
Slide 1COMPSCI 372 Notes, ©Richard Lobb

Visibility Computation

aka “The Hidden Surface Problem”
aka “The Visible Surface Problem”!

Slide 2COMPSCI 372 Notes, ©Richard Lobb

Assumptions

Scene is a set of polygons
Polygons have been perspective transformed

– z-value has become “pseudo-depth”
• Increases with distance from viewer

– See 372 notes

Slide 3COMPSCI 372 Notes, ©Richard Lobb

Three classes of algorithm
Image space methods

– These answer the question: “What is visible at each pixel in the
final image?”

– e.g. depth buffer
– Resolution dependent

Object space methods
– These answer the question: “What is the exact geometric

description of what is visible?”
– e.g. Weiler-Atherton clipper
– Resolution independent

Hybrids
– Don’t fit either of the above descriptions!
– e.g. polygon depth-sorting algorithms

Slide 4COMPSCI 372 Notes, ©Richard Lobb

The Depth Buffer Algorithm

float[][] d = new float[MAX_COLS][MAX_ROWS];
Colour[][] frameBuffer = new Colour[MAX_COLS][MAX_ROWS];
set all values of frameBuffer to background colour
set all values of d to infinity
for each face F in scene {

for each pixel (x,y) covered by F {
compute depth = depth of F at (x,y)
if (depth < d[x][y]) { // F is closest so far

frameBuffer[x][y] = colour of F at (x,y)
d[x][y] = depth

}
}

}

Slide 5COMPSCI 372 Notes, ©Richard Lobb

Notes on Depth Buffering

Allows rendering of polygonal faces in any order
– Fits the “pipeline” graphics rendering model well

Is implemented in hardware on all modern graphics
cards

– Fill rates of up to 4 gigapixels per second (2003)

Few disadvantages, except:
– Gives wrong answers if depth resolution insufficient

• As will ANY method!

– Doesn’t deal with transparency properly
• Correct answers require depth ordering of faces at each pixel

Slide 6COMPSCI 372 Notes, ©Richard Lobb

Notes on Depth Buffering (cont’d)

BUT depth buffering still requires that each polygon
be transformed, lit, scan-converted.

– Waste of time if polygon is occluded

For high complexity scenes need to cull polygons
before they enter the graphics pipeline.

– Want to cull whole groups of polygons

Slide 7COMPSCI 372 Notes, ©Richard Lobb

List-Priority Methods

Methods in which we draw the faces “back to
front”
Classic name: “painters algorithm”

– Front polygons “painted over” back polygons

But ….

What do we mean by “back to front”?

Slide 8COMPSCI 372 Notes, ©Richard Lobb

Heedless Painters Algorithm

Three really bad answers:
“Polygon A is in front of polygon B if its {minimum |
maximum | average} depth is less”.
UDOO: sketch situations in which each of these fails.
Algorithms based on this are called “Heedless Painters
Algorithms” [by Hill]:

– Calculate depth measure of each face
– Sort faces in back-to-front order according to

that depth measure
– Draw faces in back-to-front order

Slide 9COMPSCI 372 Notes, ©Richard Lobb

What “Back to Front” really means

We want a partial ordering with the property that
Face A precedes Face B => !occludes(A,B)

– where occludes(A,B) is a predicate that is true if any
part of A occludes (i.e. “covers up”) any part of B.

– Heedless painters algorithm is based on false logic like:
boolean occludes(Face A, Face B) {

return centroid(A).depth() < centroid(B).depth(); // “nearer”
}

This is at best a rough heuristic

Slide 10COMPSCI 372 Notes, ©Richard Lobb

But such an order may not exist!

e.g.

concave polygon

interpenetration

cyclic overlap

Slide 11COMPSCI 372 Notes, ©Richard Lobb

Improved (?) algorithm:
Newell, Newell & Sancha Depth Sort

Use simple depth sort as before.
Then refine the order using such rules as:

– if (x,y) bounding boxes of A and B are disjoint then
occludes(B,A) = occludes(A,B) = false

– if all vertices of A are in front of plane of B then
occludes(B,A) = false

– if the projections of A and B onto the viewplane are disjoint
occludes(A,B) = occludes(B,A) = false

But:
– logic is difficult
– still have failing cases when we have to clip polygons in two.

Slide 12COMPSCI 372 Notes, ©Richard Lobb

BSP Tree Method (depth sort done properly!)

