

Parametric Straight Lines

Have seen parametric equation of straight line:

 $p(t) = p_1 + t(p_2 - p_1) = (1 - t)p_1 + tp_2$

The factors (1-*t*) and *t* are blending functions that select the "mix" of \mathbf{p}_1 and \mathbf{p}_2 for any value of *t*.

Can also be written as:

$$\mathbf{p}(t) = \begin{pmatrix} t & 1 \end{pmatrix} \begin{pmatrix} -1 & 1 \\ 1 & 0 \end{pmatrix} \begin{pmatrix} \mathbf{p}_1 \\ \mathbf{p}_2 \end{pmatrix} = \mathbf{T} \cdot \mathbf{M} \cdot \mathbf{G}$$

where ${\bf T}$ is called the "power basis", ${\bf M}$ the "basis matrix", and ${\bf G}$ the "geometric constraint vector".

COMPSCI 715 Curves and Surfaces. Richard Lobb. -

Putting the bits together

Complex curves are built by assembling cubic curves end to end.

Slide 5.

Slide 7.

Generally want "continuity". Can distinguish between G^n and C^n continuity classes.

- G⁰ continuity.
- G¹ continuity.
- C¹ continuity.
- C² continuity.

COMPSCI 715 Curves and Surfaces. Richard Lobb.

Extension to higher order curves

The equation **p** = **T**.**M**.**G** can be extended to higher order curves:

Quadratic Curves: **T** = $(t^2 \ t \ 1)$

M is a 3 x 3 matrix, G is a 3-element vector (of vectors!)

Cubic Curves: $\mathbf{T} = (t^3 \ t^2 \ t \ 1)$

M is a 4 x 4 matrix **G** is a 4-element vector

etc.

Following Foley et al we concentrate on cubic curves – the most common sort.

COMPSCI 715 Curves and Surfaces. Richard Lobb. -

G⁰ continuity.

- Zeroth order Geometric Continuity
- End points match.

Slide 6.

Benefits of NURBS

- Can represent conic sections, e.g. circle, with quadratic NURBS
 - UDOO: Prove that the quadratic Bezier with the following 2D homogeneous coordinates defines a 2D quarter circle: (0,1,1), (√2/2, √2/2, √2/2), (1,0,1)
- · Are a superset of all other curves studied so far
 - e.g. for uniform B-splines, set w_k = 1, choose uniform knot sequence. For Bezier curve [UDOO]

Cool B-spline applet: http://www.cs.technion.ac.il/~cs234325/Homepage/Applets/applets/bspline/html/

Slide 65.

Slide 67.

COMPSCI 715 Curves and Surfaces. Richard Lobb.

From Curves to Surfaces

The equation

 $\mathbf{p}(t) = \mathbf{T}.\mathbf{M}.\mathbf{G}$

defines 3D curves

• Changing the parameter *t* to *s* (so that we think of the parameter as a "distance" rather than a "time") gives, instead

Assume that each g_i is a point in 3-space (forget about Hermites from now on), which is moving in time, *t*, i.e. is g_i(*t*).

COMPSCI 715 Curves and Surfaces. Richard Lobb.

Parametric Bi-Cubic Surfaces

Surfaces (2D) involve two parameters rather than one. "Bi-cubic" means that each of the parameters is a cubic.

- From Curves to Surfaces
- A Matrix Formulation
- Bezier Surfaces
- Tensor Product Form
- Joining Bezier Patches
- B-Spline Surfaces
- Displaying Bi-cubic Patches

COMPSCI 715 Curves and Surfaces. Richard Lobb.

From Curves to Surfaces (cont.)

Slide 66

• The curve **p**(*s*,*t*) thus traces out a surface.

 $[\]mathbf{p}(s) = \mathbf{S}.\mathbf{M}.\mathbf{G}$

$$p'_{i} = \sum_{k=0}^{m-1} w_{k} p_{i+k}$$

where $w_{k} = \begin{cases} \frac{1}{4} + \frac{5}{4m} & k = 0\\ \frac{3 + 2\cos(2k\pi/m)}{4m} & \text{otherwise} \end{cases}$

• NB: Gives same weights as before if m = 4.

COMPSCI 715 Curves and Surfaces. Richard Lobb. -

COMPSCI 715 Curves and Surfaces. Richard Lobb.

Slide 84.

- Approximating (like B-splines)
- 3. Modified butterfly subdivision
 - Triangular mesh
 - C² continuous (but C¹ at finite number of extraordinary points).
 - Interpolates mesh control points

COMPSCI 715 Curves and Surfaces. Richard Lobb.

— Slide 87.

COMPSCI /15 Curves and Surfaces. Richard Lobb.