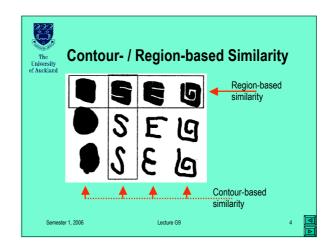
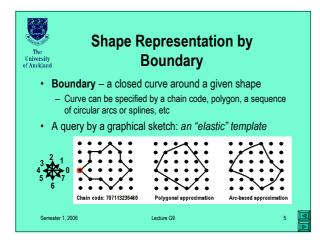


Lecture G9

ester 1, 2006





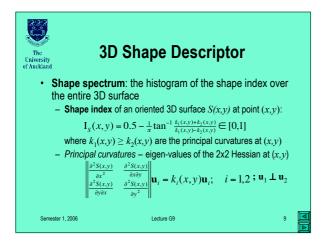
Semester 1, 2006

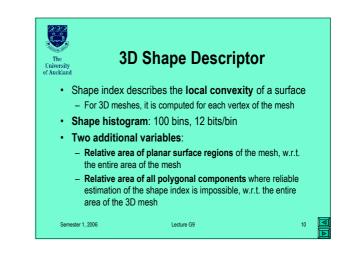
Shape Representation by Region

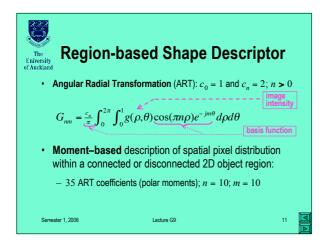
- Interior, or "body" descriptions with moment invariants or primitives: sets of points, rectangles, quadrics, disks, deformable templates, skeletons, ...
- Skeleton \rightarrow the axis of symmetry between the borders:
 - Medial axis: locus of inscribed maximum-size circles
 - Shock set: "grassfire" propagation from boundaries (i.e. singularities of collisions of propagating fronts)
- "Blobworld": an elliptic shape (the object's centroid + the scatter matrix) + texture + two dominant colours

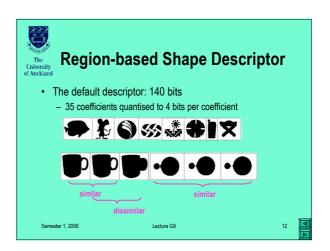
Lecture G9

CS708.S1C: CBIR: Shape Features & Image Indexing

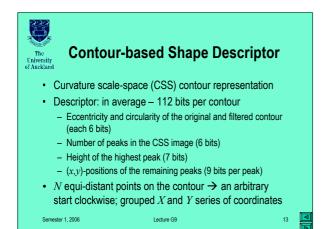


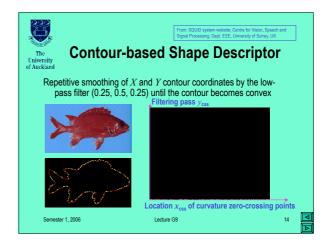


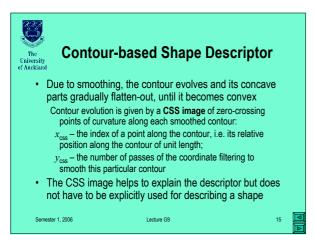


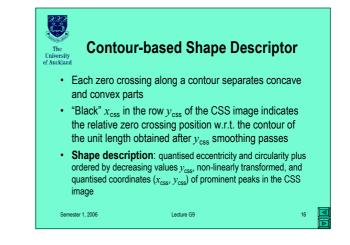


CS708.S1C: CBIR: Shape Features & Image Indexing









ster 1. 2006

2D / 3D Shape Descriptor

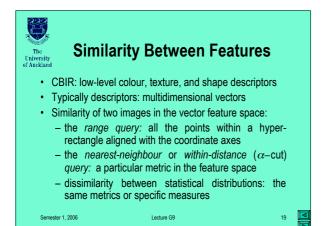
- · Combining 2D descriptors representing a visual feature of a 3D object seen from different view angles
- · A complete 3D view-based representation of the object
- · Any 2D visual descriptor, such as contour shape, region shape, colour, or texture can be used.
- Supporting integration of the 2D descriptors used in the image plane to describe the 3D (real-world) objects
 - Experiments with 2D/3D descriptor and contour-based shape descriptor \rightarrow good performance in multi-view 3D description Lecture G9

