
Constant Time Generation of Free Trees

Michael J. Dinneen

Department of Computer Science

University of Auckland

Class: Combinatorial Algorithms – CompSci 720

1 Introduction

This is a combinatorial algorithms report on generating unlabeled free trees in

constant amortized time and O(n) space. A CAT (Constant Amortized Time)

algorithm given by Wright, Richmond, Odlyzko and McKay [WROM] is presented.

(See also the nice presentation given in [Wi].) This algorithm uses a modified

successor function that Beyer and Hedetniemi used for constant-time generation

of rooted trees [BH]. In both of the these algorithms, the idea of using integer

sequences to represent objects being generated was introduced by Ruskey and Hu

for generating binary trees lexicographically (see [RH] and [Ru]).

Some graph theory definitions are now reviewed. A tree or free tree is a

connected graph T = (V, E) such that the number of edges (size) of T, denoted

by |E|, is exactly one less then the number of vertices (order) of T , denoted by

|T | or |V |. If the context is clear we will use n to denote the order. Note that

we are excluding multiple edges and loops in our implicit definition of graph. A

rooted tree (T, z) is free tree T with a designated root z chosen from V (T). We

assign an unique layout of a rooted tree (T, z) as the lexicographically greatest

distance sequence L(T, z) = [l1, l2, l3, . . . , ln] resulting over all preorder traversals

(depth-first searches) of tree T starting from vertex z. Three such examples are

shown below in Figure 1. (The roots in these examples are the ones labeled with

distance 0.)

0

1

2

3

4

3

[0, 1, 2, 3, 4, 3]

0

1

2 2 2

1 1

[0, 1, 2, 2, 2, 1, 1]

0

1

2

3 3

2

3

2

[0, 1, 2, 3, 3, 2, 3, 2]

Figure 1: How to assign integer sequences to rooted trees.

2

The center of a free tree T = (V, E) is the set of vertices whose maximum

distance from the other vertices is least. The center of a tree will contain either

one or two vertices. In the bicentral case the two centers will be adjacent in the

graph. (A simple algorithm that deletes all leaves of a tree and repeats on the

resulting tree until at most one edge remains can be can be used to find centers.)

The primary root of a free tree is defined by two cases. If a tree T = (V, E)

has a single center then it is the primary root. Otherwise one of the centers r1 or

r2 of T will be chosen. Let T1 = (V1, r1) and T2 = (V2, r2) be the resulting two

rooted trees when the edge (r1, r2) of T is deleted. The primary root of T will be

r2 if and only if |T1| < |T2|, or |T1| = |T2| and L(T1, r1) < L(T2, r2).

Asside: One can do isomorphism testing for free trees with an isomorphism al-

gorthm for rooted trees by using the primary root as their roots (since they are

uniquely defined). Thus, if two root trees have the same lexicographically greatest

distance sequences then they are isomorphic.

2 Algorithm

We first present a successor function that generates nonisomorphic rooted trees,

[BH]. Let L = [l1, l2, . . . , ln] be a layout of a rooted tree of order n. Let p be the

largest integer (subscript) such that lp 6= 1 and let q be the largest integer such

that q < p and lq = lp − 1. (Note that the vertex indexed by q is the parent of the

vertex indexed by p.) The successor s(L) = [s1, s2, . . . , sn] of L is given by:

si =







li, for 1 ≤ i < p,

si−(p−q), for p ≤ i ≤ n

To generate all rooted trees of order n we start with the first rooted tree with

layout L = [0, 1, 2, . . . , n−1] and repeatedly apply the seccessor function until the

last rooted tree [0, 1, 1, . . . , 1] appears in the enumeration.

3

We now present an algorithm that generates free trees based on the enumer-

ation procedure for rooted trees. If at least two ones occur in the layout L, then

define L1 = [l2 − 1, l3 − 1, . . . , lm−1 − 1] and L2 = [l1, lm, lm+1, . . . , ln] where m is

the index of the second 1 in L. Wright, Richmond, Odlyzko and McKay use the

following necessary and sufficient test to determine when L represents a free tree

rooted at its primary root:

(a) index m exists,

(b) max(L2) ≥ max(L1),

(c) if equality holds in (b), then |L1| ≤ |L2|,

(d) if equality holds in (c), then L1 ≤ L2 lexicographically.

The free tree that this algorithm starts with is the integer sequence of an n-

path rooted at its primary root. Starting at this tree guarantees that condition

(a) never fails. The other cases may fail and the detection can be made before the

successor function is applied. Figure 2 shows some examples and the modifications

needed to keep the algorithm generating only primary rooted free trees. Note that

in the figure, the indicated condition fails for the successor of the trees listed on

the left side of the arrows (not the valid free trees displayed).

There is a general procedure for doing these “jumps” down the list of rooted

trees when a failure condition is detected. First, we set the parameter p for the

successor fuction to the last node p′ of L1 and apply the succesor function on L to

get s(L). Second, if lp′ was greater than 2 in L then we replace the final elements

of s(L) with 1, 2, . . . , height(L′

1) + 1, where L′

1 is the new left subtree of s(L).

The intuitive reason for using the successor funcion in this way is to find the next

lexicographically greatest sequence that is a primary rooted free tree. The second

step guarantees that the tree is rooted at a center vertex.

