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Curves and SurfacesCurves and Surfaces

• Why Curves and Surfaces?
• Parametric Curves & Surfaces
• Subdivision Curves & Surfaces
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Why Curves and Surfaces?Why Curves and Surfaces?

• Often want arbitrary shapes rather than geometric shapes, e.g.
– “Freehand” drawings
– Natural objects (e.g. animals)
– CAD (e.g. mechanical engineering)

• mechanical engineering (e.g. car bodies)
• pottery (the Great Teapot)

• Creates problems of…
– How to represent arbitrary curves and surfaces
– How to interactively design them
– How to render them

• How to render their geometry
• How to texture-map them
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• Introduction
• Hermite Curves
• Bezier Curves
• Uniform B-Spline Curves
• Catmull-Rom Spline Curve
• Non-uniform B-splines
• Non-uniform Rational B-spline [NURBS]

Parametric CurvesParametric Curves

References:  Hill §11; Foley & van Dam et al (F&vD) §11.2

The simplest curve representation is  a sequence of straight line segments. 
But requires too many points to get something reasonably smooth looking.

In these notes we look at ways of piecing together higher-order curves 
(almost inevitably cubics) to achieve continuity of gradient with far fewer 
points. 
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IntroductionIntroduction

• Parametric Straight Lines
• Extension to higher order curves
• Putting the bits together
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Parametric Straight LinesParametric Straight Lines

The factors (1-t) and t are blending functions that select the “mix” of p1 and 
p2 for any value of t.

Can also be written as:
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Have seen parametric equation of straight line:

where T is called the “power basis”, M the “basis matrix”, and G the 
“geometric constraint vector”.
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Extension to higher order curvesExtension to higher order curves

The equation p = T.M.G can be extended to higher order curves:

Quadratic Curves:  T = (t2 t 1)

M is a 3 x 3 matrix,
G is a 3-element vector (of vectors!)

Cubic Curves:    T = (t3 t2 t 1)

M is a 4 x 4 matrix
G is a 4-element vector

etc.

Following Foley et al we concentrate on cubic curves – the most 
common sort.
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• G0 continuity.

• G1 continuity.

• C1 continuity.

• C2 continuity.

Putting the bits togetherPutting the bits together

Complex curves are built by assembling cubic curves end to 
end.

Generally want “continuity”.  Can distinguish between Gn and 
Cn continuity classes.
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G0 continuity.G0 continuity.

• Zeroth order Geometric Continuity
• End points match.
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G1 continuity.G1 continuity.

• First order Geometric Continuity

• End-points and gradients match.
– This implies two constraints at each 

end of curve,  i.e. 4 in total.
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C1 continuity.C1 continuity.

• First order parametric continuity.
Requires G1 continuity AND “speed”  around curve wrt
t continuous, i.e. dp/dt (parametric tangent vector) 
matches at join.
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C2 continuity.C2 continuity.

• Second order parametric continuity
– Requires C1 continuity plus matching of 2nd 

derivative of p wrt t.
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• Constraints
• The Basis Matrix
• The Blending Functions
• Properties
• Interactive Design
• Piecing Hermites Together
• Drawing Hermites

Hermite CurvesHermite Curves

A Hermite curve is a cubic polynomial curve segment constrained 
to a given position p and tangent vector r at each endpoint

p(0)

r(0)
p(1)

r(1)
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ConstraintsConstraints
Have constraint vector

G = (p1, p4, r1, r4)

where subscripts 1 and 4 denote the two endpoints
(reserving 2 and 3 for mid-curve control points later!).

At t = 0, want p(t) = p1, p’(t) = r1

At t = 1, want p(t) = p4, p’(t) = r4.

where p’(t) = parametric tangent vector:

p’(t) =
( ) ( ) GMTMG

⋅⋅= 0123 2 tt
dt

d
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T'
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Constraints (cont’d)Constraints (cont’d)

Substituting into p=TMG and p'=T'MG the constraints are:
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The Basis MatrixThe Basis Matrix

From which we get
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These four equations can be written:
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The Blending FunctionsThe Blending Functions

Have                                  

Can expand to

giving us the blending functions that apply to the four geometry constraint 
vector components.
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Plots of the Blending FunctionsPlots of the Blending Functions
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Varying magnitude of r1, everything else fixed.Varying magnitude of r1, everything else fixed.
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NB: C1 continuous but not G1continuous!

Varying direction of r1, everything else fixed.Varying direction of r1, everything else fixed.
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• Display “handles” for control of tangents
• Normally reverse direction of r1 or r4 for symmetry

Not this .... .... but this.

