
Slide 1COMPSCI 715 Notes, ©Richard Lobb

Advanced Ray Tracing

Acceleration Methods
Distributed Ray Tracing
Advanced Illumination

Slide 2COMPSCI 715 Notes, ©Richard Lobb

Acceleration Methods
Suppose there are 100,000 objects in the scene (moderate complexity
by polygon-rendering standards), and the image is 1000 x 1000 pixels.
In brute force ray tracer, each primary ray does 100,000 ray-object
intersection tests.
106 primary rays => 1011 ray-object intersection tests
If each test takes 50 - 500 floating point operations at average 2 nSecs
per flop (1GHz machine), that's 104 – 105 secs, i.e. 2.8 – 28 hours
rendering time.
Plus cost of shadow test rays and reflections etc!
Need to reduce per-ray intersection tests
Methods:

– Bounding volumes
– Vista and light buffers
– Space subdivision
– Ray coherence

Slide 3COMPSCI 715 Notes, ©Richard Lobb

Bounding Volumes

Idea:
– find a volume (sphere or box) that

encloses a complex object
– Test ray against bounding volume
– If it misses, don't test ray against object

Particularly efficient with
hierarchical scenes – whole sub-
trees get skipped

– e.g. if a chair is made up of arms, back,
seat, legs, but ray misses bounding
sphere, big win!

Bounding volume

ray misses bounding volume – do
one intersection test instead of 96!

Slide 4COMPSCI 715 Notes, ©Richard Lobb

Bounding Volumes (cont’d)

Automatic placement of bounding volumes is problematic
Most scene-description languages for RT let you specify
bounding volumes

Slide 5COMPSCI 715 Notes, ©Richard Lobb

Vista Buffer

Do an initial projection of scene onto viewplane
– Use usual polygon-rendering methods

Make a list of which objects cover (partially or
completely) each square "pixel" region.

– Using a pixel region rather than a point allows us to do
supersampling (or whatever) for antialiasing.

Do primary ray intersection tests only with the
objects that intersect each pixel region.

Slide 6COMPSCI 715 Notes, ©Richard Lobb

Vista Buffer

viewplane

Primary rays
through this pixel
region check only
the two back legs

Scene projected onto viewplane
before ray tracing begins

Slide 7COMPSCI 715 Notes, ©Richard Lobb

Light Buffer

Shadow rays a major cost factor (90%??)
– Usually have lots of lights

Build a box around each point light source. Pixelate each
face
Project scene onto each face, making a list of all objects
covering each pixel region
For each shadow test ray

– Determine which pixel region of which face of light buffer it
passes through

– Do intersection tests only with objects that project to that pixel

Slide 8COMPSCI 715 Notes, ©Richard Lobb

Light Buffer

light
source

intersection point
between primary ray

and ground

shadow test ray

shadow ray tests only right
back leg of one chair in scene

light buffer
(all 6 faces treated
as shown for the

front one)

scene objects projected onto
front face of light buffer

scene objects

Slide 9COMPSCI 715 Notes, ©Richard Lobb

Space Subdivision

Subdivide scene space in some way
Determine what objects intersect each region of
the subdivided space
Trace ray through succession of sub-regions

– Test only against objects within each subregion
– Terminate if get a hit

Subdivision schemes:
– Regular grid ("Enumerated space")
– Octree
– BSP-tree

Slide 10COMPSCI 715 Notes, ©Richard Lobb

“Enumerated space”
Subdivide scene space
into a regular cell grid
Pre-process scene

– for each cell, make a list of
relevant objects

Trace each ray through
the cell grid

– Determine sequence of
cells traversed

– Intersect ray only with
“relevant objects” of each
cell [shown in red]

Only a tiny percentage of
objects get tested.

ray 1

2 3

4 5 6

7

9

8

10

Slide 15COMPSCI 715 Notes, ©Richard Lobb

Octree
As for enumerated
space, but recursively
subdivide scene space
cube into 8 sub-cubes

– Continue until few
enough objects in cell (2
in example shown) or
maximum subdivision
level reached

Advantage: step quickly
over empty space
Disadvantage: traversal
algorithm much harder

ray

Slide 21COMPSCI 715 Notes, ©Richard Lobb

BSP-treeUse Binary Space
Partitioning tree

– As in visibility notes but
subdivide only until
“sufficiently few” objects in
each leaf

Intersection of ray with
scene is a simple recursive
descent

– Much easier than other 2
methods

– UDOO: why?

