_{l, i} F_{31}+\bar{y}_{l, i} F_{32}+F_{33}=0
\end{aligned}
$$

- If the n points do not form a degenerate configuration, the 9 entries of F are given by the non-trivial solution of this homogeneous linear system

The Eight-point Algorithm

- Since the system is homogeneous, the solution is unique up to a signed scaling factor
- Typically, $n>8$, so that the system is over-determined, and its solution is obtained by singular value decomposition (SVD) related techniques
- A - the system's matrix $n \times 9$:

$$
A=\left[\begin{array}{ccccccccc}
\bar{x}_{r, 1} \bar{x}_{l, 1} & \bar{x}_{r, 1} \bar{y}_{l, 1} & \bar{x}_{r, 1} & \bar{y}_{r, x} \bar{x}_{l, 1} & \bar{y}_{r, 1} \bar{y}_{l, 1} & \bar{y}_{r, 1} & \bar{x}_{l, 1} & \bar{y}_{l, 1} & 1 \\
\vdots & \vdots \\
\bar{x}_{r, n} \bar{x}_{l, n} & \bar{x}_{r, n} \bar{y}_{l, n} & \bar{x}_{r, n} & \bar{y}_{r, n} \bar{x}_{l, n} & \bar{y}_{r, n} \bar{y}_{l, n} & \bar{y}_{r, n} & \bar{x}_{l, n} & \bar{y}_{l, n} & 1
\end{array}\right]
$$

$$
\mathrm{X}_{r}^{\alpha} \mathrm{Y}_{r}^{\gamma} \mathrm{X}_{l}^{\beta} \mathrm{Y}_{l}^{\delta} \equiv \sum_{i=1}^{n} x_{r, i}^{\alpha} y_{r, i}^{\beta} x_{l, i}^{\gamma} x_{l, i}^{\delta}
$$

