
CBIR: Shape Descriptors /
Image Indexing /

Dimensionality Reduction
COMPSCI.708.S1.C

A/P Georgy Gimel’farb



Semester 1, 2006 Lecture G9 2

Shape Feature Extraction

• Object shape  a clue to object recognition: shape
carries semantic information
– Other low-level features (colour, texture, or motion) do not

directly reveal object identity

• But shape features are less developed than their colour
and texture counterparts

• It is hardly possible to precisely segment an image with
low-level features into meaningful regions related to
objects of interest
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Shape Feature Extraction

• The notion of object shape has many meanings
– Most of the real-world objects have 3D shapes
– Images / videos deal with 2D projections of 3D objects having

2D shapes
• No mathematical description is able to fully capture all

aspects of visually perceived shapes
• Shape comparison is also a difficult problem
• Today’s CBIR exploits two groups of shape descriptors:

– Contour-based descriptors representing an outer boundary
(or contour)

– Region-based descriptors representing an entire region
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Contour- / Region-based Similarity

Region-based
similarity 

Contour-based
similarity 
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Shape Representation by
Boundary

• Boundary – a closed curve around a given shape
– Curve can be specified by a chain code, polygon, a sequence

of circular arcs or splines, etc

• A query by a graphical sketch: an “elastic” template
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Shape Representation by Region

• Interior, or "body" descriptions with moment invariants
or primitives: sets of points, rectangles, quadrics, disks,
deformable templates, skeletons, …

• Skeleton  the axis of symmetry between the borders:
– Medial axis: locus of inscribed maximum-size circles
– Shock set: “grassfire” propagation from boundaries

(i.e. singularities of collisions of propagating fronts)
• “Blobworld”: an elliptic shape (the object’s centroid +

the scatter matrix) + texture + two dominant colours
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Spatial Relationships of Objects

• Additional shape features: spatial topological and directional
relationships of objects

• Topological relationships between object boundaries: “near to”,
“within”, “adjacent to”, etc.

• Directional relationships: relative positions of objects w.r.t.
each other: “in front of”, “on the left of”, “on top of”, etc.

• Spatial relationships are frequently described with the attributed-
relational graph (ARG):
– a node ⇒ an object

– an arc between two nodes ⇒ a certain relationship between the objects
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MPEG 7: Shape Descriptors

• Goals of selection:
– Compactness
– Invariance to scaling, rotation, translation
– Invariance to shape distortions due to imaging conditions (e.g.

perspective transformations of a 2D shape if viewing angle is changing)

• Selected shape descriptors:
– 3D shape descriptor
– Region-based shape descriptor
– Contour-based shape descriptor
– 2D/3D shape descriptor
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3D Shape Descriptor

• Shape spectrum: the histogram of the shape index over
the entire 3D surface
– Shape index of an oriented 3D surface S(x,y) at point (x,y):

where k1(x,y) ≥ k2(x,y) are the principal curvatures at (x,y)
– Principal curvatures – eigen-values of the 2x2 Hessian at (x,y)
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3D Shape Descriptor

• Shape index describes the local convexity of a surface
– For 3D meshes, it is computed for each vertex of the mesh

• Shape histogram: 100 bins, 12 bits/bin

• Two additional variables:
– Relative area of planar surface regions of the mesh, w.r.t.

the entire area of the mesh

– Relative area of all polygonal components where reliable
estimation of the shape index is impossible, w.r.t. the entire
area of the 3D mesh
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Region-based Shape Descriptor

• Angular Radial Transformation (ART): c0 = 1 and cn = 2; n > 0

• Moment–based description of spatial pixel distribution
within a connected or disconnected 2D object region:

– 35 ART coefficients (polar moments); n = 10; m = 10
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Region-based Shape Descriptor

• The default descriptor: 140 bits
– 35 coefficients quantised to 4 bits per coefficient

similarsimilar

dissimilar
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Contour-based Shape Descriptor

• Curvature scale-space (CSS) contour representation

• Descriptor: in average – 112 bits per contour
– Eccentricity and circularity of the original and filtered contour

