Curves and Surfaces

* Why Curves and Surfaces?
» Parametric Curves & Surfaces
e Subdivision Curves & Surfaces

& COMPSCI 715 Curves and Surfaces. Richard Lobb. Slide 1. J

/ Why Curves and Surfaces? N

« Often want arbitrary shapes rather than geometric shapes, e.g.
— “Freehand” drawings
— Natural objects (e.g. animals)
— CAD (e.g. mechanical engineering)
* mechanical engineering (e.g. car bodies)
 pottery (the Great Teapot)
* Creates problems of...
— How to represent arbitrary curves and surfaces
— How to interactively design them
— How to render them
* How to render their geometry
* How to texture-map them
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Parametric Curves

References: Hill §11; Foley & van Dam et al (F&vD) §11.2

The simplest curve representation is a sequence of straight line segments.
But requires too many points to get something reasonably smooth looking.

In these notes we look at ways of piecing together higher-order curves
(almost inevitably cubics) to achieve continuity of gradient with far fewer
points.

* Introduction

* Hermite Curves

* Bezier Curves

+ Uniform B-Spline Curves

» Catmull-Rom Spline Curve

* Non-uniform B-splines

* Non-uniform Rational B-spline [NURBS]
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a Introduction

« Parametric Straight Lines
+ Extension to higher order curves
+ Putting the bits together
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4 Parametric Straight Lines

Have seen parametric equation of straight line:
P(t) =p1+t(pP2—p1) = (1-t)p1+tp2

The factors (1-f) and t are blending functions that select the “mix” of p, and
p, for any value of t.

Can also be written as:

i g

where T is called the “power basis”, M the “basis matrix”, and G the
“geometric constraint vector”.

The equation p = T.M.G can be extended to higher order curves:
Quadratic Curves: T= (2 t 1)

M is a 3 x 3 matrix,
G is a 3-element vector (of vectors!)

Cubic Curves: T=( £ t 1)
M is a 4 x 4 matrix
G is a 4-element vector

etc.

Following Foley et al we concentrate on cubic curves — the most

( Extension to higher order curves )

common sort.
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a Putting the bits together e GY continuity. N
Complex curves are built by assembling cubic curves end to
end.
+ Zeroth order Geometric Continuity
Gsnerglly _want continuity”. Can distinguish between G"and « End points match.
C" continuity classes.
- o continuity.
. Gt continuity.
- ¢ continuity.
. ¢c2 continuity.
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b
4 G1 continuity. N 4 ¢! continuity. | N
* First order Geometric Continuity * First order parametric continuity.
* End-points and gradients match. Requires G continuity AND “speed” around curve wrt
— This implies two constraints at each t continuous, i.e. dp/dt (parametric tangent vector)
end of curve, i.e. 4 in total. matches at join.
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e c2 continuity. ™ e Hermite Curves ™
A Hermite curve is a cubic polynomial curve segment constrained
to a given position p and tangent vector r at each endpoint
» Second order parametric continuity
— Requires ct continuity plus matching of 2nd p(0)
derivative of p wrt t. 1
r(1
+ Constraints 1
+ The Basis Matrix
* The Blending Functions
* Properties
* Interactive Design
* Piecing Hermites Together
* Drawing Hermites
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q N g
e Constraints | ™ e Constraints (cont’d) ™
Have constraint vector
G=(pq, Py, 1, T
(p1 P4 1 4) Substituting into p=TMG and p'=T'MG the constraints are:
where subscripts 1 and 4 denote the two endpoints
(reserving 2 and 3 for mid-curve control points later!).
0)=(0 0 0 1)MG=
At t=0, want P(t) = pq, P'(t) =14 P(©) ( ) P,
p'(0=(0 0 1 0)MG=r,
Att=1,want  p(f) = pyg, p'(t) = r4. 4 constraints p(h=(1 1 1 1)MG=p,
where p’(t) = parametric tangent vector: p'()= (3 2 1 O)'M'G =n
p(t) = % ~(32 2t 1 o}meG
1)
T
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- ‘The Basis Matrix ~ - The Blending Functions I—\
These four equations can be written: Have
p,) (0 0 0 1) (p 2 -2 1 1)p
-3 3 -2 -1
po|_| 1 11 Ty P p=TMG=(£ 7 ¢ 1) P4
r| [0 0 1 0 T 0 0 1 r
I, 3210 I, 1 0 0 O0Nr,
From which we get Can expand to
-1
0 0 01 2 -2 b p(t)= (2 =32 +1)p, + (=26 +32%)p, +(* =222 + ), + (£ - *)r,
1 1 1 1 -3 3 -2 -1
M = =
00 10 0 1 giving us the blending functions that apply to the four geometry constraint
3 2 1 0 0 0 0 vector components.
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e Plots of the Blending Functions

Blending Functions

/- Varying magnitude of r4, everything else fixed.