Semester 1, 2006

Image Indexing

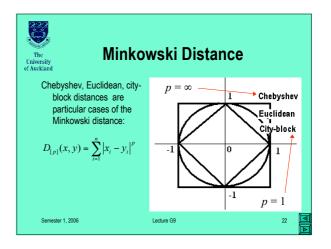
- · Indexing accelerates the queries and overcomes the "curse of dimensionality" in the content-based search
- Whole image match: the query template is an entire image and the similar images have to be retrieved
- a single feature vector for indexing and retrieval
- · Subimage match: the query template is a portion of an image, and the images with similar portions or portions of images with desired objects have to be retrieved

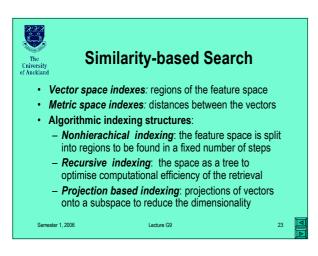
Lecture G9

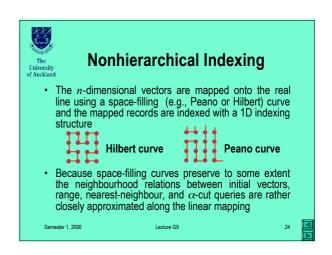


The Chiversity of Auckland	Space Distances
Euclidean (Cartesian)	$D_{[2]}(\mathbf{x}, \mathbf{y}) = \sqrt{\sum_{i=1}^{n} (x_i - y_i)^2}$
Chebyshev	$D_{[\infty]}(\mathbf{x}, \mathbf{y}) = \max_{i=1}^{n} x_i - y_i $
Manhattan (city-block)	$D_{[1]}(\mathbf{x}, \mathbf{y}) = \sum_{i=1}^{n} x_i - y_i $
Minkowsky	$D_{[p]}(\mathbf{x}, \mathbf{y}) = \left[\sum_{i=1}^{n} x_i - y_i ^p\right]^{\frac{1}{p}}$
Weighted Minkowsky	$D_{[p,\mathbf{w}]}(\mathbf{x},\mathbf{y}) = \left[\sum_{i=1}^{n} w_i \mid x_i - y_i \mid^p\right]^{\frac{1}{p}}$
Mahalanobis	$D(\mathbf{x}, \mathbf{y}) = \det \mathbf{C} ^{1/n} (\mathbf{x} - \mathbf{y})^{\mathrm{T}} \mathbf{C}^{-1} (\mathbf{x} - \mathbf{y})$
Semester 1, 2006	Lecture G9 20

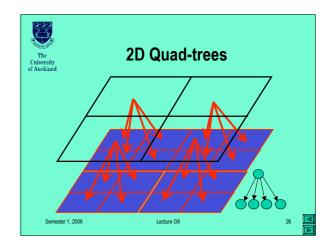
The University of Auckland		Similarity Measures	
	Generalised Euclidean (quadratic)	$D(\mathbf{x}, \mathbf{y}) = (\mathbf{x} - \mathbf{y})^{\mathrm{T}} \mathbf{K} (\mathbf{x} - \mathbf{y})$	
	Correlation	$\rho(\mathbf{x},\mathbf{y}) = \frac{\sum_{i=1}^{n} (x_i - \overline{x}_i) (y_i - \overline{y}_i)}{\sqrt{\sum_{i=1}^{n} (x_i - \overline{x}_i)^2 \sum_{j=1}^{n} (y_i - \overline{y}_i)^2}}$	
	Relative entropy (Kullback-Leibler divergence)	$D(\mathbf{x} \mathbf{y}) = \sum_{i=1}^{n} x_i \log \frac{x_i}{y_i}$ when $\sum_{i=1}^{n} x_i = \sum_{i=1}^{n} y_i = 1$	
	χ^2 -Distance	$D_{z^2}(\mathbf{x}, \mathbf{y}) = \sum_{i=1}^{n} \frac{(x_i - y_i)^2}{y_i} \text{ when } \sum_{i=1}^{n} x_i = \sum_{i=1}^{n} y_i = 1$	
Sem	ester 1, 2006	Lecture G9 21	