(each 6 bits)

– Number of peaks in the CSS image (6 bits)

– Height of the highest peak (7 bits)
– (x,y)-positions of the remaining peaks (9 bits per peak)

• N equi-distant points on the contour  an arbitrary
start clockwise; grouped X and Y series of coordinates
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Contour-based Shape Descriptor

Repetitive smoothing of X and Y contour coordinates by the low-
pass filter (0.25, 0.5, 0.25) until the contour becomes convex

Location xcss of curvature zero-crossing points

Filtering pass ycss

From: SQUID system website; Centre for Vision, Speech and
Signal Processing; Dept. EEE, University of Surrey, UK
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Contour-based Shape Descriptor

• Due to smoothing, the contour evolves and its concave
parts gradually flatten-out, until it becomes convex
Contour evolution is given by a CSS image of zero-crossing

points of curvature along each smoothed contour: 
  xcss – the index of a point along the contour, i.e. its relative

position along the contour of unit length; 
  ycss – the number of passes of the coordinate filtering to

smooth this particular contour

• The CSS image helps to explain the descriptor but does
not have to be explicitly used for describing a shape
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Contour-based Shape Descriptor

• Each zero crossing along a contour separates concave
and convex parts

• “Black” xcss in the row ycss of the CSS image indicates
the relative zero crossing position w.r.t. the contour of
the unit length obtained after ycss smoothing passes

• Shape description: quantised eccentricity and circularity plus
ordered by decreasing values ycss, non-linearly transformed, and
quantised coordinates (xcss, ycss) of prominent peaks in the CSS
image
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2D / 3D Shape Descriptor

• Combining 2D descriptors representing a visual feature
of a 3D object seen from different view angles

• A complete 3D view-based representation of the object

• Any 2D visual descriptor, such as contour shape, region
shape, colour, or texture can be used.

• Supporting integration of the 2D descriptors used in the
image plane to describe the 3D (real-world) objects
– Experiments with 2D/3D descriptor and contour-based shape

descriptor  good performance in multi-view 3D description
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Image Indexing

• Indexing accelerates the queries and overcomes the "curse of
dimensionality" in the content-based search

• Whole image match: the query template is an entire image and
the similar images have to be retrieved

– a single feature vector for indexing and retrieval

• Subimage match: the query template is a portion of an image,
and the images with similar portions or portions of images with
desired objects have to be retrieved
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Similarity Between Features

• CBIR: low-level colour, texture, and shape descriptors
• Typically descriptors: multidimensional vectors
• Similarity of two images in the vector feature space:

– the range query: all the points within a hyper-
rectangle aligned with the coordinate axes

– the nearest-neighbour or within-distance (α−cut)
query:  a particular metric in the feature space

– dissimilarity between statistical distributions: the
same metrics or specific measures
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Vector Space Distances
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Distances / Similarity Measures

χ2-Distance

 Relative entropy
(Kullback-Leibler
divergence)

Correlation

Generalised
Euclidean (quadratic)
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Minkowski Distance

Chebyshev, Euclidean, city-
block distances  are
particular cases of the
Minkowski distance:
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Similarity-based Search

• Vector space indexes: regions of the feature space
• Metric space indexes: distances between the vectors
• Algorithmic indexing structures:

– Nonhierachical  indexing: the feature space is split
into regions to be found in a fixed number of steps

– Recursive  indexing:  the space as a tree to
optimise computational efficiency of the retrieval

– Projection based indexing: projections of vectors
onto a subspace to reduce the dimensionality
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Nonhierarchical Indexing

• The n-dimensional vectors are mapped onto the real
line using a space-filling  (e.g., Peano or Hilbert) curve
and the mapped records are indexed with a 1D indexing
structure

• Because space-filling curves preserve to some extent
the neighbourhood relations between initial vectors,
range, nearest-neighbour, and α-cut queries are rather
closely approximated along the linear mapping

Hilbert curve                       Peano curve
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Recursive Indexing