3
1
2.5}
0.8
2F
0.6
1.5}
0.4
1k
0.2
t 0.5}
r4 0 0.5 1 1.5 2 2.5 3 3.5
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s Varying direction of ry, everything else fixed. s Interactive Design

NB: C‘I continuous but not G1

/
N
S 1 =)
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continuous!

+ Display “handles” for control of tangents
* Normally reverse direction of rq or r, for symmetry

Not this .... .... but this. .... or this.

T

UDOQO: Check out the “draw” package in MS Office.
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e Piecing Hermites Together N 4 Drawing Hermites N
» Code to draw Hermite curve:
For G1 continuity, want to match endpoints AND gradients, i.e. the
successive G vectors must be of form:
Precalculate M.G
b1 By 14 r4 and [py p7 kry ro] with k>0, MoveToPoint2d[ (000 1).MG ]
for t = ot to 1 in suitably small steps of &t
For 1 continuity require k = 1. LineToPoint2d[ (2 2 t 1).MG]
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4 Bezier Curves h ( Idea (F&vD approach) )
Cubic Bezier curves (after Pierre Bezier, a Renault engineer) can be
+ Idea (text book approach) regarded as a variation on a Hermite curve, in which the tangent vectors
« Bezier Basis Matrix are specified by two intermediate control points p5 and pg such that
* Bezier Blending Functions r{=3(py-pq) and ry=3(py - P3)-
* Properties
Factor of 3 is the value such that a sequence of equally spaced points p4
to p4 on a straight line gives constant parametric “speed”.
Proof: UDOO!
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4 Bezier Basis Matrix N e Bezier Blending Functions ™
If subscripts H and B denote Hermite and Bezier respectively, can see that Can then expand T'MB to get
pr) (1 0 0 0Yp
3 2 2 3
G, <P 0 0 0 Pl g o p(¢)=(1—¢t) p,+3t(1-¢) p,+3t>(1-t)ps+ £ p,
rn| |-3 3 0 0fp;s
r 0 0 -3 3)ps
The blending functions are the Bernstein polynomials; successive
Now p=TMy Gy =TMy M gGg=TMgGg terms in the binomial expansion of [ (1-f) + t]3.
where
-1 3 =31 Generalization: an nth degree Bezier curve has (n-1) control points,
M,=M,M,, = 33 _36 8 8 with blending functions being terms in the expansion of [ (1-t) +t]"
1 0 0 O
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B - .
4 Prcpertiesl N 4 Blending Functions N
» Blending Functions Blending Functions
» Convex Hull Property 1
» Continuity Conditions 0.8\, o0
;
» De Casteljau’s Construction 0.6
0.4 P2 P3
0.2
0.2 04 06 08 11
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4 Convex Hull Property N

* The blending functions are the terms in the expansion
of [(1-t) + {3
» Hence they sum to 1 for any value of t

 Hence any point p(f) is a “convex sum” of all the p;

* Hence, p lies within the convex hull of the set of
points p;.
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~ Continuity Conditionsi N

» |f two successive Bezier curves a and b are to be G1
continuous, require

~ P4g = Pqp, and
— (P33~ P4a) =k(P1p-P2p) k>0.

. ForcC! continuity, require k= 1.
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~ De Casteljau’s Construction|

(The usual way of defining Bezier curves)

Given n control points, n > 1, define a curve as follows:

Point PointOnCurve (PointList points, float t) {

// A point at a given parametric distance t on a curve
// defined by a sequence of control points.

if (points.length() == 1) return points[0];
else return CurvePoint (reducedPointSet (points), t);

}

PointList reducedPointSet (PointList inList, float t) {
PointList outList = new PointList();
for each successive pair (pa, pb) of points in inList
outList.add( (l1-t)*pa + t*pb );
return outList;

UDOQO: Prove this is a Bezier curve of degree n-1.

