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Advanced Ray Tracing

Acceleration Methods
Distributed Ray Tracing
Advanced Illumination
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Acceleration Methods
Suppose there are 100,000 objects in the scene (moderate complexity 
by polygon-rendering standards), and the image is 1000 x 1000 pixels.
In brute force ray tracer, each primary ray does 100,000 ray-object 
intersection tests.
106 primary rays => 1011 ray-object intersection tests
If each test takes 50 - 500 floating point operations at average 2 nSecs
per flop (1GHz machine), that's 104 – 105 secs, i.e. 2.8 – 28 hours 
rendering time.
Plus cost of shadow test rays and reflections etc!
Need to reduce per-ray intersection tests
Methods:

– Bounding volumes
– Vista and light buffers
– Space subdivision
– Ray coherence

Slide 3COMPSCI 715 Notes, ©Richard Lobb

Bounding Volumes

Idea:
– find a volume (sphere or box) that 

encloses a complex object
– Test ray against bounding volume
– If it misses, don't test ray against object

Particularly efficient with 
hierarchical scenes – whole sub-
trees get skipped

– e.g. if a chair is made up of arms, back, 
seat, legs, but ray misses bounding 
sphere, big win!

Bounding volume

ray misses bounding volume – do 
one intersection test instead of 96!
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Bounding Volumes (cont’d)

Automatic placement of bounding volumes is problematic
Most scene-description languages for RT let you specify 
bounding volumes
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Vista Buffer

Do an initial projection of scene onto viewplane
– Use usual polygon-rendering methods

Make a list of which objects cover (partially or 
completely) each square "pixel" region.

– Using a pixel region rather than a point allows us to do 
supersampling (or whatever) for antialiasing.

Do primary ray intersection tests only with the 
objects that intersect each pixel region.
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Vista Buffer

viewplane

Primary rays 
through this pixel 
region check only 
the two back legs

Scene projected onto viewplane
before ray tracing begins
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Light Buffer

Shadow rays a major cost factor (90%??)
– Usually have lots of lights

Build a box around each point light source. Pixelate each 
face
Project scene onto each face, making a list of all objects 
covering each pixel region
For each shadow test ray

– Determine which pixel region of which face of light buffer it 
passes through

– Do intersection tests only with objects that project to that pixel
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Light Buffer

light
source

intersection point 
between primary ray 

and ground

shadow test ray

shadow ray tests only right 
back leg of one chair in scene

light buffer
(all 6 faces treated  
as shown for the 

front one)

scene objects projected onto 
front face of light buffer

scene objects
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Space Subdivision

Subdivide scene space in some way
Determine what objects intersect each region of 
the subdivided space
Trace ray through succession of sub-regions

– Test only against objects within each subregion
– Terminate if get a hit

Subdivision schemes:
– Regular grid ("Enumerated space")
– Octree
– BSP-tree
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“Enumerated space”
Subdivide scene space 
into a regular cell grid
Pre-process scene

– for each cell, make a list of 
relevant objects

Trace each ray through 
the cell grid

– Determine sequence of 
cells traversed

– Intersect ray only with 
“relevant objects” of each 
cell [shown in red]

Only a tiny percentage of 
objects get tested.

ray 1
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Octree
As for enumerated 
space, but recursively 
subdivide scene space 
cube into 8 sub-cubes

– Continue until few 
enough objects in cell (2 
in example shown) or 
maximum subdivision 
level reached

Advantage: step quickly 
over empty space
Disadvantage: traversal 
algorithm much harder

ray
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BSP-treeUse Binary Space 
Partitioning tree

– As in visibility notes but 
subdivide only until 
“sufficiently few” objects in 
each leaf

Intersection of ray with 
scene is a simple recursive 
descent

– Much easier than other 2 
methods

– UDOO: why?

But dealing with the fact 
that object boundaries lie 
on clipping planes is tricky.

ray
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With all spatial subdivision schemes:

Must be careful to 
traverse cells in right 
order
Must check ALL objects 
intersecting a cell and 
take nearest hit
If ray hits an object, hit 
must be within the cell to 
be counted [see Fig.]

ray
Disregard this hit when 

processing red cell
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Ray Coherence
Rather than subdividing space, subdivide space of all rays

– Ray space is five dimensional: 3D starting point, 2D direction
Idea

– Consider the beam of all rays that start within a given cube of scene 
space, and head in a certain direction (with a certain tolerance). 

– Find all scene objects intersected by that beam
– This set is the candidate set of scene objects for all rays in the beam

• Small fraction of total object set
• Only build candidate set once
• Recursively refine beam size as required

– See: Arvo & Kirk Fast Ray Tracing by Ray Classification, Proc. of 
SIGGRAPH '87, p55-64, 1987. Also, Halstead MSc thesis (AU).