But dealing with the fact
that object boundaries lie
on clipping planes is tricky.

ray

Slide 22COMPSCI 715 Notes, ©Richard Lobb

With all spatial subdivision schemes:

Must be careful to
traverse cells in right
order
Must check ALL objects
intersecting a cell and
take nearest hit
If ray hits an object, hit
must be within the cell to
be counted [see Fig.]

ray
Disregard this hit when

processing red cell
Slide 23COMPSCI 715 Notes, ©Richard Lobb

Ray Coherence
Rather than subdividing space, subdivide space of all rays

– Ray space is five dimensional: 3D starting point, 2D direction
Idea

– Consider the beam of all rays that start within a given cube of scene
space, and head in a certain direction (with a certain tolerance).

– Find all scene objects intersected by that beam
– This set is the candidate set of scene objects for all rays in the beam

• Small fraction of total object set
• Only build candidate set once
• Recursively refine beam size as required

– See: Arvo & Kirk Fast Ray Tracing by Ray Classification, Proc. of
SIGGRAPH '87, p55-64, 1987. Also, Halstead MSc thesis (AU).

But …
– Hard to implement and gain over space subdivision is arguable

Slide 24COMPSCI 715 Notes, ©Richard Lobb

Distributed Ray Tracing

Main reference: Stochastic Sampling in
Computer Graphics”. Rob Cook. ACM

Transactions on Graphics 5 1 Jan 1986, pp
51-72.

Slide 25COMPSCI 715 Notes, ©Richard Lobb

Point Sampling
Ray tracing is a POINT SAMPLING process

– A pixel colour is a sample along a single ray
– Shadow test is for a point light source
– Reflected/refracted ray is a sample of the incoming

light in a single direction

All of these are WRONG!
– A pixel colour should be an average colour for the

region around the pixel
– Real light sources have area – they aren’t points
– Real surfaces aren’t perfect mirrors – there is some

scattering involved.

Slide 26COMPSCI 715 Notes, ©Richard Lobb

Point Sampling and Aliasing

Consider point-sampling both a high-frequency and a low-frequency
signal

Both signals give the same sample sets!
– They are said to be "aliases" of each other

The impression we get of a low frequency signal from a set of samples
of a high-frequency signal is called an aliasing artifact
jaggies on edges and Moiré patterns when sampling repetitive signals
(e.g. texture) are examples of aliasing artifacts.

Slide 27COMPSCI 715 Notes, ©Richard Lobb

Principles of antialiasing
Aliasing artifacts are a result of ignoring the Sampling
Theorem

– If you want to be able to unambiguously reconstruct a signal from
its samples, the sample frequency must be at least twice the highest
frequency present in the signal

Graphics signals (i.e. images) are fundamentally
discontinuous, i.e. have infinite frequencies present
So solution is to "filter out" the high frequencies before
sampling
But – only need filtered value at sample points
So effectively what we need is some sort of weighted
average of the image in the neighbourhood of the sample
point.

Slide 28COMPSCI 715 Notes, ©Richard Lobb

A Test Function
f(x,y)=(1+sin(x))abs(sinc(x/20))

-150 -100 -50 50 100 150

0.2

0.4

0.6

0.8

1

Slide 29COMPSCI 715 Notes, ©Richard Lobb

The test function as an image
f(x,y)=(1+sin(x))abs(sinc(x/20))

0 100 200 300 400 500 600
0

100

200

300

400

500

600

Finely sampled over same x
range, i.e. [-150,150]. Axis

labels are just sample number
aka pixel number.

Slide 30COMPSCI 715 Notes, ©Richard Lobb

The point-sampled test function

10 20 30 40

0.2

0.4

0.6

0.8

1

0 10 20 30 40
0

10

20

30

40

10 20 30 40

0.2

0.4

0.6

0.8

1

0 10 20 30 40
0

10

20

30

40

sample spacing:
∆x = 2 π ∆x = 2 π + 0.1

Slide 31COMPSCI 715 Notes, ©Richard Lobb

Filtering

Rather than point sampling
we should compute an
average around the point.

The weighting function w is
called a filter.

– Must be normalised so its
integral is 1

5 10 15 20 25 30

0.2

0.4

0.6

0.8

1

5 10 15 20 25 30

0.02

0.04

0.06

0.08

0.1

5 10 15 20 25 30

0.02

0.04

0.06

0.08

0 0() () ()f x f x w x x dx= −∫

f(x)

w(x-14)

f(x)w(x-14)
Integral is 0.45. Plotted as dot above.

