Why Curves and Surfaces?

Curves and Surfaces

-Why Curves and Surfaces?

- Parametric Curves \& Surfaces
- Subdivision Curves \& Surfaces
- Often want arbitrary shapes rather than geometric shapes, e.g.
- "Freehand" drawings
- Natural objects (e.g. animals)
- CAD (e.g. mechanical engineering)
- mechanical engineering (e.g. car bodies)
- pottery (the Great Teapot)
- Creates problems of..
- How to represent arbitrary curves and surfaces
- How to interactively design them
- How to render them
- How to render their geometry
- How to texture-map them

Parametric Curves

References: Hill §11; Foley \& van Dam et al (F\&vD) §11.2

The simplest curve representation is a sequence of straight line segments But requires too many points to get something reasonably smooth looking.

In these notes we look at ways of piecing together higher-order curves (almost inevitably cubics) to achieve continuity of gradient with far fewer points.

Introduction

Introduction

- Hermite Curves
- Bezier Curves
- Uniform B-Spline Curves
- Catmull-Rom Spline Curve
- Non-uniform B-splines
- Non-uniform Rational B-spline [NURBS]

Have seen parametric equation of straight line:

$$
\mathbf{p}(t)=\mathbf{p}_{1}+t\left(\mathbf{p}_{2}-\mathbf{p}_{1}\right)=(1-t) \mathbf{p}_{1}+t \mathbf{p}_{2}
$$

The factors (1-t) and t are blending functions that select the "mix" of \mathbf{p}_{1} and \mathbf{p}_{2} for any value of t.

Can also be written as:

$$
\mathbf{p}(t)=\left(\begin{array}{ll}
t & 1
\end{array}\right)\left(\begin{array}{cc}
-1 & 1 \\
1 & 0
\end{array}\right)\binom{\mathbf{p}_{1}}{\mathbf{p}_{2}}=\mathbf{T} \cdot \mathbf{M} \cdot \mathbf{G}
$$

where \mathbf{T} is called the "power basis", \mathbf{M} the "basis matrix", and \mathbf{G} the "geometric constraint vector".

The equation $\mathbf{p}=\mathbf{T} . \mathbf{M . G}$ can be extended to higher order curves:
Quadratic Curves: $\mathbf{T}=\left(\begin{array}{lll}t^{2} & t & 1\end{array}\right)$
\mathbf{M} is a 3×3 matrix
\mathbf{G} is a 3-element vector (of vectors!)

Cubic Curves: $\quad \mathbf{T}=\left(\begin{array}{llll}t^{3} & t^{2} & t & 1\end{array}\right)$
\mathbf{M} is a 4×4 matrix
\mathbf{G} is a 4-element vector
etc.

Following Foley et al we concentrate on cubic curves - the most common sort.

Putting the bits together

Complex curves are built by assembling cubic curves end to end.

Generally want "continuity". Can distinguish between G^{n} and
Zeroth order Geometric Continuity
C^{n} continuity classes

- End points match.
- G^{0} continuity.
- G^{1} continuity.
- c^{1} continuity.
- c^{2} continuity.
- First order Geometric Continuity
- First order parametric continuity.
- End-points and gradients match.
- This implies two constraints at each

Requires G^{1} continuity AND "speed" around curve wrt t continuous, i.e. dp/dt (parametric tangent vector) matches at join. end of curve, i.e. 4 in total.

COMPSCI 715 Curves and Surfaces. Richard Lobb. \longrightarrow Slide 10.

c^{2} continuity.

- Second order parametric continuity
- Requires C^{1} continuity plus matching of 2 nd derivative of \mathbf{p} wrt t.

Hermite Curves

A Hermite curve is a cubic polynomial curve segment constrained to a given position \mathbf{p} and tangent vector \mathbf{r} at each endpoint

- Constraints
- The Basis Matrix
- The Blending Functions
- Properties
- Interactive Design
- Piecing Hermites Together
- Drawing Hermites

Constraints

Have constraint vector

$$
\mathbf{G}=\left(\mathbf{p}_{1}, \mathbf{p}_{4}, \mathbf{r}_{1}, \mathbf{r}_{4}\right)
$$

Constraints (cont'd)