Firstly: what is a BSP tree?
– A BSP tree is a recursive subdivision of space with planes

(3D)/lines (2D) at internal nodes
• Leaf nodes represent convex regions of space
• Can store various extra info at nodes (depending on application)

– 2D example (unrelated to depth sorting):

1

1

2

3 4

5 1

2

34

5In

Out

In

Out

Out

Out

BSP Tree (where Left child
is Inside, Right is Outside)

Can represent arbitrary polygonal regions
as a union of leaf nodes. Can classify any
point by pushing it down the tree to a leaf.

Slide 13COMPSCI 372 Notes, ©Richard Lobb

Depth sorting with BSP trees
Idea:

– Goal is to find an ordering such that no polygon occludes
any part of any polygon that comes later in the ordering.

– Suppose the set of polygons can be divided into two
distinct sets by a partitioning plane.

– Then none of the polygons on the far side of the
partitioning plane from the eye can possibly obscure any
of the polygons on the near side.

– Hence can “paint” far side first, then near side
– BSP-tree allows us to do this recursively
– Tree is valid for any viewpoint

Slide 14COMPSCI 372 Notes, ©Richard Lobb

Depth sorting with BSP trees (cont’d)

How do we construct the BSP tree?
– Use the planes of polygons within the scene as the

partitioning planes
– Each node in the tree contains (usually) a single polygon

and two subtrees.
– One sub-tree contains polygons that lie entirely behind the

plane of the root polygon
– The other sub-tree contains polygons that lie entirely in

front of the plane of the root polygon.
– In this application, leaves are empty (null) – all the scene

polygons are stored in internal nodes.

Slide 15COMPSCI 372 Notes, ©Richard Lobb

Algorithm to build a 3D BSP tree
class BSPTree {

Plane plane; // The plane that subdivides space
List inPlanePolys = new List(); // All scene polygons lying on that plane
BSPTree frontTree; // A tree describing the world in front of that plane
BSPTree backTree; // A tree describing the world behind that plane

BSPTree (PolygonList polyList) {
// Constructor, given a non-empty list of scene polygons

List frontList = new List(), backList = new List(); // Lists of polygons in front and back
Polygon rootPoly = polyList.head(); // Use the first polygon to subdivide the world
plane = rootPoly.plane(); // Get its plane as the plane of this node
inPlanePolys.append(rootPoly); // Store the polygon itself in this node
for each polygon in polyList.tail() { // Sort all the rest of the scene w.r.t. the plane

if (polygon lies in rootPoly.plane) inPlanePolys.append (polygon);
else { polygonPair = clipInTwo(polygon, plane);

if (polygonPair.front != null) frontList.append(polygonPair.front);
if (polygonPair.backt != null) backList.append(polygonPair.back);

}
}
frontTree = frontList.isEmpty() ? : null : new BSPTree(frontList);
backTree = backList.isEmpty() ? : null : new BSPTree(backList);

}

Slide 16COMPSCI 372 Notes, ©Richard Lobb

Clipping a polygon in two with a plane

PolygonPair ClipInTwo(plane, polygon) {
// Uses the given plane to clip a polygon in 3-space in two.

Polygon insidePoly = new VertexList();
Polygon outsidePoly = new VertexList();
for (each edge of polygon) {

classify edge endpoints as inside, on, or outside the plane
if (edge startpoint is on or inside plane) insidePoly.append(startPoint);
if (startpoint is on or outside plane) outsidePoly.append(startPoint);
if (edge crosses plane) { // one vertex is inside and the other outside

calculate crossing point Px;
tag Px as an on vertex;
append Px to both insidePoly and outsidePoly;

}
}
if (insidePoly contains only on vertices) insidePoly = nil;
if (outsidePoly contains only on vertices) outsidePoly = nil;
return new PolygonPair(insidePoly, outsidePoly);

}

IN

OUT

OUT

Slide 17COMPSCI 372 Notes, ©Richard Lobb

A Difficulty

3 ways of dealing with this, in increasing order of complexity are:

– Ignore it, and hope that the scan conversion algorithm does not display
the line connecting the two component polygons.

• This would be the case if, of example, the scan conversion were antialiased

– Split any concave polygons into convex polygons beforehand

– Detect the situation afterwards, and split the components into separate
polygons.

Clipping
planeACF DClipping algorithm yields a

single polygon ABCDEF BE

Slide 18COMPSCI 372 Notes, ©Richard Lobb

Choosing the Root Node

The above algorithm took the head of the list of
polygons as the root.