But …
– Hard to implement and gain over space subdivision is arguable
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Distributed Ray Tracing

Main reference: Stochastic Sampling in 
Computer Graphics”. Rob Cook. ACM 

Transactions on Graphics 5 1 Jan 1986, pp 
51-72.
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Point Sampling
Ray tracing is a POINT SAMPLING process

– A pixel colour is a sample along a single ray
– Shadow test is for a point light source
– Reflected/refracted ray is a sample of the incoming 

light in a single direction

All of these are WRONG!
– A pixel colour should be an average colour for the 

region around the pixel
– Real light sources have area – they aren’t points
– Real surfaces aren’t perfect mirrors – there is some 

scattering involved.
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Point Sampling and Aliasing

Consider point-sampling both a high-frequency and a low-frequency 
signal

Both signals give the same sample sets!
– They are said to be "aliases" of each other

The impression we get of a low frequency signal from a set of samples 
of a high-frequency signal is called an aliasing artifact
jaggies on edges and Moiré patterns when sampling repetitive signals 
(e.g. texture) are examples of aliasing artifacts.
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Principles of antialiasing
Aliasing artifacts are a result of ignoring the Sampling 
Theorem

– If you want to be able to unambiguously reconstruct a signal from 
its samples, the sample frequency must be at least twice the highest 
frequency present in the signal

Graphics signals (i.e. images) are fundamentally 
discontinuous, i.e. have infinite frequencies present
So solution is to "filter out" the high frequencies before 
sampling
But – only need filtered value at sample points
So effectively what we need is some sort of weighted 
average of the image in the neighbourhood of the sample 
point.
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A Test Function
f(x,y)=(1+sin(x))abs(sinc(x/20))
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The test function as an image
f(x,y)=(1+sin(x))abs(sinc(x/20))  
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Finely sampled over same x 
range, i.e. [-150,150]. Axis 

labels are just sample number 
aka pixel number.
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The point-sampled test function
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sample spacing:
∆x = 2 π ∆x = 2 π + 0.1

Slide 31COMPSCI 715 Notes, ©Richard Lobb

Filtering

Rather than point sampling 
we should compute an 
average around the point.

The weighting function w is 
called a filter.

– Must be normalised so its 
integral is 1
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Integral is 0.45.  Plotted as dot above.
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Filtered test function
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Result now approximately 
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Relevance to ray tracing

If scene has fine structure, 
need to compute an 
average colour around 
pixel centre.
Box filter is often used

– w(x,y) = 1 within the 
square, 0 elsewhere

– Easy but bad
Weighted filters much 
better
Radius typically 1.5-1.7 
pixel intervals.

pixel grid

weighted filter
(support region)

box filter
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How to compute the average?

How can we compute an average colour when all 
we can do is get point samples (one per ray?)
Answer: use Monte Carlo integration aka
Stochastic Sampling
Distribute rays “randomly” over the filter region
But to avoid clumping, subdivide filter area, take 
one randomly positioned sample from each 
subregion.

– Statisticians calls this stratified sampling
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Stochastic sampling with box filter

aka “jittered grid” sampling
Subdivide square region around 
pixel into an n x n subgrid
Take one sample from each 
subregion.

– Typically just uniformly distributed
– But can use Gaussian distribution

Box filter is poor at removing 
Moiré patterns but reasonably 
good for jaggies.

one pixel region
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Example

No antialiasing 3 x 3 supersampling
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Example close up

No antialiasing 3 x 3 supersampling
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Stochastic sampling with a 
weighted filter

Could subdivide filter into equal-area region and 
weight samples but that’s wasteful.

– Samples near the boundary get very little weighting

Instead use importance sampling
Break filter area into regions with equal integral
of the weight function.
Take one sample from each region
Just average the samples (no weighting needed)
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Stochastic sampling with a weighted 
filter (cont’d)

Consider cylindrically symmetric Hamming filter

– k is a normalization constant

For importance sampling, need to carve this into equal volume
portions.  
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Stochastic sampling with a weighted 
filter (cont’d)

e.g. 4 quadrants, four annuli => 16 regions
Integral of filter = 1/16 for each region

– So total integral = 1
• Required for normalization

– UDOO: compute the radii of the annuli and the 
normalization constant k

• They’re NOT equally spaced

Take one random sample from within each 
region

– Random azimuth angle, but statistical 
distribution in r is a bit tricky

• Why?

Produces excellent filtering BUT because filters 
overlap, sampling is very wasteful.
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A better way of using weighted filters for 
antialiasing in ray tracing

Take uniformly distributed 
samples as for box filtering
Composite (i.e. add) each sample 
into the image using the 
weighted filter as a footprint
function to weight the sample

– A technique related to splatting in 
volume visualization

– Splat is centred on the sample point

[Unpublished method due to Brian Smits.]
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The footprint of the 
Hamming filter (r = 1.7)
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Compositing the footprint

Footprint covers several pixels
– Remember: rmax typically 1.5 – 1.7
– Need to compute weights for each covered pixel

Want Sum[weights]=1/NumSamplesPerPixel
“Obvious” method:

Introduces some noise
– But probably not noticeable?
– Variation of sum of weights with sample position for a Hamming 

filter is given in the next slide 

( )
( )2 2pixel

w pixelCentre sampleCentre
weight

NumSamplesPerPixel w x y dxdy

−
=

+∫
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Compositing the footprint (cont’d)
Table: variation of sample sum with sample centre

1.020.984.192.00Cone

1.100.953.031.70Cone

1.090.902.361.50Cone

1.010.992.742.00Hamming

1.010.972.701.70Hamming

1.040.972.101.50Hamming

MaxSumSamplesMinSumSamplesIntegralrmaxFilter

“Cone” filter is:
max

max

0

1

r r
r r otherwise

r

≥
=  −
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Distributed Ray Tracing

Stochastic sampling is a way of computing integrals
– For antialiasing, the integral is the weighted image colour

There are other integrals involved in ray tracing:
– Temporal antialiasing
– The Rendering Equation
– Depth of field
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Temporal Antialiasing

If scene contains moving objects and we sample at regular 
fixed time intervals (every frame in an animation) we can get 
temporal aliasing:

– Motion appears jerky
• = “jaggies” in the time dimension

– Can get stroboscopic effects
• In movies, wagon wheels go backwards
• Moving fans and machinery can appear stationary when viewed with

pulsing light source
• = “Moiré patterns” in time

Solution is to distribute samples in time as well as space
– Image is then averaged over the frame time
– Corresponds to “exposure time” in movie camera
– Gives “motion blur”
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Temporal Antialiasing (cont’d)

Simplistic way: choose random time in range [t – T/2, t + T/2] 
for each supersample ray, where T = interFrameTime.

– Set positions/orientations of all moving scene objects (and maybe the 
camera) to correspond to that time

Much better to use stratified sampling
– i.e., supersampling in time, with jitter
– Avoids “clumping” of samples in time
– If have n spatial samples/pixel, subdivide the frame time into n

“subframes” too
– Randomly map the n subframes onto the n spatial supersamples

• Jitter each temporal supersample
– Cook suggests pre-computing the map [see Fig. 8 in handout].

Note that this is “box filtering” in time
– For better results could use weighted filter in time, too.
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The Rendering Equation

Defines the colour I of a surface at some wavelength

In words: the intensity I of some surface point x' when seen from some 
viewpoint x is the product of the geometric visibility g [0 or 1/r2] of x '
from x times the sum of the light ε emitted from x' towards x and the total 
light reflected towards x from x ' from all points in the environment.
The latter term is obtained by integrating all the light (photons) that comes 
from a point x", hits point x and reflects towards x over all points x".
The reflection function ρ is the “Bi-directional Reflectance Distribution 
Function”, or BRDF.

( , ') ( , ') ( , ') ( , ', '') ( ', '') ''
S

I g I dε ρ = +  ∫x x x x x x x x x x x x

F&vD, section 16.11

xx"

x'
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Global Illumination

The rendering equation is recursive
– e.g. light illuminates the floor, floor illuminates the ceiling, ceiling 

illuminates the floor

Illumination calculation methods that attempt to solve the 
interreflections (usually with major restrictions) are called 
global illumination algorithms.

– Most common class is radiosity algorithms which typically solve 
the light levels assuming most surfaces are diffuse reflectors.

Ray tracing is sometimes called a global illumination 
method

– but to earn the name it should do something a bit better than 
casting just simple shadow and reflection rays in my opinion!
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Relevance to Ray Tracing
Colour of point hit by primary ray should really by obtained by 
integrating over all incoming directions rather than just the directions 
to the point light sources and a mirror reflection direction.
Impractical in general

– But see the Radiance ray tracer by Greg Ward [SIGGRAPH Proc. 88]
• Does a radiosity solution and gets actual physical illumination levels
• Used in architecture

More easily, though:
– can get soft shadows (umbrae + penumbrae) by stochastically sampling 

over the area of non-point light sources (e.g. fluorescent tubes)
– can get blurry reflections by integrating over a range of directions around 

the mirror reflection
– can get better specular highlights of lights (including area light sources) 

• Can use much better reflection models/BRDFs than Phong
• See F&vD
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Sampling the extra dimensions

Often don’t need to cast any new rays!
– Assuming antialiasing is already being used

Just make sure that the multiple rays cast for each pixel are 
also distributed over the other dimensions

– e.g. if doing n by n supersampling, might subdivide area light 
source into n by n subareas, randomly map supersamples to these 
subareas when doing shadow testing.

But may need more rays if sampling introduces too much 
noise, e.g. a very large light source and/or multiple partial 
occluders.
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Depth of Field

Camera photos have a focal plane over which scene objects are in focus.
Objects are successively defocussed away from that plane.
Easily simulated with stochastic sampling

– for each pixel
• Determine focal point of pixel in lens (stage 1 physics lens formula)
• Distribute supersampling rays over the lens area
• Cast rays from jittered points on lens into the scene through the in-focus point

lens
viewplane

pixel

pixel 
focal 
point defocus occurs