The Eight-point Algorithm

- SVD $A=U D V^{\top} \Rightarrow$ the solution is the column of V corresponding to the only null singular value of A
- $V=\left[\mathbf{v}_{1} \ldots \mathbf{v}_{9}\right] ; \mathbf{v}_{i}$ - the eigenvectors of the 9×9 matrix $A^{\top} A$
$A^{\top} A=\left[\begin{array}{ccccccccc}\mathrm{X}_{r}^{2} \mathrm{X}_{l}^{2} & \mathrm{X}_{r}^{2} \mathrm{X}_{l} \mathrm{Y}_{l} & \mathrm{X}_{r}^{2} \mathrm{X}_{l} & \mathrm{X}_{r} \mathrm{Y}_{r} \mathrm{X}_{l}^{2} & \mathrm{X}_{r} \mathrm{Y}_{r} \mathrm{X}_{l} \mathrm{Y}_{l} & \mathrm{X}_{r} \mathrm{Y}_{r} \mathrm{X}_{l} & \mathrm{X}_{r} \mathrm{X}_{l}^{2} & \mathrm{X}_{r} \mathrm{X}_{l} \mathrm{Y}_{l} & \mathrm{X}_{r} \mathrm{X}_{l} \\ \mathrm{X}_{r}^{2} \mathrm{X}_{l} \mathrm{Y}_{l} & \mathrm{X}_{r}^{2} \mathrm{Y}_{l}^{2} & \mathrm{X}_{r}^{2} \mathrm{Y}_{l} & \mathrm{X}_{r} \mathrm{Y}_{r} \mathrm{X}_{l} \mathrm{Y}_{l} & \mathrm{X}_{r} \mathrm{Y}_{r} \mathrm{Y}_{l}^{2} & \mathrm{X}_{r} \mathrm{Y}_{r} \mathrm{Y}_{l} & \mathrm{X}_{r} \mathrm{X}_{l} \mathrm{Y}_{l} & \mathrm{X}_{r} \mathrm{Y}_{l}^{2} & \mathrm{X}_{r} \mathrm{Y}_{l} \\ \mathrm{X}_{r}^{2} \mathrm{X}_{l} & \mathrm{X}_{r}^{2} \mathrm{Y}_{l} & \mathrm{X}_{r}^{2} & \mathrm{X}_{r} \mathrm{Y}_{2} \mathrm{X}_{l} & \mathrm{X}_{r} \mathrm{Y}_{r} \mathrm{Y}_{l} & \mathrm{X}_{r} \mathrm{Y}_{r} & \mathrm{X}_{r} \mathrm{X}_{l} & \mathrm{X}_{r} \mathrm{Y}_{l} & \mathrm{X}_{r} \\ \mathrm{X}_{r} \mathrm{X}_{l}^{2} \mathrm{Y}_{r} & \mathrm{X}_{r} \mathrm{Y}_{r} \mathrm{X}_{l} & \mathrm{X}_{r} \mathrm{Y}_{r} \mathrm{X}_{l} & \mathrm{Y}_{r}^{2} \mathrm{X}_{l}^{2} & \mathrm{Y}_{r}^{2} \mathrm{X}_{l} \mathrm{Y}_{l} & \mathrm{Y}_{r}^{2} \mathrm{X}_{l} & \mathrm{Y}_{r} \mathrm{X}_{l}^{2} & \mathrm{Y}_{r} \mathrm{X}_{l} & \mathrm{Y}_{r} \mathrm{X}_{l} \\ \mathrm{Y}_{r} \mathrm{X}_{l} \mathrm{Y}_{l} & \mathrm{X}_{r} \mathrm{Y}_{r} \mathrm{Y}_{l}^{2} & \mathrm{X}_{r} \mathrm{Y}_{r} \mathrm{Y}_{l} & \mathrm{Y}_{r}^{2} \mathrm{X}_{l} \mathrm{Y}_{l} & \mathrm{Y}_{r}^{2} \mathrm{Y}_{l}^{2} & \mathrm{Y}_{r}^{2} \mathrm{Y}_{l} & \mathrm{Y}_{r} \mathrm{X}_{l} \mathrm{Y}_{l} & \mathrm{Y}_{r} \mathrm{Y}_{l}^{2} & \mathrm{Y}_{r} \mathrm{Y}_{l} \\ \mathrm{X}_{r} \mathrm{Y}_{r} \mathrm{X}_{l} & \mathrm{X}_{r} \mathrm{Y}_{l} & \mathrm{X}_{r} \mathrm{Y}_{r} & \mathrm{Y}_{r}^{2} \mathrm{X}_{l} & \mathrm{Y}_{r}^{2} \mathrm{Y}_{l} & \mathrm{Y}_{r}^{2} & \mathrm{Y}_{r} \mathrm{X}_{l} & \mathrm{Y}_{r} & \mathrm{Y}_{r} \\ \mathrm{X}_{r} \mathrm{X}_{l}^{2} & \mathrm{X}_{r} \mathrm{X}_{l} & \mathrm{X}_{r} \mathrm{X}_{l} & \mathrm{Y}_{r}^{2} \mathrm{Y}_{l} & \mathrm{Y}_{r} \mathrm{X}_{l} & \mathrm{Y}_{r} \mathrm{X}_{l} & \mathrm{X}_{l}^{2} & \mathrm{X}_{l} \mathrm{Y}_{l} & \mathrm{X}_{l} \\ \mathrm{X}_{r} \mathrm{Y}_{l} & \mathrm{X}_{r} \mathrm{Y}_{l}^{2} & \mathrm{X}_{r} \mathrm{Y}_{l} & \mathrm{Y} r_{r} \mathrm{X}_{l} \mathrm{Y}_{l} & \mathrm{Y}_{r} \mathrm{Y}_{l}^{2} & \mathrm{Y}_{r} \mathrm{Y}_{l} & \mathrm{X}_{l} \mathrm{Y}_{l} & \mathrm{Y}_{l}^{2} & \mathrm{Y}_{l} \\ \mathrm{X}_{r} & \mathrm{Y}_{r} \mathrm{X}_{l} & \mathrm{Y}_{r} \mathrm{Y}_{l} & \mathrm{Y}_{r} & \mathrm{X}_{l} & \mathrm{Y} l_{l} & n\end{array}\right]$