Interactive DesignInteractive Design

UDOO: Check out the “draw” package in MS Office.

.... or this.
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Piecing Hermites TogetherPiecing Hermites Together

For G1 continuity, want to match endpoints AND gradients, i.e. the 
successive G vectors must be of form:

[p1 p4 r1 r4]  and  [p4 p7 kr4 r7]  with k > 0.

For C1 continuity require k = 1.
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Drawing HermitesDrawing Hermites

• Code to draw Hermite curve:

Precalculate M.G
MoveToPoint2d[ (0 0 0 1).MG ]
for t = δt to 1 in suitably small steps of δt

LineToPoint2d[ (t3 t2 t   1).MG ]
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Bezier CurvesBezier Curves

• Idea (text book approach)
• Bezier Basis Matrix
• Bezier Blending Functions
• Properties
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Idea (F&vD approach)Idea (F&vD approach)

Cubic Bezier curves (after Pierre Bezier, a Renault engineer) can be 
regarded as a variation on a Hermite curve, in which the tangent vectors 
are specified by two intermediate control points p2 and p3 such that

r1 = 3(p2 - p1)   and   r4 = 3(p4 - p3).

Factor of 3 is the value such that a sequence of equally spaced points p1
to p4 on a straight line gives constant parametric “speed”.

Proof: UDOO!
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Bezier Basis MatrixBezier Basis Matrix

If subscripts H and B denote Hermite and Bezier respectively, can see that

Now  p = T MH GH = T MH MHB GB = T MB GB
where
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Bezier Blending FunctionsBezier Blending Functions

Can then expand T.MB to get
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The blending functions are the Bernstein polynomials; successive
terms in the binomial expansion of  [ (1-t) + t ]3.

Generalization: an nth degree Bezier curve has (n-1) control points, 

with blending functions being terms in the expansion of  [ (1-t) + t ]n
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PropertiesProperties

• Blending Functions
• Convex Hull Property
• Continuity Conditions
• De Casteljau’s Construction
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Convex Hull PropertyConvex Hull Property

• The blending functions are the terms in the expansion 

of [(1-t) + t]3

• Hence they sum to 1 for any value of t

• Hence any point p(t) is a “convex sum” of all the pi
• Hence, p lies within the convex hull of the set of 

points pi.
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Continuity ConditionsContinuity Conditions

• If two successive Bezier curves a and b are to be G1

continuous, require
– p4a = p1b, and
– (p3a - p4a) = k (p1b - p2b)     k > 0.

• For C1 continuity,  require k = 1.
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UDOO: Prove this is a Bezier curve of degree n-1.

De Casteljau’s ConstructionDe Casteljau’s Construction

Given n control points, n > 1, define a curve as follows:

Point PointOnCurve (PointList points, float t) {
// A point at a given parametric distance t on a curve 
// defined by a sequence of control points.
if (points.length() == 1) return points[0];
else return CurvePoint(reducedPointSet(points), t);

}

PointList reducedPointSet(PointList inList, float t) {
PointList outList = new PointList();
for each successive pair (pa, pb) of points in inList

outList.add( (1-t)*pa + t*pb );
return outList;

}

(The usual way of defining Bezier curves)
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Uniform B-Spline CurvesUniform B-Spline Curves

• The Problem with Hermite/Bezier Curves
• Interlude – Interpolation and Smoothing
• Back to the Main Thread (Uniform B-spline

Curves)
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The Problem with Hermite/Bezier 
Curves

The Problem with Hermite/Bezier 
Curves

• Piecing together many Hermite or Bezier curves is a hassle
– Continuity conditions are clumsy to enforce.

• Can move to higher-order Bezier curves – e.g. 20 control points, 
with a 19th degree polynomial curve.  But:
– Moving any one control point affects the whole curve.
– It’s slow to calculate each point.

• Want LOCAL CONTROL
– Moving one control point should affect only the immediate vicinity of 

the curve.
• B-spline curves are a solution
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Consider a sequence of uniformly-spaced samples, y0, y1, ....
How do we interpolate to get a smooth function?