_
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( Uniform B-Spline Curves )

* The Problem with Hermite/Bezier Curves
* Interlude — Interpolation and Smoothing

» Back to the Main Thread (Uniform B-spline
Curves)

_
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/ The Problem with Hermite/Bezier
Curves

» Piecing together many Hermite or Bezier curves is a hassle
— Continuity conditions are clumsy to enforce.
» Can move to higher-order Bezier curves — e.g. 20 control points,

e Interlude — Interpolation and Smoothing I N

Consider a sequence of uniformly-spaced samples, y,, v, ...
How do we interpolate to get a smooth function?

with a 19th degree polynomial curve. But: 7y
— Moving any one control point affects the whole curve. 6 .
— It's slow to calculate each point. 5
+ Want LOCAL CONTROL 4 ¢
— Moving one control point should affect only the immediate vicinity of z *
the curve. i *
» B-spline curves are a solution o X
1 2 3 4 5 6
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. Piecewise Constant B - Convolutional Smoothing|
(aka “Nearest Neighbour”)

y(x)= 230U (x-i)

Y | —05<x<05
7 where U(x)= )
. 0 otherwise
5 [The unit “square pulse” function]
4
3 } 1
2
1 —o—l x
0
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» Piecewise constant is not smooth enough
+ Common smoothing technique is “convolutional smoothing”

— Smoothed value at any point is the average of the input
function in the vicinity of the point

— Unweighted average over a fixed interval is called “running
mean”

— Generally have a weight function or filter function, h(x)

S ()= £ 2= [ F)H(x =)

— Box filtering is convolutional smoothing with square
pulse, h=U
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e Piecewise Linear Interpolation N e Piecewise Quadratic Approximation |
NB: no longer interpolates points
=Y y: Q(x—i
Obtained by “box filtering” nearest-neighbour plot. yix) =2y Qx-i) )
(2x+3) 8,1
8 2 2
J’(x):zyiL(x*i) §—x2 —1§x<7
l+x -1<x<0 where Q(x)=L(x)*U(x)={ 4 2
7 7 (2x-3)2 1 3
6 where L(x)=U(x)*U(x)=41-x 0<x<1 6 . 8 5sx<5
5 0 otherwise 5
4 2 . 0 otherwise
s [The “tent” function - aka linear z ° [The “Quadratic B-Spline” function]
2 . Q(x)
) b-spline] ) d
0 1 0
1 2 3 4 5 6 1 2 3 4 5 6
-1 1 ) 1 2"
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The Uniform B-spline Functions — Definition e Cox-deBoor Recurrence
By » An alternative, more convenient, recurrence formula is:
1
Brn1(x) = B (x)* By(x) 0.8 Bs
0.6 B
Bx)=] O=x<1 oal 2 By 5 ()= B8 (n=x)B_(x-1)
0 otherwise 0.2 m—1
1 2 3 4 B(x)= I 0<x<l
' 0 otherwise
» Note change of origin — easier formulae!
» Set of all integer translates of a B-spline function of a given « Called “Cox-deBoor recurrence”
order is a basis for a piecewise approximation space of that — [Or a special case of it — see later]
order.
— Hence name “B-spline”
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Cox-deBoor for B,

Bl
1.5 o

0.5 1 1.5 2 2.5
Bl (x-1)

0.5 1 1.5 2 2.5
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1.5

0.5

0.5 1 1.5 2 2.5

2-x

0.5 1 1.5 2 2.5

/1.5 x*Bl (x) \

0.5 1 1.5 2 2.5
(2-x) *Bl (x-1)

1
0.5 i

K 0.5 1 1.5 2 2.5J
Add

0.5 1 1.5 2 2.5

Slide 41. ——

s Cox-deBoor for B,
15 B2 (x) 15 x C x*B2 (x) /2 \

1 1 1

0.5 0.5 0.5

0.511.522.533.5 0.511.522.533.5

0.511.522.5 33.5

B2 (x-1) 3-x (3-x)*B2 (x-1) /2
1 1.5 1.5
1 1 1
0.5 0.5 0.5
0.511.522.5 33.5 0.511.522.533.5 K 0.511.522.5 33.5J

Add

B3 (x

15 (%)
1
0.5

0.511.522.533.5
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1 Back to the Main Thread \
(Uniform B-spline Curves)

K COMPSCI 715 Curves and Surfaces. Richard Lobb.