Slide 32COMPSCI 715 Notes, ©Richard Lobb

Filtered test function

10 20 30 40

0.2

0.4

0.6

0.8

1

0 10 20 30 40
0

10

20

30

40

10 20 30 40

0.2

0.4

0.6

0.8

1

0 10 20 30 40
0

10

20

30

40

sample spacing:
∆x = 2 π

∆x = 2 π + 0.1
Result now approximately

independent of sample interval

Slide 33COMPSCI 715 Notes, ©Richard Lobb

Relevance to ray tracing

If scene has fine structure,
need to compute an
average colour around
pixel centre.
Box filter is often used

– w(x,y) = 1 within the
square, 0 elsewhere

– Easy but bad
Weighted filters much
better
Radius typically 1.5-1.7
pixel intervals.

pixel grid

weighted filter
(support region)

box filter

Slide 34COMPSCI 715 Notes, ©Richard Lobb

How to compute the average?

How can we compute an average colour when all
we can do is get point samples (one per ray?)
Answer: use Monte Carlo integration aka
Stochastic Sampling
Distribute rays “randomly” over the filter region
But to avoid clumping, subdivide filter area, take
one randomly positioned sample from each
subregion.

– Statisticians calls this stratified sampling

Slide 35COMPSCI 715 Notes, ©Richard Lobb

Stochastic sampling with box filter

aka “jittered grid” sampling
Subdivide square region around
pixel into an n x n subgrid
Take one sample from each
subregion.

– Typically just uniformly distributed
– But can use Gaussian distribution

Box filter is poor at removing
Moiré patterns but reasonably
good for jaggies.

one pixel region

Slide 36COMPSCI 715 Notes, ©Richard Lobb

Example

No antialiasing 3 x 3 supersampling

Slide 37COMPSCI 715 Notes, ©Richard Lobb

Example close up

No antialiasing 3 x 3 supersampling

Slide 38COMPSCI 715 Notes, ©Richard Lobb

Stochastic sampling with a
weighted filter

Could subdivide filter into equal-area region and
weight samples but that’s wasteful.

– Samples near the boundary get very little weighting

Instead use importance sampling
Break filter area into regions with equal integral
of the weight function.
Take one sample from each region
Just average the samples (no weighting needed)

Slide 39COMPSCI 715 Notes, ©Richard Lobb

Stochastic sampling with a weighted
filter (cont’d)

Consider cylindrically symmetric Hamming filter

– k is a normalization constant

For importance sampling, need to carve this into equal volume
portions.

2 2

max

() 1 cos where rw r k r x y
r
π  

= + = +  
  

-2 -1 1 2

0.2

0.4

0.6

0.8

1

-2
-1

0
1

2

-2
-1

0
1

2

0
0.25
0.5

0.75
1

-2
-1

0
1

2

-2
-1

0
1

Slide 40COMPSCI 715 Notes, ©Richard Lobb

Stochastic sampling with a weighted
filter (cont’d)

e.g. 4 quadrants, four annuli => 16 regions
Integral of filter = 1/16 for each region

– So total integral = 1
• Required for normalization

– UDOO: compute the radii of the annuli and the
normalization constant k

• They’re NOT equally spaced

Take one random sample from within each
region

– Random azimuth angle, but statistical
distribution in r is a bit tricky

• Why?

Produces excellent filtering BUT because filters
overlap, sampling is very wasteful.

Slide 41COMPSCI 715 Notes, ©Richard Lobb

A better way of using weighted filters for
antialiasing in ray tracing

Take uniformly distributed
samples as for box filtering
Composite (i.e. add) each sample
into the image using the
weighted filter as a footprint
function to weight the sample

– A technique related to splatting in
volume visualization

– Splat is centred on the sample point

[Unpublished method due to Brian Smits.]

-2 -1 0 1 2
-2

-1

0

1

2

The footprint of the
Hamming filter (r = 1.7)

pixel grid

Slide 42COMPSCI 715 Notes, ©Richard Lobb

Compositing the footprint

Footprint covers several pixels
– Remember: rmax typically 1.5 – 1.7
– Need to compute weights for each covered pixel

Want Sum[weights]=1/NumSamplesPerPixel
“Obvious” method:

Introduces some noise
– But probably not noticeable?
– Variation of sum of weights with sample position for a Hamming

filter is given in the next slide

()
()2 2pixel

w pixelCentre sampleCentre
weight

NumSamplesPerPixel w x y dxdy

−
=

+∫

Slide 43COMPSCI 715 Notes, ©Richard Lobb

Compositing the footprint (cont’d)
Table: variation of sample sum with sample centre

1.020.984.192.00Cone

1.100.953.031.70Cone

1.090.902.361.50Cone

1.010.992.742.00Hamming

1.010.972.701.70Hamming

1.040.972.101.50Hamming

MaxSumSamplesMinSumSamplesIntegralrmaxFilter

“Cone” filter is:
max

max

0

1

r r
r r otherwise

r

≥
=  −

Slide 44COMPSCI 715 Notes, ©Richard Lobb

Distributed Ray Tracing

Stochastic sampling is a way of computing integrals
– For antialiasing, the integral is the weighted image colour