Interlude – Interpolation and SmoothingInterlude – Interpolation and Smoothing
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Piecewise Constant
(aka “Nearest Neighbour”)
Piecewise Constant
(aka “Nearest Neighbour”)
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Convolutional SmoothingConvolutional Smoothing

• Piecewise constant is not smooth enough
• Common smoothing technique is “convolutional smoothing”

– Smoothed value at any point is the average of the input 
function in the vicinity of the point

– Unweighted average over a fixed interval is called “running 
mean”

– Generally have a weight function or filter function, h(x)

( ) ( ) ( )duuxhufhfxfsmooth −=∗= ∫
∞

∞−

– Box filtering is convolutional smoothing with square 
pulse, h = U
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Obtained by “box filtering” nearest-neighbour plot.

Piecewise Linear InterpolationPiecewise Linear Interpolation
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Piecewise Quadratic ApproximationPiecewise Quadratic Approximation
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NB: no longer interpolates points

-2 -1 1 2
x

0.1
0.2
0.3
0.4
0.5
0.6
0.7
0.8
QHxL

COMPSCI 715 Curves and Surfaces. Richard Lobb. Slide 39.

The Uniform B-spline Functions — DefinitionThe Uniform B-spline Functions — Definition

• Note change of origin – easier formulae!
• Set of all integer translates of a B-spline function of  a given 

order is a basis for a piecewise approximation space of that 
order.

– Hence name “B-spline”
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Cox-deBoor RecurrenceCox-deBoor Recurrence

• An alternative, more convenient, recurrence formula is:

• Called “Cox-deBoor recurrence”
– [Or a special case of it – see later]
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Cox-deBoor for B3Cox-deBoor for B3
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Back to the Main Thread
(Uniform B-spline Curves)
Back to the Main Thread

(Uniform B-spline Curves)

• What is a Uniform B-spline Curve?
• Examples
• Properties of Uniform B-splines
• End-point Replication
• The F&vD Formulation
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What is a Uniform B-spline Curve?What is a Uniform B-spline Curve?

• A curve in which uniform B-spline functions are used as blending 
functions. Usually use cubic B-splines, m= 4. With n >= 4 control 
points:

where v(s)=(3s3-6s2+4)
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Example 1: n = 4Example 1: n = 4
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See also F&vD Figs 11.22 and 11.23

Example 2: n = 10Example 2: n = 10
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The F&vD FormulationThe F&vD Formulation

• Have (m+1) control points, p0 … pm (m >= 3)
• The full curve is made up of (m -2) cubic polynomial curve segments 

q3 … qm
• Segment qi has the B-spline geometry constraint vector

• Each control point thus affects four of the curve segments.

• Each segment goes from somewhere in the vicinity of pi-2 to 
somewhere in the vicinity of pi-1

– UDOO -- where exactly does the segment start and end?
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The F&vD Formulation (cont.)The F&vD Formulation (cont.)

• The B-spline basis matrix MBs is:

• UDOO:
– determine the blending functions from this matrix and relate them 

to the cubic B-spline definition on slide 41.
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Properties of Uniform B-splinesProperties of Uniform B-splines

• Assuming all control points distinct, have C2 continuity (cf. C1

for Hermite/Bezier)
– 2nd derivatives match at “knot” points (where the separate curves 

join).

• Each curve segment lies within convex hull of its associated 
control points

– Proof: UDOO

• In general, none of the control points are on the curve, but can
replicate control points

– Particularly first and last
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Replicating End-pointsReplicating End-points

Start of example 2 curve with different start-point multiplicity.

Single start 
point

Duplicated 
start point

cubic

Triple 
start point

• Can replicate end point similarly to 
force curve to start and end at first 
and last points.

• BUT first segment of curve is linear, 
second is quadratic.

• Not ideal.

COMPSCI 715 Curves and Surfaces. Richard Lobb. Slide 51.

Gives a smooth curve passing through a set of points (except first and last 
— have to invent extra points at ends!).

• Multiple segments (like B-spline)
• Each segment is a Hermite (or a Bezier!)
• Parametric tangent at point pi is  (pi+1 – pi-1)/2
• Easy to implement

• Like uniform B-spline, but with a different basis matrix
• UDOO: Deduce basis matrix

• Or can  draw as multiple Hermites/Beziers
• No convex hull property – can be “unstable”

Interlude: Catmull-Rom Spline CurveInterlude: Catmull-Rom Spline Curve
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Non-uniform B-splinesNon-uniform B-splines

• Rationale
• The Knot Vector
• The Generalised Cox-deBoor Recurrence Formula
• The End-Point-Interpolating B-splines
• Example
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RationaleRationale

• Want to specify exact start and end points
• Replicating start and end points 3 times gives 

linear end segments
– Unsatisfactory

COMPSCI 715 Curves and Surfaces. Richard Lobb. Slide 54.