Substituting into $\mathbf{p}=\mathbf{T M G}$ and $\mathbf{p}^{\prime}=\mathbf{T}^{\prime} \mathbf{M G}$ the constraints are:
where subscripts 1 and 4 denote the two endpoints (reserving 2 and 3 for mid-curve control points later!).
$\left.\begin{array}{ll}\text { At } t=0, \text { want } & \mathbf{p}(t)=\mathbf{p}_{1}, \mathbf{p}^{\prime}(t)=\mathbf{r}_{1} \\ \text { At } t=1, \text { want } & \mathbf{p}(t)=\mathbf{p}_{4}, \mathbf{p}^{\prime}(t)=\mathbf{r}_{4} .\end{array}\right\} \quad 4$ constraints
where $\mathbf{p}^{\prime}(t)=$ parametric tangent vector:

$$
\mathbf{p}^{\prime}(t)=\frac{d(\mathbf{T M G})}{d t}=\underbrace{\left(\begin{array}{llll}
3 t^{2} & 2 t & 1 & 0
\end{array}\right)}_{\mathbf{T}^{\prime}} \cdot \mathbf{M} \cdot \mathbf{G}
$$

$$
\begin{aligned}
\mathbf{p}(0) & =\left(\begin{array}{llll}
0 & 0 & 0 & 1
\end{array}\right) \cdot \mathbf{M} \cdot \mathbf{G}
\end{aligned}=\mathbf{p}_{1}, \begin{aligned}
& \mathbf{p}^{\prime}(0)
\end{aligned}=\left(\begin{array}{llll}
0 & 0 & 1 & 0
\end{array}\right) \cdot \mathbf{M} \cdot \mathbf{G}=\mathbf{r}_{1}, \begin{array}{llll}
\mathbf{p}(1) & =\left(\begin{array}{llll}
1 & 1 & 1 & 1
\end{array}\right) \cdot \mathbf{M} \cdot \mathbf{G} & =\mathbf{p}_{4} \\
\mathbf{p}^{\prime}(1) & =\left(\begin{array}{llll}
3 & 2 & 1 & 0
\end{array}\right) \cdot \mathbf{M} \cdot \mathbf{G} & =\mathbf{r}_{4}
\end{array}
$$

The Basis Matrix

These four equations can be written:

$$
\left(\begin{array}{c}
\mathrm{p}_{1} \\
\mathrm{p}_{4} \\
\mathrm{r}_{1} \\
\mathrm{r}_{4}
\end{array}\right)=\left(\begin{array}{llll}
0 & 0 & 0 & 1 \\
1 & 1 & 1 & 1 \\
0 & 0 & 1 & 0 \\
3 & 2 & 1 & 0
\end{array}\right) \mathrm{M}\left(\begin{array}{c}
\mathrm{p}_{1} \\
\mathrm{p}_{4} \\
\mathrm{r}_{1} \\
\mathrm{r}_{4}
\end{array}\right)
$$

From which we get

$$
M=\left(\begin{array}{llll}
0 & 0 & 0 & 1 \\
1 & 1 & 1 & 1 \\
0 & 0 & 1 & 0 \\
3 & 2 & 1 & 0
\end{array}\right)^{-1}=\left(\begin{array}{cccc}
2 & -2 & 1 & 1 \\
-3 & 3 & -2 & -1 \\
0 & 0 & 1 & 0 \\
1 & 0 & 0 & 0
\end{array}\right)
$$

The Blending Functions

Have

$$
\mathbf{p}=\mathbf{T M G}=\left(\begin{array}{llll}
t^{3} & t^{2} & t & 1
\end{array}\right)\left(\begin{array}{cccc}
2 & -2 & 1 & 1 \\
-3 & 3 & -2 & -1 \\
0 & 0 & 1 & 0 \\
1 & 0 & 0 & 0
\end{array}\right)\left(\begin{array}{l}
\mathbf{p}_{1} \\
\mathbf{p}_{4} \\
\mathbf{r}_{1} \\
\mathbf{r}_{4}
\end{array}\right)
$$

Can expand to

$$
\mathbf{p}(t)=\left(2 t^{3}-3 t^{2}+1\right) \mathbf{p}_{1}+\left(-2 t^{3}+3 t^{2}\right) \mathbf{p}_{4}+\left(t^{3}-2 t^{2}+t\right) \mathbf{r}_{1}+\left(t^{3}-t^{2}\right) \mathbf{r}_{4}
$$

giving us the blending functions that apply to the four geometry constrain vector components.

Blending Functions

Interactive Design

- Display "handles" for control of tangents
- Normally reverse direction of \mathbf{r}_{1} or \mathbf{r}_{4} for symmetry

UDOO: Check out the "draw" package in MS Office.