Much better to choose the polygon whose plane
intersects the fewest other polygons.

– Less clipping

– Simpler, shallower tree

• Some algorithms much faster – O(log n) instead of O(n)

– UDOO: which ones?!

– BUT determining such a polygon is very expensive

Choosing the best of a random sampling of five
polygons is almost as good.

Slide 19COMPSCI 372 Notes, ©Richard Lobb

Traversing the BSP Tree

PolygonList traverse(BSPTree root, Point3f viewpoint) {
// Traverses the BSP tree w.r.t. given viewpoint, using "otherside first" order.
// Returns a list of all polygons encountered, with the property that no
// polygon in the list can obscure any part of any other polygon that comes
// later in the list (when viewed from the viewpoint).

if (tree == null) return null;
else if (viewpoint outside root.plane)

return traverse(root.backTree, viewpoint) ++ root.inPlanePolys ++
traverse(root.frontTree, viewpoint);

else
return traverse(root.frontTree, viewpoint) ++ root.inPlanePolys ++

traverse(root.backTree, viewpoint);
}

List concatenation operator

Slide 20COMPSCI 372 Notes, ©Richard Lobb

Other uses of BSP Trees
In 3D games like Quake

– BSP tree is used to decompose the scene into a set of
disjoint convex regions.

– Set of all polygons potentially visible from each region is
determined (PVS)

• e.g. polygons inside the convex region plus any regions connected
to it by a single open “portal”

– Only the PVS of the region in which the viewer lies is
rendered at each frame

For set operations on polyhedra
– e.g. do intersection by pushing one polyhedron into the

BSP tree of the other, retaining only bits that land in In
nodes

Slide 21COMPSCI 372 Notes, ©Richard Lobb

Other uses of BSP Trees (cont’d)

For calculating shadows in polyhedral scenes
– Calculate shadow volume as union of shadow volumes of

each polygon in scene
To provide a space-subdivision scheme for use in
ray-tracing.

Slide 22COMPSCI 372 Notes, ©Richard Lobb

Scan-line Methods

Obsolescent
Were used when cost of depth-buffer was
excessive
Only advantage nowadays: can do transparency
properly

– Still used in some modellers for a “quality rendering”
pass

• Much faster than ray tracing
• But ray tracing is much better quality

Slide 23COMPSCI 372 Notes, ©Richard Lobb

Scan-line algorithm (idea only)

Pre-sort all polygon edges into an edge table with one
entry per scan line

– Associate each edge with its lowest scan line

Initialize ActiveEdgeList to empty
for each scan line

– Delete “expired” edges
– Add new edges from EdgeTable
– Compute where each edge crosses scan line
– Sort edges by crossing point (x value)
– Fill spans of pixels between edge-crossing points, using the colour

of whichever polygon is in front over that span

Slide 24COMPSCI 372 Notes, ©Richard Lobb

Area Subdivision Methods

Divide and conquer method
Of historical significance only.
Warnock’s algorithm idea:

display(PolygonList polys, Window win) {
clip all polys to the window win
do simple depth sort
if (polys.length() <= 1) draw 0 or 1 polys;
else if (polys.head surrounds window and is in front of all others)

draw polys.head;
else {

subdivide win (into 2 or 4)
recurse with each subdivided window

}
}

Warnock’s algorithm

Slide 25COMPSCI 372 Notes, ©Richard Lobb

Weiler and Atherton algorithm
An area subdivision algorithm in object space
Similar to Warnock, but subdivide along polygon edges
Have to clip polygons to arbitrary polygonal window

– “Weiler and Atherton clipper”
– Hard!

Output is a list of fully-visible polygon fragments
– Object space

Next to impossible to get this working properly!
Modern approach (?) – use 3D BSP trees to generate “front to
back” sequence of output polygons then 2D BSP trees to
handle 2D clipping

– I’m not sure if anyone has actually done this!

Slide 26COMPSCI 372 Notes, ©Richard Lobb

“Hidden Line Removal”
Another classic but rarely-useful algorithm domain
Nowadays if we want line drawings we usually use
hidden surface removal techniques, e.g. (OpenGL):

– Turn on depth buffering
– Set polygon mode to area fill
– Draw object’s polygons
– Set polygon mode to line drawing
– Call glPolygonOffset to “pull” output

primitives forward at least 1 depth unit
– Redraw object’s polygons

See
http://www.opengl.org/developers/faqs/technical/polygonoffset.htm