* What is a Uniform B-spline Curve?
+ Examples
* Properties of Uniform B-splines
» End-point Replication

* The F&vD Formulation

Slide 43. J

e What is a Uniform B-spline Curve? ™

* A curve in which uniform B-spline functions are used as blending
functions. Usually use cubic B-splines, m= 4. With n >= 4 control
points:

n—1

p(t) = Zp,B4(t —i+3) witht in range [0,n —3]
i=0

t? 0<t<l1
v(2-1) 1<r<2
v(1-2) 2<1<3
(4-1)° 3<t<4

0 otherwise

where v(s)=(3s3-6s2+4) n 5 3 p
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e Example 1: n=4

N e Example 2: n=10 N
p
.0 @ 9
Weight for: p, P, P, P P, knot points {r=0,1,...7} p8
°

“‘/\\\ 0.6 ,/\\\ p3

/A / o [ p7

/ 95 // \ pl

A\ / Get only 7 »
4 / \ this bit
/ \ / \
/ 02 \ / \\ * pZ
0.1
NG .
-3 -2 -1 1 2 3 4 4 p5
— . [ } po .p2
Curve defined only over [0,1] D
See also F&vD Figs 11.22 and 11.23
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~ The F&vD Formulation M  The F&vD Formulation (cont.)|

Have (m+1) control points, pg ... Py, (M >=3)
The full curve is made up of (m -2) cubic polynomial curve segments
q3 --- dm

Segment q; has the B-spline geometry constraint vector

Pi-3

G =|P 2|, 3<i<m
TP
P

Each control point thus affects four of the curve segments.

Each segment goes from somewhere in the vicinity of p,, to
somewhere in the vicinity of p,

— UDOO -- where exactly does the segment start and end?

& COMPSCI 715 Curves and Surfaces. Richard Lobb.

Slide 47.

_

* The B-spline basis matrix Mgg is:

-1 3 -3 1

3 -6 3 o0
MBs:7

6|-3 0 3 0

1 4 1 0

+ UDOO:

— determine the blending functions from this matrix and relate them
to the cubic B-spline definition on slide 41.

& COMPSCI 715 Curves and Surfaces. Richard Lobb.
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/ Properties of Uniform B-splines N 4 Replicating End-points N

Start of example 2 curve with different start-point multiplicity.

» Assuming all control points distinct, have c2 continuity (cf. ct ° ° ° °

for Hermite/Bezier)
— 2nd derivatives match at “knot” points (where the separate curves v

join). Single start Duplicated
» Each curve segment lies within convex hull of its associated e+ point . e+~ startpoint e
control points
- Proof: UDOO ° ° .

Can replicate end point similarly to
force curve to start and end at first
and last points.

» BUT first segment of curve is linear,
second is quadratic.

* In general, none of the control points are on the curve, but can
replicate control points
— Particularly first and last

«— start point e

* Not ideal.
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<~ Interlude: Catmull-Rom Spline Curve N s Non-uniform B-splines N
Gives a smooth curve passing through a set of points (except first and last
— have to invent extra points at ends!).
* Multiple segments (like B-spline) « Rationale
» Each segment is a Hermite (or a Bezier!)
+ Parametric tangent at point p;is (p;,4— P;.1)/2 The Knot Vector
+ Easy to implement * The Generalised Cox-deBoor Recurrence Formula
* Like uniform B-spline, but with a different basis matrix ° The End_P0|nt_|nterpo|at|ng B_Spllnes
* UDOO: Deduce basis matrix . E |
* Or can draw as multiple Hermites/Beziers xample
* No convex hull property — can be “unstable”
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n

d Rationale | R The Knot Vector N
_ ) With previous B-splines, had knots at uniform
+ Want to specify exact start and end points . .
C . . . intervals in t
* Replicating start and end points 3 times gives Kot vect |  tat the knot 0123
linear end segments — Knot vector (values of t at the knots) was (0,1,2,3,....)
— Unsatisfactory We now generalise to allow arbitrary (non-
decreasing) knot vector {f,}
Spacing between knots determines length of
corresponding segment of curve
— So by replicating knots at start and end we can shrink the linear
and quadratic segments to zero ©
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o The Generalised Cox-deBoor Y\ A Repeated Knot (almost!) ~

Recurrence Formula

Notation change: use B, (f) for the j-th order blending function for control
point p;
t—t, t,,—t
’ Bi,,/'—l ) +—L— Bi+l,j—] ) ]
ivj-1 i iv; " lin If denominator zero, make
1 t<t<t the term zero too (!)