For G^{1} continuity, want to match endpoints AND gradients, i.e. the successive \mathbf{G} vectors must be of form:

$$
\left[\begin{array}{llll}
\mathbf{p}_{1} & \mathbf{p}_{4} & \mathbf{r}_{1} & \mathbf{r}_{4}
\end{array}\right] \text { and }\left[\begin{array}{llll}
\mathbf{p}_{4} & \mathbf{p}_{7} & k \mathbf{k}_{4} & \mathbf{r}_{7}
\end{array}\right] \text { with } k>0 .
$$

For C^{1} continuity require $k=1$

Drawing Hermites

- Code to draw Hermite curve

Precalculate M.G
MoveToPoint2d[(0 000 1).MG]
for $t=\delta t$ to 1 in suitably small steps of δt LineToPoint2d[(t^{3} t² t 1).MG]

COMPSCI 715 Curyes and Sufaces. Richard Lobb. \longrightarrow Slide 22.

Bezier Curves

- Idea (text book approach)
- Bezier Basis Matrix
- Bezier Blending Functions
- Properties

Idea (F\&vD approach)

Cubic Bezier curves (after Pierre Bezier, a Renault engineer) can be regarded as a variation on a Hermite curve, in which the tangent vectors are specified by two intermediate control points \mathbf{p}_{2} and \mathbf{p}_{3} such that

$$
\mathbf{r}_{1}=3\left(\mathbf{p}_{2}-\mathbf{p}_{1}\right) \text { and } \mathbf{r}_{4}=3\left(\mathbf{p}_{4}-\mathbf{p}_{3}\right) .
$$

Factor of 3 is the value such that a sequence of equally spaced points \mathbf{p}_{1} to \mathbf{p}_{4} on a straight line gives constant parametric "speed".

Proof: UDOO!

Bezier Basis Matrix

If subscripts H and B denote Hermite and Bezier respectively, can see that

$$
\mathbf{G}_{H}=\left(\begin{array}{l}
\mathbf{p}_{1} \\
\mathbf{p}_{4} \\
\mathbf{r}_{1} \\
\mathbf{r}_{4}
\end{array}\right)=\left(\begin{array}{cccc}
1 & 0 & 0 & 0 \\
0 & 0 & 0 & 1 \\
-3 & 3 & 0 & 0 \\
0 & 0 & -3 & 3
\end{array}\right)\left(\begin{array}{l}
\mathbf{p}_{1} \\
\mathbf{p}_{2} \\
\mathbf{p}_{3} \\
\mathbf{p}_{4}
\end{array}\right)=\mathbf{M}_{H B} \cdot \mathbf{G}_{B}
$$

Now $\mathbf{p}=\mathbf{T} \mathbf{M}_{H} \mathbf{G}_{H}=\mathbf{T} \mathbf{M}_{H} \mathbf{M}_{H B} \mathbf{G}_{B}=\mathbf{T} \mathbf{M}_{B} \mathbf{G}_{B}$
where

$$
\mathbf{M}_{B}=\mathbf{M}_{H} \mathbf{M}_{H B}=\left(\begin{array}{cccc}
-1 & 3 & -3 & 1 \\
3 & -6 & 3 & 0 \\
-3 & 3 & 0 & 0 \\
1 & 0 & 0 & 0
\end{array}\right)
$$

Properties

- Blending Functions
- Convex Hull Property
- Continuity Conditions
- De Casteljau's Construction

Can then expand $\mathbf{T} \cdot \mathbf{M}_{B}$ to get

$$
\mathrm{p}(t)=(1-t)^{3} \mathrm{p}_{1}+3 t(1-t)^{2} \mathrm{p}_{2}+3 t^{2}(1-t) \mathrm{p}_{3}+t^{3} \mathrm{p}_{4}
$$

The blending functions are the Bernstein polynomials; successive terms in the binomial expansion of $[(1-t)+t]^{3}$.

Generalization: an $n^{\text {th }}$ degree Bezier curve has ($n-1$) control points, with blending functions being terms in the expansion of $[(1-t)+t]^{n}$

Blending Functions

Blending Functions

- The blending functions are the terms in the expansion of $[(1-t)+t]^{3}$
- Hence they sum to 1 for any value of t
- Hence any point $\mathbf{p}(t)$ is a "convex sum" of all the \mathbf{p}_{i}
- Hence, \mathbf{p} lies within the convex hull of the set of points $\mathbf{p}_{\text {i }}$

Continuity Conditions

- If two successive Bezier curves a and b are to be G^{1} continuous, require
- $\boldsymbol{p}_{4 \mathrm{a}}=\boldsymbol{p}_{1 \mathrm{~b}}$, and
$-\left(\mathbf{p}_{3 a}-\mathbf{p}_{4 \mathrm{a}}\right)=k\left(\mathbf{p}_{1 \mathrm{~b}}-\mathbf{p}_{2 \mathrm{~b}}\right) \quad k>0$.
- For C^{1} continuity, require $k=1$.