The Eight-point Algorithm

- Due to noise, the solution is the column of V associated with the least singular value
- The estimated fundamental matrix $F_{\text {est }}$ is almost always non-singular, i.e. is full rank (3) rather than the expected rank 2
- The singularity is enforced by adjusting the entries of $F_{\text {est }}$:
- The SVD $F_{\text {est }}=U D V^{\top}$
- Set the smallest singular value in the diagonal matrix D to zero to obtain the corrected matrix D^{\prime}
- The corrected estimate: $F^{\prime}=U D^{\prime} V^{\top}$

To Avoid Numerical Instabilities:

- Coordinates of the corresponding points have to be normalised to make entries of A of comparable size
- Translate the two coordinates of each point to the centroid of each data set: $m_{x}=\frac{1}{n} \sum_{i=1}^{n} x_{i} ; \quad m_{y}=\frac{1}{n} \sum_{i=1}^{n} y_{i}$
- Scale the norm of each point so that the average norm over the data set is 1: $\quad d=\frac{1}{n \sqrt{2}} \sum_{i} \sqrt{\left(x_{i}-m_{x}\right)^{2}+\left(y_{i}-m_{y}\right)^{2}}$

$$
\mathbf{p}_{i}=\left[\begin{array}{c}
x_{i} \\
y_{i} \\
1
\end{array}\right] \Rightarrow \mathbf{p}_{i}^{\prime}=\left[\begin{array}{c}
\left(x_{i}-m_{x}\right) / d \\
\left(y_{i}-m_{y}\right) / d \\
1
\end{array}\right] \Leftrightarrow \mathbf{p}_{i}^{\prime}=H \mathbf{p}_{i} \equiv\left[\begin{array}{ccc}
1 / d & 0 & -m_{x} / d \\
0 & 1 / d & -m_{y} / d \\
0 & 0 & 1
\end{array}\right]\left[\begin{array}{c}
x_{i} \\
y_{i} \\
1
\end{array}\right]
$$

Stable Eight-Point Algorithm

- Input: n pixel-to-pixel correspondences

$$
\left\{\left(\mathbf{p}_{l, i}=\left[\begin{array}{ll}
x_{l, i} & y_{l, i}
\end{array}\right]^{\top} ; \mathbf{p}_{r, i}=\left[\begin{array}{lll}
x_{r, i} & y_{r, i} & 1
\end{array}\right]^{\top}\right): i=1, \ldots, n\right\}
$$

- Data normalisation:

$$
\begin{gathered}
\left\{\left(\mathbf{p}_{l, i}^{\prime}=H_{l} \mathbf{p}_{l, i} ; \mathbf{p}_{r, i}^{\prime}=H_{r} \mathbf{p}_{r, i}\right): \quad i=1, \ldots, n\right\} \\
H_{l}=\left[\begin{array}{ccc}
\frac{1}{d_{l}} & 0 & -\frac{m_{l, x}}{d_{l}} \\
0 & \frac{1}{d_{l}} & -\frac{m_{l, v}}{d_{l}} \\
0 & 0 & 1
\end{array}\right] ; H_{l}^{-1}=\left[\begin{array}{ccc}
d_{l} & 0 & m_{l, x} \\
0 & d_{l} & m_{l, y} \\
0 & 0 & 1
\end{array}\right] ; \quad H_{r}=\left[\begin{array}{ccc}
\frac{1}{d_{r}} & 0 & -\frac{m_{r, x}}{d_{r}} \\
0 & \frac{1}{d_{r}} & -\frac{m_{r, y}}{d_{r}} \\
0 & 0 & 1
\end{array}\right] ; H_{r}^{-1}=\left[\begin{array}{ccc}
d_{r} & 0 & m_{r, x} \\
0 & d_{r} & m_{r, y} \\
0 & 0 & 1
\end{array}\right]
\end{gathered}
$$