There are other integrals involved in ray tracing:
– Temporal antialiasing
– The Rendering Equation
– Depth of field

Slide 45COMPSCI 715 Notes, ©Richard Lobb

Temporal Antialiasing

If scene contains moving objects and we sample at regular
fixed time intervals (every frame in an animation) we can get
temporal aliasing:

– Motion appears jerky
• = “jaggies” in the time dimension

– Can get stroboscopic effects
• In movies, wagon wheels go backwards
• Moving fans and machinery can appear stationary when viewed with

pulsing light source
• = “Moiré patterns” in time

Solution is to distribute samples in time as well as space
– Image is then averaged over the frame time
– Corresponds to “exposure time” in movie camera
– Gives “motion blur”

Slide 46COMPSCI 715 Notes, ©Richard Lobb

Temporal Antialiasing (cont’d)

Simplistic way: choose random time in range [t – T/2, t + T/2]
for each supersample ray, where T = interFrameTime.

– Set positions/orientations of all moving scene objects (and maybe the
camera) to correspond to that time

Much better to use stratified sampling
– i.e., supersampling in time, with jitter
– Avoids “clumping” of samples in time
– If have n spatial samples/pixel, subdivide the frame time into n

“subframes” too
– Randomly map the n subframes onto the n spatial supersamples

• Jitter each temporal supersample
– Cook suggests pre-computing the map [see Fig. 8 in handout].

Note that this is “box filtering” in time
– For better results could use weighted filter in time, too.

Slide 47COMPSCI 715 Notes, ©Richard Lobb

The Rendering Equation

Defines the colour I of a surface at some wavelength

In words: the intensity I of some surface point x' when seen from some
viewpoint x is the product of the geometric visibility g [0 or 1/r2] of x '
from x times the sum of the light ε emitted from x' towards x and the total
light reflected towards x from x ' from all points in the environment.
The latter term is obtained by integrating all the light (photons) that comes
from a point x", hits point x and reflects towards x over all points x".
The reflection function ρ is the “Bi-directional Reflectance Distribution
Function”, or BRDF.

(, ') (, ') (, ') (, ', '') (', '') ''
S

I g I dε ρ = +  ∫x x x x x x x x x x x x

F&vD, section 16.11

xx"

x'

Slide 48COMPSCI 715 Notes, ©Richard Lobb

Global Illumination

The rendering equation is recursive
– e.g. light illuminates the floor, floor illuminates the ceiling, ceiling

illuminates the floor

Illumination calculation methods that attempt to solve the
interreflections (usually with major restrictions) are called
global illumination algorithms.

– Most common class is radiosity algorithms which typically solve
the light levels assuming most surfaces are diffuse reflectors.

Ray tracing is sometimes called a global illumination
method

– but to earn the name it should do something a bit better than
casting just simple shadow and reflection rays in my opinion!

Slide 49COMPSCI 715 Notes, ©Richard Lobb

Relevance to Ray Tracing
Colour of point hit by primary ray should really by obtained by
integrating over all incoming directions rather than just the directions
to the point light sources and a mirror reflection direction.
Impractical in general

– But see the Radiance ray tracer by Greg Ward [SIGGRAPH Proc. 88]
• Does a radiosity solution and gets actual physical illumination levels
• Used in architecture

More easily, though:
– can get soft shadows (umbrae + penumbrae) by stochastically sampling

over the area of non-point light sources (e.g. fluorescent tubes)
– can get blurry reflections by integrating over a range of directions around

the mirror reflection
– can get better specular highlights of lights (including area light sources)

• Can use much better reflection models/BRDFs than Phong
• See F&vD

Slide 50COMPSCI 715 Notes, ©Richard Lobb

Sampling the extra dimensions

Often don’t need to cast any new rays!
– Assuming antialiasing is already being used

Just make sure that the multiple rays cast for each pixel are
also distributed over the other dimensions

– e.g. if doing n by n supersampling, might subdivide area light
source into n by n subareas, randomly map supersamples to these
subareas when doing shadow testing.

But may need more rays if sampling introduces too much
noise, e.g. a very large light source and/or multiple partial
occluders.

Slide 51COMPSCI 715 Notes, ©Richard Lobb

Depth of Field

Camera photos have a focal plane over which scene objects are in focus.
Objects are successively defocussed away from that plane.
Easily simulated with stochastic sampling

– for each pixel
• Determine focal point of pixel in lens (stage 1 physics lens formula)
• Distribute supersampling rays over the lens area
• Cast rays from jittered points on lens into the scene through the in-focus point

lens
viewplane

pixel

pixel
focal
point defocus occurs