[ i+l

B, ()=

Bi,l (t) = {

0 otherwise

First term is the corresponding lower-order term multiplied by an “up-ramp”
Second term is the next-in-sequence lower-order term mutliplied by a
“down-ramp”.

UDOO: Show that this reduces to the earlier version for uniform knots t,=k

Knot vector = {0,1,2,2.95,3.05,4,5,....)

Still have convex hull property for any segment of curve: zBi!j(t) =1

& COMPSCI 715 Curves and Surfaces. Richard Lobb. Slide 55.

(Repeated knots separated

slightly for clarity)
08
0.6
Bi,l 0.4
0.2
1 2 3 4 5 6
0.8 //A\\ NI
\ \/
Bi, el /X DN
0.2/ \ L/ \ \
1 2 3 4 5
0.8 _ . . .
B;; oe VY y @R The quadratic B-spline
> -4 / AN /N
o2p NV N N passes through p, when
) : 2 3 ‘ s multiplicity = 2. Cubic
0.8 N would pass through it if
B 4 0.6 //f\ o/ TN . -
1 0.4 / OO\ multiplicity = 3.
0.2 g N\ J/ A A N
/— N / ~
ie [0’ 4] 1 2 3 4 5 6
& COMPSCI 715 Curves and Surfaces. Richard Lobb. Slide 56. J




e A Repeated Root at the Start

» Knot vector = {0,0.05,1,2,3,4,...} [again, repeated roots separated slightly]

~

/ A Multiplicity-3 Root at the Start

*  Kbnot vector = {0,0,0,1,2,3,4,...} [truly equal knots now]

. o3 )
B;, 0 B, o
0.2 0.2
1 L j T Curve interpolates p, 1 o 3 T
0.8\ /N 82 /\
Bi, 0 X\ B, 04 / \ > Curve interpolates p,
0.2 / \ . / \\
1 2 3, " \5 6 1 2 3 4 5 6
B3 Bi,3
Bi4 Bi4
i€[0,4] i€[0,4]
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/ﬂ A Multiplicity-4 Root at the Start ~~— The End-Point Interpolating
Cubic B-Splines
* Knot vector = {0,0,0,0,1,2,3,4,...}
Bi o * From previous slides, see that a multiplicity 4 knot at
oo : the start allows us to interpolate the start point.
0.8 / . .
B, AN + Similarly at the end.
' e B Curve interpolates p, * Hence, can set up “end-point interpolating” B-splines
B. — With n control points {p,, P P,.4} ,knot vector is
i3 {0,0,0,0,1,2,3,4,....n-4,n-3, n-3,n-3,n-3}
1 — Called “the standard knot vector”
0.8 f\
B. 0.6 H\ o~
1,4 g: \ ///X \\\
1 e e SO
ie [0’4] 1 2 3 4 5 6
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e Knot vector (0,0,0,0,1,1,1,1)

* Need 4 control points (one curve segment)
» Blending functions

1
0.8
Bo,4 B34
0.6
B B
0.4 4
0.2
0.2 0.4 0.6 0.8 1

* These are exactly the cubic Bezier functions!!

Warning: Fig. 11

in the first printing of

F&vD, showing

derivation of these,
is nonsense. Fixed

in later printings.

.26

e Knot vector (0,0,0,0,1,2,3,4,5,6,6,6,6) N

* Implies 9 control points (6 curve segments)
« Blending functions:

hitdtrelEimtions samneess s
Ui splifies

o
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NB: SLIDE CHANGED FROM VERSION IN HANDOUT
s Example N 4 Non-uniform Rational B-splines \
[NURBS]
* NURBS are effectively non-uniform B-splines defined in
* * * A homogeneous coordinates.
- Each control point has 4 components: B, =(x,,7,,2,,w,)
° + “Rational”’ because after weighting by the B-spline functions
° [ ] . .
* Uniform Uniform; replicated end points and projecting back to 3-space we get [UDOO]:

[ ]
Non-uniform — the standard knot vector

& COMPSCI 715 Curves and Surfaces. Richard Lobb.