Stable Eight-Point Algorithm

- SVD $A=U D V^{\top}$ of the $n \times 9$ matrix A for the system of n linear equations; $n \geq 8$ (over-determined for $n>8$):

$$
\begin{aligned}
& \mathbf{p}_{r, i}^{\prime \top} F^{\prime} \mathbf{p}_{l, i}^{\prime}=0 \Rightarrow\left[x_{r, i}^{\prime}, y_{r, i}^{\prime}, 1\right]\left[\begin{array}{lll}
F_{1} & F_{2} & F_{3} \\
F_{4} & F_{5} & F_{6} \\
F_{7} & F_{8} & F_{9}
\end{array}\right]\left[\begin{array}{c}
x_{l, i}^{\prime} \\
y_{l, i}^{\prime} \\
1
\end{array}\right]=0 \Rightarrow\left\{\mathbf{a}_{i}^{\top} \mathbf{f}=0: i=1,2, \ldots, n\right\} \\
& A \mathbf{f}=0 \text { where } A=\left[\begin{array}{c}
\mathbf{a}_{1}^{\top} \\
\mathbf{a}_{2}^{\top} \\
\vdots \\
\mathbf{a}_{n}^{\top}
\end{array}\right] ; \mathbf{a}_{i}^{\top}=\left[x_{l, i}^{\prime} x_{r, i}^{\prime}, y_{l, i}^{\prime} x_{r, i}^{\prime}, x_{r, i}^{\prime}, x_{l, i}^{\prime} y_{r, i}^{\prime}, y_{l, i}^{\prime} y_{r, i}^{\prime}, y_{r, i}^{\prime}, x_{l, i}^{\prime}, y_{l, i}^{\prime}, 1\right] ; \mathbf{f}=\left[\begin{array}{c}
F_{1} \\
F_{2} \\
\vdots \\
F_{9}
\end{array}\right]
\end{aligned}
$$

Stable Eight-Point Algorithm

- The entries of F^{\prime} (up to an unknown, signed scale factor) are the components of the column of V corresponding to the least singular value of A
- SVD $F^{\prime}=U D V^{\top}$ of F^{\prime} to enforce the singularity constraint
- Set the smallest singular value in the diagonal of D equal to 0 to obtain the corrected matrix D^{\prime}
- Compute the corrected estimate $F^{\prime \prime}=U D^{\prime} V^{\top}$ of the fundamental matrix
- Renormalisation: the output estimate $F=H_{r}^{-1} F^{\prime \prime} H_{l}^{-1}$

Locating the Epipoles

- Accurate localisation of the epipoles:
- To refine the locations of the conjugate epipolar lines
- To simplify the stereo geometry
- To recover 3D structure in the case of uncalibrated stereo
- The left epipole \mathbf{e}_{l} lies on all the epipolar lines in the left image \Rightarrow the relationship $\mathbf{p}_{r}{ }^{\top} F \mathbf{e}_{l}=0$ holds for every \mathbf{p}_{r}
- F is not identically zero, so it follows that $F \mathbf{e}_{l}=0$
- F has rank 2 - the epipole \mathbf{e}_{l} is the null space of F
- The null space is the set of all solutions \mathbf{s} to the equation $F \mathbf{s}=0$
- Similarly, \mathbf{e}_{r} is the null space of F^{\top}

Algorithm to Locate Epipoles

- Input: the fundamental matrix F
- SVD $F=U D V^{\top}$
- The epipole \mathbf{e}_{l} : the column of V corresponding to the null singular value
- The epipole \mathbf{e}_{r} : the column of U corresponding to the null singular value

$$
F=\left[\begin{array}{lll}
0 & 0 & 0 \\
0 & 0 & 1 \\
0 & 1 & 0
\end{array}\right]=\underbrace{\left[\begin{array}{ccc}
0 & \mathbf{1} & 0 \\
\frac{1}{\sqrt{2}} & \mathbf{0} & \frac{1}{\sqrt{2}} \\
\frac{1}{\sqrt{2}} & \mathbf{0} & \frac{-1}{\sqrt{2}}
\end{array}\right]}_{U} \underbrace{\left[\begin{array}{ccc}
1 & 0 & 0 \\
0 & \mathbf{0} & 0 \\
0 & 0 & -1
\end{array}\right]}_{D} \underbrace{\left[\begin{array}{ccc}
0 & \frac{1}{\sqrt{2}} & \frac{1}{\sqrt{2}} \\
\mathbf{1} & \mathbf{0} & \mathbf{0} \\
0 & \frac{1}{\sqrt{2}} & \frac{-1}{\sqrt{2}}
\end{array}\right]}_{V^{\top}} \Rightarrow \mathbf{e}_{l}=\mathbf{e}_{r}=\left[\begin{array}{l}
1 \\
0 \\
0
\end{array}\right]
$$