The Knot VectorThe Knot Vector

• With previous B-splines, had knots at uniform 
intervals in t
– Knot vector (values of t at the knots) was (0,1,2,3,....)

• We now generalise to allow arbitrary (non-
decreasing) knot vector {tk}

• Spacing between knots determines length of 
corresponding segment of curve
– So by replicating knots at start and end we can shrink the linear 

and quadratic segments to zero ☺

COMPSCI 715 Curves and Surfaces. Richard Lobb. Slide 55.

Notation change: use Bi,j(t) for the j-th order blending function for control 
point pi.

First term is the corresponding lower-order term multiplied by an “up-ramp”
Second term is the next-in-sequence lower-order term mutliplied by a 
“down-ramp”. 

UDOO: Show that this reduces to the earlier version for uniform knots tk=k

Still have convex hull property for any segment of curve:

The Generalised Cox-deBoor
Recurrence Formula

The Generalised Cox-deBoor
Recurrence Formula

If denominator zero, make 
the term zero too (!)
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A Repeated Knot (almost!)A Repeated Knot (almost!)
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(Repeated knots separated 
slightly for clarity)

The quadratic B-spline
passes through p2 when 
multiplicity = 2. Cubic 
would pass through it if 

multiplicity = 3.
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A Repeated Root at the StartA Repeated Root at the Start

• Knot vector = {0,0.05,1,2,3,4,...}  [again, repeated roots separated slightly]
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A Multiplicity-3 Root at the StartA Multiplicity-3 Root at the Start

• Knot vector = {0,0,0,1,2,3,4,...}  [truly equal knots now]
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A Multiplicity-4 Root at the StartA Multiplicity-4 Root at the Start

• Knot vector = {0,0,0,0,1,2,3,4,...}
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The End-Point Interpolating 
Cubic B-Splines

The End-Point Interpolating 
Cubic B-Splines

• From previous slides, see that a multiplicity 4 knot at 
the start allows us to interpolate the start point.

• Similarly at the end.
• Hence, can set up “end-point interpolating” B-splines

– With n control points {p0, p1,..., pn-1} ,knot vector is 
{0,0,0,0,1,2,3,4,....n-4,n-3, n-3,n-3,n-3}

– Called “the standard knot vector”
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Warning: Fig. 11.26 
in the first printing of 
F&vD, showing 
derivation of these, 
is nonsense. Fixed 
in later printings.0.2 0.4 0.6 0.8 1

0.2

0.4

0.6

0.8

1

B0,4

B1,4

B3,4

B2,4

• These are exactly the cubic Bezier functions!!

Knot vector (0,0,0,0,1,1,1,1)Knot vector (0,0,0,0,1,1,1,1)

• Need 4 control points (one curve segment)
• Blending functions
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1 2 3 4 5 6

0.2

0.4

0.6

0.8

1

• Implies 9 control points (6 curve segments)
• Blending functions:

Middle functions same as
uniform B-splines

Knot vector (0,0,0,0,1,2,3,4,5,6,6,6,6)Knot vector (0,0,0,0,1,2,3,4,5,6,6,6,6)
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ExampleExample

Uniform Uniform; replicated end points

Non-uniform – the standard knot vector
COMPSCI 715 Curves and Surfaces. Richard Lobb. Slide 64.

Non-uniform Rational B-splines
[NURBS]

Non-uniform Rational B-splines
[NURBS]

• NURBS are effectively non-uniform B-splines defined in 
homogeneous coordinates.

• Each control point has 4 components:
• “Rational” because after weighting by the B-spline functions 

and projecting back to 3-space we get [UDOO]:

( ), , ,k k k k kP x y z w=

( )

, ,
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( )
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The usual text-book form

NB: SLIDE CHANGED FROM VERSION IN HANDOUT
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Benefits of NURBSBenefits of NURBS

• Can represent conic sections, e.g. circle, with 
quadratic NURBS
– UDOO: Prove that the quadratic Bezier with the following 2D 

homogeneous coordinates defines a 2D quarter circle: 
(0,1,1), (√2/2, √2/2, √2/2), (1,0,1)

• Are a superset of all other curves studied so far
– e.g. for uniform B-splines,  set wk = 1, choose uniform knot 

sequence. For Bezier curve ........ [UDOO]

Cool B-spline applet:
http://www.cs.technion.ac.il/~cs234325/Homepage/Applets/applets/bspline/html/
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Parametric Bi-Cubic SurfacesParametric Bi-Cubic Surfaces

Surfaces (2D) involve two parameters rather than one.
“Bi-cubic” means that each of the parameters is a cubic.

