

The University of Auckland	o Describe a Texture	?
Each human de features: finen	ible to describe textures in words finition involves informal qualitative ess - coarseness, smoothness, eation, directionality, roughness, idomness, <i>etc</i>	
constituents an e.g. <i>fine</i> or coal	fine a spatial arrangement of textur d single out the desired texture type rse, close or loose, plain or twilled o brics, and so on	es,
Semester 1, 2006	Lecture G7	7 🗖

The University of Auckland			
 Frequency distribution of oriented local edges against their directional angles The edge strength <i>e</i>(<i>x</i>,<i>y</i>) and the directional angle <i>a</i>(<i>x</i>,<i>y</i>) are computed using approximate pixel-wise derivatives computed by the Sobel edge detector in the 3 x 3 moving window: 			
-1 -1	$\begin{array}{cccccccccccccccccccccccccccccccccccc$		
Semester 1, 2006	$\mathbf{\Delta}_{\mathbf{x}}(\alpha, \mathbf{y}) + \mathbf{\mu}_{\mathbf{y}}(\alpha, \mathbf{y}) = \mathbf{C} \left(\mathbf{\Delta}_{\mathbf{y}}(\alpha, \mathbf{y}) - \mathbf{\Delta}_{\mathbf{x}}(\alpha, \mathbf{y}) \right)$ Lecture G7 13	V	