De Casteljau's Construction

(The usual way of defining Bezier curves)
Given n control points, $\mathrm{n}>1$, define a curve as follows:

Point PointOnCurve (PointList points, float t) \{

$$
\text { // A point at a given parametric distance } t \text { on a curve }
$$

// defined by a sequence of control points.

$$
\text { if (points.length() }==1 \text {) return points[0]; }
$$

else return CurvePoint(reducedPointSet(points), t);
\}
PointList reducedPointSet(PointList inList, float t) \{ PointList outList $=$ new PointList();
for each successive pair (pa, pb) of points in inList outList.add ((1-t)*pa + t*pb);
return outList;
\}
UDOO: Prove this is a Bezier curve of degree $\mathrm{n}-1$.

Uniform B-Spline Curves

- The Problem with Hermite/Bezier Curves
- Interlude - Interpolation and Smoothing
- Back to the Main Thread (Uniform B-spline Curves)

The Problem with Hermite/Bezier

 Curves- Piecing together many Hermite or Bezier curves is a hassle - Continuity conditions are clumsy to enforce.
- Can move to higher-order Bezier curves - e.g. 20 control points, with a 19th degree polynomial curve. But:
- Moving any one control point affects the whole curve
- It's slow to calculate each point.
- Want LOCAL CONTROL
- Moving one control point should affect only the immediate vicinity of the curve.
- B-spline curves are a solution

Consider a sequence of uniformly-spaced samples, $\mathrm{y}_{0}, \mathrm{y}_{1}, \ldots$. How do we interpolate to get a smooth function?

Convolutional Smoothing

- Piecewise constant is not smooth enough
- Common smoothing technique is "convolutional smoothing"
- Smoothed value at any point is the average of the input function in the vicinity of the point
- Unweighted average over a fixed interval is called "running mean"
- Generally have a weight function or filter function, $h(x)$

$$
f_{\text {smooth }}(x)=f * h=\int_{-\infty}^{\infty} f(u) h(x-u) d u
$$

- Box filtering is convolutional smoothing with square pulse, $h=U$

Obtained by "box filtering" nearest-neighbour plot

[The "tent" function - aka linear b-spline]

The Uniform B-spline Functions - Definition

$$
\begin{aligned}
& B_{m+1}(x)=B_{m}(x) * B_{1}(x) \\
& B_{1}(x)=\left\{\begin{array}{cc}
1 & 0 \leq x<1 \\
0 & \text { otherwise }
\end{array}\right.
\end{aligned}
$$

- Note change of origin - easier formulae!
- Set of all integer translates of a B-spline function of a given order is a basis for a piecewise approximation space of that order.
- Hence name "B-spline"

Cox-deBoor Recurrence

- An alternative, more convenient, recurrence formula is:

$$
\begin{aligned}
& B_{m}(x)=\frac{x B_{m-1}(x)+(m-x) B_{m-1}(x-1)}{m-1} \\
& B_{1}(x)= \begin{cases}1 & 0 \leq x<1 \\
0 & \text { otherwise }\end{cases}
\end{aligned}
$$

- Called "Cox-deBoor recurrence"
- [Or a special case of it - see later]

Cox-deBoor for B_{2}

[^0]\qquad Slide 41 .

Cox-deBoor for B_{3}

What is a Uniform B-spline Curve?

- A curve in which uniform B-spline functions are used as blending functions. Usually use cubic B-splines, $\mathrm{m}=4$. With $n>=4$ control points:
$\mathbf{p}(t)=\sum_{i=0}^{n-1} \mathbf{p}_{i} B_{4}(t-i+3) \quad$ with t in range $[0, n-3]$
$B_{4}(t)=\frac{1}{6} \begin{cases}t^{3} & 0 \leq t<1 \\ v(2-t) & 1 \leq t<2 \\ v(t-2) & 2 \leq t<3 \\ (4-t)^{3} & 3 \leq t<4 \\ 0 & \text { otherwise }\end{cases}$
where $v(s)=\left(3 s^{3}-6 s^{2}+4\right)$

- What is a Uniform B-spline Curve?
- Examples
- Properties of Uniform B-splines
- End-point Replication
- The F\&vD Formulation

Example 1: $n=4$
${ }^{p_{0}}$
COMPSCI 715 Curves and Surfaces. Richard Lobb \qquad
Slide 45.