• From Curves to Surfaces
• A Matrix Formulation
• Bezier Surfaces
• Tensor Product Form
• Joining Bezier Patches
• B-Spline Surfaces
• Displaying Bi-cubic Patches

COMPSCI 715 Curves and Surfaces. Richard Lobb. Slide 67.

From Curves to SurfacesFrom Curves to Surfaces

• The equation

p(t) = T.M.G

defines 3D curves
• Changing the parameter t to s (so that we think of the parameter 

as a “distance” rather than a “time”) gives, instead

p(s) = S.M.G

• Assume that each gi is a point in 3-space (forget about Hermites
from now on), which is moving in time, t, i.e. is gi(t).
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From Curves to Surfaces (cont.)From Curves to Surfaces (cont.)

• The curve p(s,t) thus traces out a surface.

g4(t=0) 

g1(t=0) 
g1(t=1) 

g4(t) 

g2(t) 

g3(t) 

g2(t=0) 

g3(t=0) 

Curve p(s,t) 

g4(t=1) 

g3(t=1) 

g2(t=1) 

Curve p(s,1) 

Curve p(s,0) 
g1(t) 
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A Matrix FormulationA Matrix Formulation

• Suppose the ith control point is gi(t) = T.M.Hi
where Hi = [hi1 hi2 hi3 hi4]T.

• Taking the transpose, and using the general result that 
(A.B.C)T=CT.BT.AT [and the fact that gi

T(t) = gi(t), since it is a 
single element of the geometry vector] gives

gi(t) = [hi1 hi2 hi3 hi4].MT.TT

• Hence G = H.MT.TT

• So equation for surface is

p(s, t) = S.M.H.MT. TT

h44
h43h42

h41 h34
h33h32h31

h24h23h22h21 h14h13h12
h11
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Bezier SurfacesBezier Surfaces

• We have p(s, t) = S.M.H.MT.TT.  For Bezier surfaces, 
just use
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Tensor Product FormTensor Product Form

• Previous equation is normally written in tensor product 
(“blending function”) form, obtained by multiplying out the above:

where Bi(x) is the ith cubic Bernstein polynomial:

B1 = (1-x)3,   B2 = 3x(1-x)2,   B3 = 3x2(1-x),   B4 = x3

• Some texts claim that this form of the equation is more 
numerically stable, though slower to evaluate.

( ) ( ) ( ) ijj
i j

i htBsBts ∑∑
= =

=
4

1

4

1
,p
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Joining Bezier PatchesJoining Bezier Patches
For G1 continuity, need
– 4 control points in common

– Colinearity of each of the four groups of three control points that 
cross the boundary.

UDOO: Deduce C1 continuity condition.

shared edge

E1 E2
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B-Spline SurfacesB-Spline Surfaces

• Just use B-spline version of matrix.
• No special conditions needed for continuity –

automatically get C2 continuity everywhere (unless 
have duplicated control points).
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Displaying Patches: Wireframe GridDisplaying Patches: Wireframe Grid

Simplest algorithm:

for s = 0 to 1 by delta_s
MoveToPoint3d(p(s,0));
for t = 0 to 1 by delta_t

LineToPoint3d(p(s,t));
end for

end for

for t = 0 to 1 by delta_t
MoveToPoint3d(p(0,t));
for s = 0 to 1 by delta_s

LineToPoint3d(p(s,t));
end for

end for
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Displaying Patches: Adaptive SubdivisionDisplaying Patches: Adaptive Subdivision

• To polygonise patch, recursively subdivide patch into 
4 until some flatness criterion satisfied (or to some 
fixed depth).

• Adaptive schemes tend to introduce “cracks”:
– See  F&vD Fig. 11.49.

– Can fix (with difficulty) by forcing extra vertex to lie in plane 
of neighbour.

• For shading, also need vertex normals.
– Get from cross-product of two parametric tangent vectors  

∂p/∂s and ∂p/∂t. UDOO.
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Subdivision AlgorithmsSubdivision Algorithms

• Another approach to representing a smooth surface
• Start with a coarse polyhedron
• Repeatedly subdivide faces according to some rule

• Limit surface is smooth
• Very popular in recent years
• References:

– Siggraph 2000 Course Notes: http://mrl.nyu.edu/~dzorin/sig00course/ 
– Marcus Gross’ course:

• http://cgg.unibe.ch/teaching/lectures/ss03/ag/subdgross.pdf
• Above images taken from there

– Some demos and code available from http://www.subdivision.org
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Subdividing a PolygonSubdividing a Polygon

• Chaikin’s algorithm:
for each edge

insert vertices at ¼ and ¾ points
discard original vertices

.  .  .