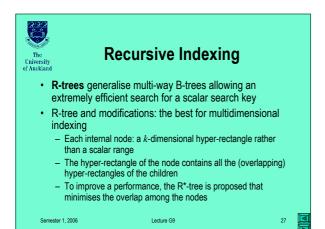


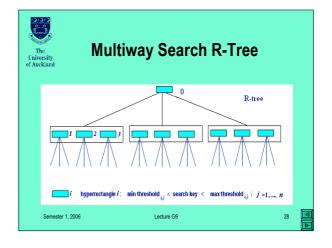


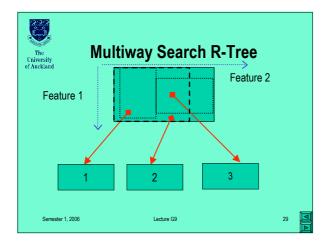


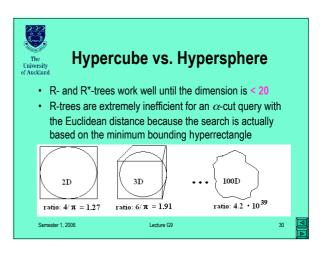
The University of Auckland	Recursive Indexing	
	decomposition of the space by a tree:	
• Mos	st popular: quad-trees, <i>k–n–</i> trees and R–trees	
te	Quad-trees: in the <i>n</i> -dimensional space, each non- erminal node has 2 ^{<i>n</i>} children (corresponing to the yperrectangles aligned with the coordinate axes nd splitting each axis into two parts)	
p d	- <i>n</i> - <i>trees</i> : the (<i>n</i> -1)-dimensional hyperplanes erpendicular to a coordinate axis selected by the ata in the node divide the space; each nonterminal ode has at least two children	
Semester 1, 2	006 Lecture G9 25	N





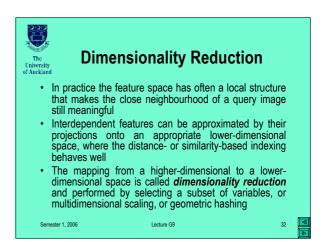


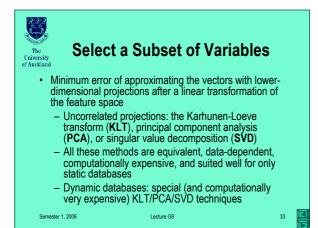


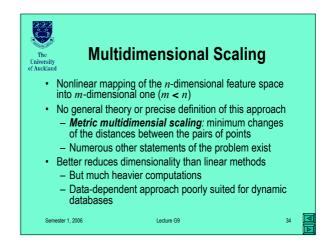


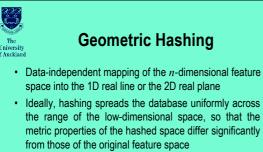
CS708.S1C: CBIR: Shape Features & Image Indexing

The University of Auckland	"Curse of Dimensionality"	
• No	tight data clusters in the high-dimensional cases	
i	Example : normal distribution of <i>n</i> -vectors $\mathbf{x} = [x_1,, x_n]$ with independent zero-mean components and the standard deviation <i>s</i>	
	Euclidean distance d^2 between x and y : $d^2 = (x_1 - y_1)^2 + + (x_n - y_n)^2$ has math expectation $2ns^2$ and variance $4ns^4$	
	$s=1, n=1 \implies \text{most of the distances} 0.0 \le d \le 2.8$	
	$s=1, n=100 \Rightarrow$ most of the distances $11.4 \le d \le 16.1$	
	No points "close" to or "far" from the query: the $\alpha\text{-cut}$ and the nearest-neighbour search are meaningless	
Semester 1	,2006 Lecture G9 3	









• Difficulties in designing a good hashing function grow with the dimensionality of the original space

Lecture G9

35

The University

Semester 1, 2006

Special Indexing Structures

- · Particular classes of queries: more efficient indexing
- CSVD (Clustering with Singular Value Decomposition)

 Partitioning the data into homogeneous clusters and reducing the dimensionality of each cluster
 - the index is a tree: each node \Rightarrow cluster parameters and dimensionality reduction data
 - Non-leaf nodes: to assign a query to its cluster
 Terminal nodes (leaves): an indexing structure that supports nearest-neighbour queries

Lecture G9

Semester 1, 2006