Slide 63.

_

z p. B . m The usual text-book form
P ==

2 wiB,, ‘ 2B,

x 3

Where qk :{i &5Z_kj:(xk”yk'szk’)

2
W, W, W,

Slide 64. J
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. Benefits of NURBS ™

» Can represent conic sections, e.g. circle, with
quadratic NURBS
— UDOO: Prove that the quadratic Bezier with the following 2D
homogeneous coordinates defines a 2D quarter circle:
(0,1,1), (N2/2, \2/2, N2/2), (1,0,1)
» Are a superset of all other curves studied so far

— e.g. for uniform B-splines, setw, = 1, choose uniform knot
sequence. For Bezier curve ........ [UDOOQ]

Cool B-spline applet:
http://www.cs.technion.ac.il/~cs234325/Homepage/Applets/applets/bspline/html/

& COMPSCI 715 Curves and Surfaces. Richard Lobb. Slide 65. J

e Parametric Bi-Cubic Surfaces ™

* From Curves to Surfaces

* A Matrix Formulation

» Bezier Surfaces

» Tensor Product Form

+ Joining Bezier Patches

» B-Spline Surfaces

» Displaying Bi-cubic Patches

Surfaces (2D) involve two parameters rather than one.
“Bi-cubic” means that each of the parameters is a cubic.

Slide 66. J
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< From Curves to Surfaces ™

* The equation
p(t)=T.M.G
defines 3D curves
» Changing the parameter t to s (so that we think of the parameter
as a “distance” rather than a “time”) gives, instead

p(s) =S.M.G

* Assume that each g; is a point in 3-space (forget about Hermites
from now on), which is moving in time, ¢, i.e. is gj(t).

_
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~~ From Curves to Surfaces (cont.) ™

» The curve p(s,f) thus traces out a surface.

Curve p(s,t)

Curve p(s,1)
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e A Matrix Formulation ~ e Bezier Surfaces ~
+ Suppose the ith control pointis g;(f) = T.M.H; TT
where H; = [hiy i his hi4]T- . We have p(s, {) = S.M.H.M'.T'. For Bezier surfaces,
just use
» Taking the transpose, and using the general result that
(A.B.C)-'—=C-'-.BT.AT [and the fact that giT(t) = gj(t), since itis a
single element of the geometry vector] gives -1 3 -3 1
gi(t) = [hiq hip hig higlMT.TT
3 6 3 O
M=
+ Hence G=HM'.TT -3 3 0
I 0 0 O
» So equation for surface is
p(s, )= S.MHMT. TT
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4 Tensor Product Form N / Joining Bezier Patches I \

* Previous equation is normally written in tensor product
(“blending function”) form, obtained by multiplying out the above:

where B,(x) is the i" cubic Bernstein polynomial:
B,=(1-x)3, B,=3x(1-x)?, B;=3x%(1-x), B,=x3

* Some texts claim that this form of the equation is more
numerically stable, though slower to evaluate.

_
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For G’ continuity, need
— 4 control points in common

— Colinearity of each of the four groups of three control points that
cross the boundary.

UDOO: Deduce C' continuity condition.

shared edge
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4 B-Spline Surfaces R

* Just use B-spline version of matrix.

* No special conditions needed for continuity —
automatically get c2 continuity everywhere (unless
have duplicated control points).

e Displaying Patches: Wireframe Grid I N

Simplest algorithm:

for s =0to 1 by delta_s
MoveToPoint3d(p(s,0));
fort=0to 1 by delta_t
LineToPoint3d(p(s.,t));
end for
end for

fort=0to 1 by delta_t

MoveToPoint3d(p(0,t));
fors =0to 1 by delta_s
LineToPoint3d(p(s.,t));
end for
end for
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< Displaying Patches: Adaptive Subdivision| e Subdivision Algorithms N

» To polygonise patch, recursively subdivide patch into
4 until some flatness criterion satisfied (or to some
fixed depth).

» Adaptive schemes tend to introduce “cracks”
— See F&vD Fig. 11.49.
— Can fix (with difficulty) by forcing extra vertex to lie in plane
of neighbour.
* For shading, also need vertex normals.