4

Condition (b) fails: (The height of L2 is reduced too much.)

0

1

2

3 3

1

2

1 1 1

[0, 1, 2, 3, 3, 1, 2, 1, 1, 1]

−→

0

1

2

3

2

3

2

1

2

3

[0, 1, 2, 3, 2, 3, 2, 1, 2, 3]

Condition (c) but not (b) fails: (Successor causes |L2| < |L1| in bicentral case.)

0

1

2 2 2 2 2

1

2

1

[0, 1, 2, 2, 2, 2, 2, 1, 2, 1]

−→

0

1

2 2 2 2

1

2 2 2

[0, 1, 2, 2, 2, 2, 1, 2, 2, 2]

Condition (d) alone is violated: (Only happens when L1 ≃ L2.)

0

1

2

3

2

3

1

2

1

2

[0, 1, 2, 3, 2, 3, 1, 2, 1, 2]

−→

0

1

2

3

2 2 2

1

2

3

[0, 1, 2, 3, 2, 2, 2, 1, 2, 3]

Figure 2: Corrections when the rooted tree successor function fails.

5

3 Results

Let tn and Tn denote the number of free and rooted unlabeled trees of order n,

respectively. Wright, Richmond, Odlyzko and McKay use the following result of

Pólya [Po] and Otter [Ot] to prove their algorithm runs in constant amortized time.

Theorem 1: Tn ∼ C1n
−3/2p−n and tn ∼ C2n

−5/2p−n as n → ∞, where C1 ≈

0.4399, C2 ≈ 0.5349 and p ≈ 0.3383.

I have implemented the constant time free tree algorithm by Wright, Rich-

mond, Odlyzko and B.D. McKay and did some benchmarks to determine, at least

empirically, if it runs in constant amortized time. An affirmative indication re-

sulted! Also I have checked the correctness of the output for free trees with 10 and

fewer vertices. This check entailed a comparison of the trees generated by the algo-

rithm in [WROM] and the trees contained in Read’s catalog of all non-isomorphic

graphs on 10 vertices, [CCRW].

The following table and figure summarizes my experiments. The start-up CPU

time was included in the times indicated. So it is reasonable to expect (as shown by

my crude /usr/bin/time technique) for the amount of CPU per tree to “slightly”

decrease when generating larger trees.

6

Order No. of Trees CPU Time CPU per Tree

1 1

2 1

3 1

4 2

5 3

6 6

7 11

8 23

9 47

10 106

11 235

12 551

13 1301

14 3159 0.1µ 0.0045µ

15 7741 0.3µ 3.88e-05µ

16 19320 0.7µ 3.62e-05µ

17 48629 1.8µ 3.70e-05µ

18 123867 4.7µ 3.79e-05µ

19 317955 11.7µ 3.71e-05µ

20 823065 30.4µ 3.69e-05µ

21 2144505 78.2µ 3.65e-05µ

22 5623756 203.4µ 3.62e-05µ

23 14828074 532.4µ 3.59e-05µ

24 39299897 1401.8µ 3.57e-05µ

25 104636890 3756.8µ 3.59e-05µ

26 279793450 9136.7µ 3.27e-05µ

Figure 2: CPU time needed to count free trees on a Sparc-2.

7

Sparc CPU per Tree x 10−6

Tree order

30.00

31.00

32.00

33.00

34.00

35.00

36.00

37.00

38.00

39.00

40.00

16 18 20 22 24 26

Figure 3: Scaled plot of average time per tree per tree order.

The subsequent pages of this report contain the following items:

1. Listings of all rooted trees of order 5 through 8 generated by the algorithm

by Beyer and Hedetniemi.

2. Listings of all free trees of order 5 through 10 generated by the algorithm by

Wright, Richmond, Odlyzko and B.D. McKay.

3. Program listings of the above two implementations. (Slightly altered code

was used for the CPU timings.)

8

References

[BH] T. Beyer and S.M. Hedetniemi, Constant time generation of rooted trees,

SIAM Journal of Computing, 9 (1980), pp. 706–712

[CCRW] R.D. Cameron, C.J. Colbourn, R.C. Read, N.C. Wormald, Cataloguing

the Graphs on 10 Vertices, Journal of Graph Theory, 9 (1985) pp. 551–562.

[Tape announcement, Discrete Math. 31 (1980) p. 224.]

[Ot] R. Otter, The number of trees, Ann. Math., 49 (1948), pp. 583–599.

[Po] G. Pólya, Kombinatorische Anzahlbestimmungen für Gruppen, Graphen und

chemische Verbindungen, Acta Math., 68 (1937), pp. 145–254.

[RH] F. Ruskey and T.C. Hu, Generating binary trees lexicographically, SIAM

Journal of Computing, 6 (1977), pp. 745–758.

[Ru] F. Ruskey, Generating t-ary trees lexicographically, SIAM Journal of Com-

puting, 7 (1978), pp. 424-439.

[WROM] R.A. Wright, B. Richmond, A. Odlyzko and B.D. McKay, Constant time

generation of free trees, SIAM Journal of Computing, 15 (1986), pp. 540–548.

[Wi] H.S. Wilf, “Listing Free Trees,” in Combinatorial Algorithms (An Update),

pp. 31-36.

9