The F\&vD Formulation

- Have $(m+1)$ control points, $\mathbf{p}_{0} \ldots \mathbf{p}_{m}(m>=3)$
- The full curve is made up of $(m-2)$ cubic polynomial curve segments
$q_{3} \ldots q_{m}$
- Segment $\mathbf{q}_{\mathbf{i}}$ has the B-spline geometry constraint vector

$$
\mathbf{G}_{B s_{i}}=\left(\begin{array}{c}
\mathbf{p}_{i-3} \\
\mathbf{p}_{i-2} \\
\mathbf{p}_{i-1} \\
\mathbf{p}_{i}
\end{array}\right), \quad 3 \leq i \leq m
$$

- Each control point thus affects four of the curve segments.
- Each segment goes from somewhere in the vicinity of \mathbf{p}_{i-2} to somewhere in the vicinity of \mathbf{p}_{i-1}
- UDOO -- where exactly does the segment start and end?

Example 2: $\boldsymbol{n = 1 0}$

- determine the blending functions from this matrix and relate them to the cubic B-spline definition on slide 41.
\qquad
- Assuming all control points distinct, have C^{2} continuity (cf. C^{1} for Hermite/Bezier)
- 2nd derivatives match at "knot" points (where the separate curves join).
- Each curve segment lies within convex hull of its associated control points
- Proof: UDOO
- In general, none of the control points are on the curve, but can replicate control points
- Particularly first and last

Start of example 2 curve with different start-point multiplicity.

Interlude: Catmull-Rom Spline Curve

Gives a smooth curve passing through a set of points (except first and last

- have to invent extra points at ends!).
- Multiple segments (like B-spline)
- Rationale
- The Knot Vector
- Parametric tangent at point \mathbf{p}_{i} is $\left(\mathbf{p}_{i+1}-\mathbf{p}_{\mathrm{i}-1}\right) / 2$
- The Generalised Cox-deBoor Recurrence Formula
- The End-Point-Interpolating B-splines
- Example

Non-uniform B-splines

- Easy to implement
- Like uniform B-spline, but with a different basis matrix
- Or can draw as multiple Hermites/Beziers
- No convex hull property - can be "unstable"

- Want to specify exact start and end points
- Replicating start and end points 3 times gives linear end segments
- Unsatisfactory
\qquad
- With previous B-splines, had knots at uniform intervals in t
- Knot vector (values of t at the knots) was ($0,1,2,3, \ldots$.)
- We now generalise to allow arbitrary (nondecreasing) knot vector $\left\{t_{k}\right\}$
- Spacing between knots determines length of corresponding segment of curve
- So by replicating knots at start and end we can shrink the linear and quadratic segments to zero -

The Generalised Cox-deBoor Recurrence Formula

Notation change: use $B_{i, j}(t)$ for the j-th order blending function for control point $\mathbf{p}_{\text {i }}$.

$$
\begin{aligned}
& B_{i, j}(t)=\frac{t-t_{i}}{t_{i+j-1}-t_{i}} B_{i, j-1}(t)+\frac{t_{i+j}-t}{t_{i+j}-t_{i+1}} B_{i+1, j-1}(t) \\
& B_{i, 1}(t)= \begin{cases}1 & t_{i} \leq t<t_{i+1} \\
0 & \text { If denominator zero, make } \\
0 & \text { the term zero too (!) }\end{cases} \\
&
\end{aligned}
$$

First term is the corresponding lower-order term multiplied by an "up-ramp" Second term is the next-in-sequence lower-order term mutliplied by a "down-ramp".

UDOO: Show that this reduces to the earlier version for uniform knots $t_{k}=k$
Still have convex hull property for any segment of curve: $\quad \sum B_{i, j}(t)=1$

A Repeated Knot (almost!)