• The decomposition of the space by a tree:
•  Most popular: quad-trees, k−n−trees and R−trees

– Quad-trees: in the n-dimensional space, each non-
terminal node has 2n children (corresponing to the
hyperrectangles aligned with the coordinate axes
and splitting each axis into two parts)

– k-n-trees: the (n-1)-dimensional hyperplanes
perpendicular to a coordinate axis selected by the
data in the node divide the space; each nonterminal
node has at least two children
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2D Quad-trees
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Recursive Indexing

• R-trees generalise multi-way B-trees allowing an
extremely efficient search for a scalar search key

• R-tree and modifications: the best for multidimensional
indexing
– Each internal node: a k-dimensional hyper-rectangle rather

than a scalar range
– The hyper-rectangle of the node contains all the (overlapping)

hyper-rectangles of the children
– To improve a performance, the R*-tree is proposed that

minimises the overlap among the nodes
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Multiway Search R-Tree
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Multiway Search R-Tree

1 2 3

Feature 1

Feature 2
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Hypercube vs. Hypersphere

• R- and R*-trees work well until the dimension is < 20
• R-trees are extremely inefficient for an α-cut query with

the Euclidean distance because the search is actually
based on the minimum bounding hyperrectangle
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“Curse of Dimensionality”

• No tight data clusters in the high-dimensional cases
– Example: normal distribution of n-vectors x=[x1, ..., xn] with

independent zero-mean components and the standard
deviation s

– Euclidean distance d 
2 between x and y: d2 = (x1 − y1)2 + ...

+ (xn − yn)2  has math expectation 2ns2 and variance 4ns4

– s=1, n=1     ⇒ most of the distances    0.0 ≤ d  ≤  2.8
– s=1, n=100 ⇒ most of the distances 11.4 ≤ d  ≤ 16.1
– No points "close" to or "far" from the query: the α-cut and the

nearest-neighbour search are meaningless
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Dimensionality Reduction

• In practice the feature space has often a local structure
that makes the close neighbourhood of a query image
still meaningful

• Interdependent features can be approximated by their
projections onto an appropriate lower-dimensional
space, where the distance- or similarity-based indexing
behaves well

• The mapping from a higher-dimensional to a lower-
dimensional space is called dimensionality reduction
and performed by selecting a subset of variables, or
multidimensional scaling, or geometric hashing
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Select a Subset of Variables

• Minimum error of approximating the vectors with lower-
dimensional projections after a linear transformation of
the feature space
– Uncorrelated projections: the Karhunen-Loeve

transform (KLT), principal component analysis
(PCA), or singular value decomposition (SVD)

– All these methods are equivalent, data-dependent,
computationally expensive, and suited well for only
static databases

– Dynamic databases: special (and computationally
very expensive) KLT/PCA/SVD techniques
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Multidimensional Scaling

• Nonlinear mapping of the n-dimensional feature space
into m-dimensional one (m < n)

• No general theory or precise definition of this approach
– Metric multidimensial scaling: minimum changes

of the distances between the pairs of points
– Numerous other statements of the problem exist

• Better reduces dimensionality than linear methods
– But much heavier computations
– Data-dependent approach poorly suited for dynamic

databases
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Geometric Hashing

• Data-independent mapping of the n-dimensional feature
space into the 1D real line or the 2D real plane

• Ideally, hashing spreads the database uniformly across
the range of the low-dimensional space, so that the
metric properties of the hashed space differ significantly
from those of the original feature space

• Difficulties in designing a good hashing function grow
with the dimensionality of the original space
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Special Indexing Structures

• Particular classes of queries: more efficient indexing
• CSVD (Clustering with Singular Value Decomposition)

– Partitioning the data into homogeneous clusters and
reducing the dimensionality of each cluster

– the index is a tree: each node ⇒ cluster parameters
and dimensionality reduction data

– Non-leaf nodes: to assign a query to its cluster
– Terminal nodes (leaves): an indexing structure that

supports nearest-neighbour queries