Rectification of Stereo Images

Rectification - a transformation (warping) of each image: pairs of conjugate epipolar lines become collinear and parallel to one of the image axes (typically, x-axis)

- The 1-D search for correspondence after rectification
- Computation: by using the known intrinsic parameters of the camera and extrinsic parameters of the stereo system
- The rectified images are thought of as acquired by a new stereo rig obtained by rotating the original cameras around their optical centres

Rectification of a Stereo Pair

The epipolar lines associated to a 3-D point P in the original cameras become collinear in

Rectification of a Stereo Pair

Assumptions and Basic Steps

- Assumptions for both cameras without losing generality:
(1) The origin of the image reference frame in the principal point (the trace of the optical axis) and (2) the same focal length f
- Steps of rectification
(1) Rotate the left camera to make its image plane parallel to the baseline of the system (the epipole goes to infinity along the x-axis)
(2) Apply the same rotation to the right camera to recover the original geometry and then (3) rotate the right camera by R
(4) Adjust the scale in both camera reference frames

Rotation Matrix $R_{\text {rect }}$ for Step 1

- A triple of mutually orthogonal unit vectors $\mathbf{e}_{1}, \mathbf{e}_{2}$, and \mathbf{e}_{3}
- An arbitrary choice due to an under-constrained problem
- The epipole \mathbf{e}_{1} coincides with the direction of translation
(as the image centre is in the origin)
The direction vector of the optical axis

$$
\begin{gathered}
R_{\mathrm{rect}}=\left[\begin{array}{c}
\mathbf{e}_{1}^{\top} \\
\mathbf{e}_{2}^{\top} \\
\mathbf{e}_{3}^{\top}
\end{array}\right] \text { where } \mathbf{e}_{1}=\frac{\mathbf{T}}{\|\mathbf{T}\|}=\frac{1}{\sqrt{T_{x}^{2}+T_{y}^{2}+T_{z}^{2}}}\left[\begin{array}{c}
T_{x} \\
T_{y} \\
T_{z}
\end{array}\right] ; \mathbf{e}_{2}=\frac{\mathbf{e}_{1} \times[0,0,1]^{\top}}{\left\|\mathbf{e}_{1} \times[0,0,1]^{\top}\right\|}=\frac{1}{\sqrt{T_{x}^{2}+T_{y}^{2}}}\left[\begin{array}{c}
-T_{y} \\
T_{x} \\
0
\end{array}\right] ; \\
\mathbf{e}_{3}=\mathbf{e}_{1} \times \mathbf{e}_{2}=\frac{1}{\sqrt{\left(T_{x}^{2}+T_{y}^{2}\right)\left(T_{x}^{2}+T_{y}^{2}+T_{z}^{2}\right)}}\left[\begin{array}{c}
-T_{x} T_{z} \\
-T_{y} T_{z} \\
T_{x}^{2}+T_{y}^{2}
\end{array}\right]
\end{gathered}
$$

The Rectification Algorithm

- Input: the intrinsic and extrinsic parameters; the images (or sets of their points) to be rectified; assumptions 1 and 2 hold
- Build the matrix $R_{\text {rect }}$ and set $R_{l}=R_{\text {rect }}$ and $R_{r}=R_{\text {rect }}$
- For each left-camera point, $\mathbf{p}_{l}=[x, y, f]^{\top}$, compute the coordinates of the corresponding rectified point:

$$
\mathbf{p}_{l}^{\prime}=\left[\frac{f x^{\prime}}{z^{\prime}}, \frac{f y^{\prime}}{z^{\prime}}, f\right] \text { where }\left[x^{\prime}, y^{\prime}, z^{\prime}\right]=R_{l} \mathbf{p}_{l}
$$

- Repeat this step for the right camera using R_{r} and \mathbf{p}_{r}