— Get from cross-product of two parametric tangent vectors
op/os and op/ot. UDOO.
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* Another approach to representing a smooth surface
» Start with a coarse polyhedron
* Repeatedly subdivide faces according to some rule

» Limit surface is smooth
* Very popular in recent years

* References:
— Siggraph 2000 Course Notes: http:/mrl.nyu.edu/~dzorin/sig00course/
— Marcus Gross’ course:

» Above images taken from there
— Some demos and code available from
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e Subdividing a Polygon ™

* Chaikin’s algorithm:
for each edge
insert vertices at ¥ and % points

discard original vertices

e Proof of B-spline propertyI N

(Idea only)

« Consider an open control polygon ABC 1 -2
1

1) 4
— Draw its quadratic B-spline segment p(t):(t2 t 1)5 -2 2 0| B

1 1 0o)C
» Subdivide to abcd (Chaikin’s algorithm)

— Easy to show that the B-spline segments due to abc and bcd together equal
the segment from ABC. [UDOO]

B ..
; c
b <
d
B-spline curve ] B-spline curve
.. . . . .. , B-spli B
Limit curve is the quadratic B-spline defined by the original control polygon! A from {A.B,C} * frosrfl ?Lebcgl}'ve from {b,c,d}
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 Proof of B-spline property (cont’d) ™ s Doo-Sabin Subdivision’ N

« Similarly for further subdivisions

— B-spline curve remains unchanged

* Inlimit, curve = control polygon
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* [A slight variant on quadratic Catmull-Clark subdivision]
« 2D equivalent of Chaikin’s algorithm

» First consider a regular [i.e. all nodes have valence 4] quadrilateral grid
of control points.

[1] DOO, D., AND SABIN, M.
Behaviour of recursive division surfaces near extraordinary points.
Computer-Aided Design 10 (Sept. 1978), 356-360.
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( Step 1: Insert new face vertices \

* For each vertex p; in each face {p;, P11, Pisp: Pis3}, COMpute
a new vertex p;' = (9p; + 3p;+1 * Pisp + 3P;3)/16
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( Step 2: Connect to create new mesh I \

Discard old mesh

* Get one new face
for each:

— Face
— Edge
— Vertex

» Effect is to “cut off”
all vertices and
edges.
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~ Extraordinary vertices I—\

» Can extend algorithm to handle non-valence-four nodes, e.g. if
mesh is a closed polyhedron.

— These are called extraordinary vertices

» Algorithm is same except the rule for a new vertex is now:
— For face with m vertices {p;, Pi+1, Pi+2: Pi+3 ---- Pism-1 1> COMpute a new vertex:

m-1
r_
b= zwkak
k=0

1 5
+

—+— k=0
4 4m
where w, =
3+2cos(2kx/m) .
———————— otherwise
4m

* NB: Gives same weights as before if m = 4.
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 Example: Doo-Sabin subdivision of cube |
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e Limit Surface Propertiesi ™ e Mesh Boundary
» If mesh is a polyhedron there’s no open boundary.
« But what if there is an open boundary?
«  For regular quadrilateral mesh it's a quadratic B-spline » As with B-spline curves, surface is smaller than control mesh.
_ C' continuous » Since centroids of original faces lie on limit surface can stop
— Proof follows same general idea as for Chaikin’s algorithm mesh “shrinking inwards” by adding extra degenerate
+ For general mesh it's C' continuous everywhere except at a quadrilaterals around boundary.
finite number of points arising from each original extraordinary
point. Make these
+ So Doo-Sabin subdivision is a generalization of quadratic B- zero width
spline surfaces. 4
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e Other subdivision algorithms N 4 Fine structures
« Can modify subdivision algorithms
* Doo-Sabin is just one of many algorithms. to incorporate creases and variable
+ Some other important ones (see Siggraph course notes): radius bends.
1. Catmull-Clark cubic subdivision + See: “Subdivision surfaces in
+ Quadrilateral mesh Character Animation”, De Rose,
+ C2 continuous (but C' at finite number of extraordinary points). Kass, Truong. Reprinted in
* Generalizes cubic B-spline Siggraph 2000 Course Notes.
2. Loop subdivision
+ Triangular mesh
+ C2continuous (but C' at finite number of extraordinary points). ‘
» Approximating (like B-splines)
3. Modified butterfly subdivision
» Triangular mesh
» C2 continuous (but C' at finite number of extraordinary points).
* Interpolates mesh control points
-
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