Knot vector $=\{0,1,2,2.95,3.05,4,5, \ldots$.
(Repeated knots separated slightly for clarity)

$B_{i, 1}$

$B_{i, 2}$

The quadratic B-spline passes through \mathbf{p}_{2} when multiplicity $=2$. Cubic would pass through it if multiplicity $=3$.
\qquad Slide 55

A Repeated Root at the Start

- Knot vector $=\{0,0.05,1,2,3,4, \ldots\}$ [again, repeated roots separated slightly]
$B_{i, 1}$

Curve interpolates \mathbf{p}_{0}
$B_{i, 2}$

$B_{i, 3}$

$B_{i, 4}$
$i \in[0,4]$

A Multiplicity-3 Root at the Start

- Knot vector $=\{0,0,0,1,2,3,4, \ldots\}$ [truly equal knots now]

The End-Point Interpolating Cubic B-Splines

- Knot vector $=\{0,0,0,0,1,2,3,4, \ldots\}$

- From previous slides, see that a multiplicity 4 knot at the start allows us to interpolate the start point.
- Similarly at the end.
- Hence, can set up "end-point interpolating" B-splines
- With n control points $\left\{\mathrm{p}_{0}, \mathrm{p}_{1, \ldots, \ldots}, \mathrm{p}_{\mathrm{n}-1}\right\}$,knot vector is

$$
\{0,0,0,0,1,2,3,4, \ldots . n-4, n-3, n-3, n-3, n-3\}
$$

- Called "the standard knot vector"
- Need 4 control points (one curve segment)
- Blending functions
- Implies 9 control points (6 curve segments)
- Blending functions:

- These are exactly the cubic Bezier functions!!

Warning: Fig. 11.26 in the first printing of F\&VD, showing derivation of these, is nonsense. Fixed in later printings.
\qquad

Non-uniform Rational B-splines
[NURBS]

- NURBS are effectively non-uniform B-splines defined in homogeneous coordinates.
- Each control point has 4 components: $\tilde{P}_{k}=\left(x_{k}, y_{k}, z_{k}, w_{k}\right)$
- "Rational" because after weighting by the B -spline functions and projecting back to 3 -space we get [UDOO]:

$$
\begin{aligned}
& \mathbf{p}(t)=\frac{\sum_{k} \mathbf{p}_{k} B_{k, m}}{\sum_{k} w_{k} B_{k, m}}=\frac{\sum_{k} w_{k} \mathbf{q}_{k} B_{k, m}}{\sum_{k} w_{k} B_{k, m}} \text { The usual text-book form } \\
& \text { where } \mathbf{q}_{k}=\left(\frac{x_{k}}{w_{k}}, \frac{y_{k}}{w_{k}}, \frac{z_{k}}{w_{k}}\right)=\left(x_{k}^{\prime}, y_{k}^{\prime}, z_{k}^{\prime}\right)
\end{aligned}
$$

- Can represent conic sections, e.g. circle, with quadratic NURBS
- UDOO: Prove that the quadratic Bezier with the following 2D homogeneous coordinates defines a 2D quarter circle:
$(0,1,1),(\sqrt{ } 2 / 2, \sqrt{ } 2 / 2, \sqrt{ } 2 / 2),(1,0,1)$
- Are a superset of all other curves studied so far
- e.g. for uniform B-splines, set $w_{k}=1$, choose uniform knot sequence. For Bezier curve [UDOO]
http://www.cs.technion.ac.i1/~cs234325/Homepage/Applets/applets/bspline/html/

Surfaces (2D) involve two parameters rather than one.
"Bi-cubic" means that each of the parameters is a cubic.

- From Curves to Surfaces
- A Matrix Formulation
- Bezier Surfaces
- Tensor Product Form
- Joining Bezier Patches
- B-Spline Surfaces
- Displaying Bi-cubic Patches

From Curves to Surfaces

- The equation

$$
\mathbf{p}(t)=\mathbf{T} . \mathbf{M} . \mathbf{G}
$$

defines 3D curves

- Changing the parameter t to s (so that we think of the parameter as a "distance" rather than a "time") gives, instead

$$
\mathbf{p}(s)=\mathbf{S . M . G}
$$

- Assume that each \mathbf{g}_{i} is a point in 3 -space (forget about Hermites from now on), which is moving in time, t, i.e. is $\mathbf{g}_{\mathbf{i}}(t)$.

From Curves to Surfaces (cont.)

- The curve $\mathbf{p}(s, t)$ thus traces out a surface.