Limit curve is the quadratic B-spline defined by the original control polygon!

COMPSCI 715 Curves and Surfaces. Richard Lobb. Slide 78.

a

b
c

d

Proof of B-spline propertyProof of B-spline property
(Idea only)

• Consider an open control polygon ABC

– Draw its quadratic B-spline segment 

• Subdivide to abcd (Chaikin’s algorithm)

– Easy to show that the B-spline segments due to abc and bcd together equal 

the segment from ABC. [UDOO]

A

B

C

B-spline curve 
from {a,b,c}

B-spline curve 
from {b,c,d}

B-spline curve 
from {A,B,C}

( )2

1 2 1
1( ) 1 2 2 0
2

1 1 0

A
t t t B

C

−  
  = −  
  
  

p
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Proof of B-spline property (cont’d)Proof of B-spline property (cont’d)

• Similarly for further subdivisions

– B-spline curve remains unchanged

• In limit, curve = control polygon
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Doo-Sabin Subdivision1Doo-Sabin Subdivision1

• [A slight variant on quadratic Catmull-Clark subdivision]
• 2D equivalent of Chaikin’s algorithm
• First consider a regular [i.e. all nodes have valence 4]  quadrilateral grid 

of control points.

[1]  DOO, D., AND SABIN, M. 
Behaviour of recursive division surfaces near extraordinary points. 
Computer-Aided Design 10 (Sept. 1978), 356-360.
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Step 1: Insert new face verticesStep 1: Insert new face vertices

• For each vertex pi in each face {pi, pi+1, pi+2, pi+3}, compute 
a new vertex pi’ = (9pi + 3pi+1 + pi+2 + 3pi+3)/16

pi

pi+1

pi+2

pi+3
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Step 2: Connect to create new mesh Step 2: Connect to create new mesh 

• Get one new face 
for each:

– Face
– Edge
– Vertex

• Effect is to “cut off” 
all vertices and 
edges.

Discard old mesh
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Extraordinary verticesExtraordinary vertices

• Can extend algorithm to handle non-valence-four nodes, e.g. if 
mesh is a closed polyhedron.
– These are called extraordinary vertices

• Algorithm is same except the rule for a new vertex is now:
– For face with m vertices {pi, pi+1, pi+2, pi+3 .... pi+m-1 }, compute a new vertex: 

• NB: Gives same weights as before if m = 4.

1

0

1 5 0
4 4

where  
3 2cos(2 / ) otherwise

4

m
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Example: Doo-Sabin subdivision of cubeExample: Doo-Sabin subdivision of cube
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Limit Surface PropertiesLimit Surface Properties

• For regular quadrilateral mesh it’s a quadratic B-spline
– C1 continuous
– Proof follows same general idea as for Chaikin’s algorithm

• For general mesh it’s C1 continuous everywhere except at a 
finite number of points arising from each original extraordinary
point.

• So Doo-Sabin subdivision is a generalization of quadratic B-
spline surfaces.
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Mesh BoundaryMesh Boundary

• If mesh is a polyhedron there’s no open boundary.
• But what if there is an open boundary?
• As with B-spline curves, surface is smaller than control mesh.
• Since centroids of original faces lie on limit surface can stop 

mesh “shrinking inwards” by adding extra degenerate 
quadrilaterals around boundary.

Make these
zero width
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Other subdivision algorithmsOther subdivision algorithms

• Doo-Sabin is just one of many algorithms.
• Some other important ones (see Siggraph course notes):
1. Catmull-Clark cubic subdivision

• Quadrilateral mesh
• C2 continuous (but C1 at finite number of extraordinary points).
• Generalizes cubic B-spline

2. Loop subdivision
• Triangular mesh
• C2 continuous (but C1 at finite number of extraordinary points).
• Approximating (like B-splines)

3. Modified butterfly subdivision
• Triangular mesh
• C2 continuous (but C1 at finite number of extraordinary points).
• Interpolates mesh control points
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Fine structuresFine structures
• Can modify subdivision algorithms 

to incorporate creases and variable 
radius bends.

• See: “Subdivision surfaces in 
Character Animation”, De Rose, 
Kass, Truong. Reprinted in 
Siggraph 2000 Course Notes. 