A Matrix Formulation

- Suppose the $\mathrm{i}^{\text {th }}$ control point is $\mathbf{g}_{\mathbf{i}}(t)=$ T.M. \mathbf{H}_{i}

$$
\text { where } H_{i}=\left[\begin{array}{llll}
\mathbf{h}_{\mathrm{i} 1} & \mathbf{h}_{\mathrm{i} 2} & \mathbf{h}_{\mathrm{i} 3} & \mathbf{h}_{\mathrm{i} 4} 4
\end{array}\right]^{\top} .
$$

- Taking the transpose, and using the general result that (A.B.C) ${ }^{\top}=C^{\top} . B^{\top} \cdot A^{\top}$ and the fact that $\mathbf{g}_{i}^{\top}(t)=g_{i}(t)$, since it is a single element of the geometry vector] gives

$$
\mathbf{g}_{\mathbf{i}}(t)=\left[\begin{array}{llll}
\mathbf{h}_{\mathbf{i} 1} & \mathbf{h}_{\mathbf{i} 2} & \mathbf{h}_{\mathbf{i} 3} & \mathbf{h}_{\mathbf{i} 4}
\end{array}\right] \cdot \mathbf{M}^{\top} \cdot \mathbf{T}^{\top}
$$

- Hence $\mathbf{G}=\mathbf{H} \cdot \mathbf{M}^{\boldsymbol{\top}} . \mathbf{T}^{\boldsymbol{\top}}$
- So equation for surface is

$$
\mathbf{p}(s, t)=\mathbf{S} \cdot \mathbf{M} \cdot \mathbf{H} \cdot \mathbf{M}^{\top} \cdot \mathbf{T}^{\top}
$$

Tensor Product Form

- Previous equation is normally written in tensor product ("blending function") form, obtained by multiplying out the above:

$$
\mathrm{p}(s, t)=\sum_{i=1}^{4} \sum_{j=1}^{4} B_{i}(s) B_{j}(t) h_{i j}
$$

where $\mathrm{B}_{\mathrm{i}}(x)$ is the $\mathrm{i}^{\text {th }}$ cubic Bernstein polynomial:

$$
\mathrm{B}_{1}=(1-x)^{3}, \quad \mathrm{~B}_{2}=3 x(1-x)^{2}, \quad \mathrm{~B}_{3}=3 x^{2}(1-x), \quad \mathrm{B}_{4}=x^{3}
$$

- Some texts claim that this form of the equation is more numerically stable, though slower to evaluate.

Bezier Surfaces

- We have $\mathbf{p}(s, t)=\mathbf{S} \cdot \mathbf{M} \cdot \mathbf{H} \cdot \mathbf{M}^{\top} \cdot \mathbf{T}^{\top}$. For Bezier surfaces, just use

$$
\mathbf{M}=\left(\begin{array}{cccc}
-1 & 3 & -3 & 1 \\
3 & 6 & 3 & 0 \\
-3 & 3 & 0 & 0 \\
1 & 0 & 0 & 0
\end{array}\right)
$$

Joining Bezier Patches

For G^{1} continuity, need

- 4 control points in common
- Colinearity of each of the four groups of three control points that cross the boundary.
UDOO: Deduce C^{1} continuity condition.

- Just use B-spline version of matrix.
- No special conditions needed for continuity automatically get C^{2} continuity everywhere (unless have duplicated control points).

Simplest algorithm
for $s=0$ to 1 by delta_s
MoveToPoint3d(p(s,0));
for $t=0$ to 1 by delta_t
LineToPoint3d(p(s,t));
end for
end for
for $t=0$ to 1 by delta_t
MoveToPoint3d(p(0,t));
for $s=0$ to 1 by delta_s LineToPoint3d(p(s,t));
end for
end for
— COMPSCI 715 Curves and Surfaces. Richard Lobb.

Subdivision Algorithms

- Another approach to representing a smooth surface
- Start with a coarse polyhedron
- Repeatedly subdivide faces according to some rule 4 until some flatness criterion satisfied (or to some fixed depth).
- Adaptive schemes tend to introduce "cracks":
- See F\&vD Fig. 11.49.
- Can fix (with difficulty) by forcing extra vertex to lie in plane of neighbour.
- For shading, also need vertex normals.
- Get from cross-product of two parametric tangent vectors $\partial \mathbf{p} / \partial \mathrm{s}$ and $\partial \mathbf{p} / \partial \mathrm{t}$. UDOO.

- Limit surface is smooth
- Very popular in recent years
- References:
- Siggraph 2000 Course Notes: http://mrl.nyu.edu/~dzorin/sig00course/
- Marcus Gross' course:
- $\frac{\text { Attop://cag.unibe.ch/teaching/lectures/ss03/ag/subdaross.pdf }}{\text { Above images taken from there }}$

Above images taken from there

- Some demos and code available from hittp://www.subdivision.org
- Chaikin's algorithm:
for each edge
insert vertices at $1 / 4$ and $3 / 4$ points
discard original vertices

Limit curve is the quadratic B-spline defined by the original control polygon! — Compsci 715 Curres and Sufaces. Richard Lobb. \qquad Slide 77 \qquad

Proof of B-spline property

(Idea only)

- Consider an open control polygon $A B C$
- Draw its quadratic B-spline segment $\quad \mathbf{p}(t)=\left(t^{2}\right.$
- Subdivide to abcd (Chaikin's algorithm)
- Easy to show that the B-spline segments due to abc and bcd together equal the segment from $A B C$. [UDOO]

B-spline curve
A
from $\{A, B, C\}$

- B-spline curve from $\{\mathrm{a}, \mathrm{b}, \mathrm{c}\}$
B-spline curve from $\{\mathrm{b}, \mathrm{c}, \mathrm{d}\}$
- COMPSCI 715 Curves and Surfaces. Richard Lobb.

Doo-Sabin Subdivision

- [A slight variant on quadratic Catmull-Clark subdivision]
- 2D equivalent of Chaikin's algorithm
- First consider a regular [i.e. all nodes have valence 4] quadrilateral grid of control points.

[1] DOO, D., AND SABIN, M.
Behaviour of recursive division surfaces near extraordinary points
Computer-Aided Design 10 (Sept. 1978), 356-360.
COMPSCI 715 Curves and Surfaces. Richard Lobb. \qquad Slide 80.
- For each vertex p_{i} in each face $\left\{p_{i}, p_{i+1}, p_{i+2}, p_{i+3}\right\}$, compute a new vertex $p_{i}^{\prime}=\left(9 p_{i}+3 p_{i+1}+p_{i+2}+3 p_{i+3}\right) / 16$

- Get one new face for each:
- Face
- Edge
- Vertex
- Effect is to "cut off" all vertices and edges.

Example: Doo-Sabin subdivision of cube

- Can extend algorithm to handle non-valence-four nodes, e.g. if mesh is a closed polyhedron.
- These are called extraordinary vertices
- Algorithm is same except the rule for a new vertex is now:
- For face with m vertices $\left\{\mathrm{p}_{\mathrm{i}}, \mathrm{p}_{\mathrm{i}+1}, \mathrm{p}_{\mathrm{i}+2}, \mathrm{p}_{i+3} \ldots . \mathrm{p}_{\mathrm{i}+m-1}\right\}$, compute a new vertex:

$$
\begin{aligned}
& p_{i}^{\prime}=\sum_{k=0}^{m-1} w_{k} p_{i+k} \\
& \text { where } w_{k}=\left\{\begin{array}{cc}
\frac{1}{4}+\frac{5}{4 m} & k=0 \\
\frac{3+2 \cos (2 k \pi / m)}{4 m} & \text { otherwise }
\end{array}\right.
\end{aligned}
$$

- NB: Gives same weights as before if $m=4$.
- For regular quadrilateral mesh it's a quadratic B-spline
- C1 continuous
- Proof follows same general idea as for Chaikin's algorithm
- For general mesh it's C^{1} continuous everywhere except at a finite number of points arising from each original extraordinary point.
- So Doo-Sabin subdivision is a generalization of quadratic Bspline surfaces.
- If mesh is a polyhedron there's no open boundary.
- But what if there is an open boundary?
- As with B-spline curves, surface is smaller than control mesh.
- Since centroids of original faces lie on limit surface can stop mesh "shrinking inwards" by adding extra degenerate quadrilaterals around boundary.

- COMPSCI 715 Curves and Surfaces. Richard Lobb. \longrightarrow Slide 86.

Other subdivision algorithms

- Doo-Sabin is just one of many algorithms
- Some other important ones (see Siggraph course notes):

1. Catmull-Clark cubic subdivision

- Quadrilateral mesh
- C^{2} continuous (but C^{1} at finite number of extraordinary points).
- Generalizes cubic B-spline

2. Loop subdivision

- Triangular mesh
- C^{2} continuous (but C^{1} at finite number of extraordinary points).
- Approximating (like B-splines)

3. Modified butterfly subdivision

- Triangular mesh
- C^{2} continuous (but C^{1} at finite number of extraordinary points)
- Interpolates mesh control points

Fine structures

- Can modify subdivision algorithms to incorporate creases and variable radius bends.
- See: "Subdivision surfaces in Character Animation", De Rose, Kass, Truong. Reprinted in Siggraph 2000 Course Notes.

[^0]: COMPSCI 715 Curves and Suffaces Richard Lobb

